首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The mutualistic basidiomycete Piriformospora indica colonizes roots of mono- and dicotyledonous plants, and thereby improves plant health and yield. Given the capability of P. indica to colonize a broad range of hosts, it must be anticipated that the fungus has evolved efficient strategies to overcome plant immunity and to establish a proper environment for nutrient acquisition and reproduction. Global gene expression studies in barley identified various ethylene synthesis and signaling components that were differentially regulated in P. indica-colonized roots. Based on these findings we examined the impact of ethylene in the symbiotic association. The data presented here suggest that P. indica induces ethylene synthesis in barley and Arabidopsis roots during colonization. Moreover, impaired ethylene signaling resulted in reduced root colonization, Arabidopsis mutants exhibiting constitutive ethylene signaling, -synthesis or ethylene-related defense were hyper-susceptible to P. indica. Our data suggest that ethylene signaling is required for symbiotic root colonization by P. indica.  相似文献   

3.
4.
In Arabidopsis thaliana roots, the mutualistic fungus Piriformospora indica initially colonizes living cells, which die as the colonization proceeds. We aimed to clarify the molecular basis of this colonization-associated cell death. Our cytological analyses revealed endoplasmic reticulum (ER) swelling and vacuolar collapse in invaded cells, indicative of ER stress and cell death during root colonization. Consistent with this, P. indica-colonized plants were hypersensitive to the ER stress inducer tunicamycin. By clear contrast, ER stress sensors bZIP60 and bZIP28 as well as canonical markers for the ER stress response pathway, termed the unfolded protein response (UPR), were suppressed at the same time. Arabidopsis mutants compromised in caspase 1-like activity, mediated by cell death-regulating vacuolar processing enzymes (VPEs), showed reduced colonization and decreased cell death incidence. We propose a previously unreported microbial invasion strategy during which P. indica induces ER stress but inhibits the adaptive UPR. This disturbance results in a VPE/caspase 1-like-mediated cell death, which is required for the establishment of the symbiosis. Our results suggest the presence of an at least partially conserved ER stress-induced caspase-dependent cell death pathway in plants as has been reported for metazoans.  相似文献   

5.
Piriformospora indica is a root-colonizing basidiomycete that confers a wide range of beneficial traits to its host. The fungus shows a biotrophic growth phase in Arabidopsis (Arabidopsis thaliana) roots followed by a cell death-associated colonization phase, a colonization strategy that, to our knowledge, has not yet been reported for this plant. P. indica has evolved an extraordinary capacity for plant root colonization. Its broad host spectrum encompasses gymnosperms and monocotyledonous as well as dicotyledonous angiosperms, which suggests that it has an effective mechanism(s) for bypassing or suppressing host immunity. The results of our work argue that P. indica is confronted with a functional root immune system. Moreover, the fungus does not evade detection but rather suppresses immunity triggered by various microbe-associated molecular patterns. This ability to suppress host immunity is compromised in the jasmonate mutants jasmonate insensitive1-1 and jasmonate resistant1-1. A quintuple-DELLA mutant displaying constitutive gibberellin (GA) responses and the GA biosynthesis mutant ga1-6 (for GA requiring 1) showed higher and lower degrees of colonization, respectively, in the cell death-associated stage, suggesting that P. indica recruits GA signaling to help establish proapoptotic root cell colonization. Our study demonstrates that mutualists, like pathogens, are confronted with an effective innate immune system in roots and that colonization success essentially depends on the evolution of strategies for immunosuppression.  相似文献   

6.
7.
8.
Piriformospora indica (Sebacinaceae, Basidiomycota) is an axenically cultivable, plant growth promoting root endophyte with a wide host range, including Populus. Rooting of Populus Esch5 explants started within 6 days after transfer to WPM medium. If such plantlets with roots were inoculated with P. indica, there was an increase in root biomass, and the number of 2nd order roots was increased significantly. A totally different observation was recorded when the explants were placed into WPM with pre-grown P. indica. The interaction led to complete blocking of root production and severely inhibited plant growth. Additionally, branched aerial roots appeared which did not penetrate the medium. On contact with the fungal colony or the medium, the ends of the aerial roots became inflated. Prolonged incubation stimulated the fungus to colonize aerial parts of the plant (stem and leaves). Mycelium not only spread on the surface of the aerial parts, but also invaded the cortical tissues inter- and intracellularly. Detached Populus leaves remained vital for 4 - 5 weeks on sterile agar media or on AspM medium with pre-grown P. indica. When the fungus was pre-grown on culture media such as WPM, containing ammonium as the main source of nitrogen, leaves in contact with the cultures turned brownish within 4 - 12 h. Thereafter, the leaves bleached, and about one day later had become whitish. Thus, cultural conditions could alter the behaviour of the fungus drastically: the outcome of the interaction between plant and fungus can be directed from mutualistic to antagonistic, characterized by fungal toxin formation and extension of the colonization to Populus shoots.  相似文献   

9.
The ancient arbuscular mycorrhiza represents a mutualistic symbiotic interaction of plants with soil‐born fungi. The fungus assists the plant in requiring mineral nutrients and water, whereas the plant supplies the biotrophic fungus with carbohydrates. This interaction is widespread and enables the plant to cope with unfavourable conditions (e.g. limited nutrient supply as well as drought, salt and heavy metal stress or pathogen attack). This review describes the state of the art concerning the establishment and regulation of the plant‐fungus interaction. Early signals leading to a successful colonization and the following mechanisms of the plant to host the fungus are explained. Another focus is given on the regulation of the transfer of carbohydrates to the fungus, the restriction of fungal growth by autoregulative mechanisms and the function of phytohormones, all part of a plant regulatory machinery that is necessary to ensure a functional and balanced symbiosis.  相似文献   

10.
Arbuscular mycorrhizal fungi have mutualistic symbiosis with higher plants, increasing plant resistance to environmental stresses and nutrient uptake and improving soil. During arbuscular mycorrhizal symbiosis, a range of chemical and biological factors are affected. In this study, two species of arbuscular mycorrhiza (Glomus mosseae and G. intraradices) were used to assess the effects of inoculation on licorice growth and secondary metabolite production. After successful inoculation, the increase in the growth rate, P and Zn uptake, and the accumulation of secondary metabolites in licorice (Glycyrrhiza glabra L.) roots were observed in two periods of 3 and 6 months compared to control. After 6 months, more increments in growth, secondary metabolites, and P and Zn uptake were observed compared with the first 3-months period. Two groups of secondary metabolites arising from phenolic and terpenoid metabolism obviously responded to mycorrhizal fungi colonization in licorice roots.  相似文献   

11.
12.
The mutualistic interaction between the endophytic and root-colonizing fungus Piriformospora indica and Arabidopsis thaliana is a nice model system to study beneficial and non-benefical traits in a symbiosis. Colonized Arabidopsis plants are taller, produce more seeds and are more resistant against biotic and abiotic stress. Based on genetic, molecular and cellular analyses, Arabidopsis mutants were identified which are impaired in their beneficial response to the fungus. Several mutants are smaller rather than bigger in the presence of the fungus and are defective in defense responses. This includes mutants with defects in defense-signaling components, defense proteins and enzymes, and defense metabolites. The mutants cannot control root colonization and are often over-colonized by P. indica. As a consequence, the benefits for the plants are lost and they try to restrict root colonization by activating unspecific defense responses against P. indica. These observations raise the question as to how the plants balance defense gene activation or development and what signaling molecules are involved. P. indica promotes the synthesis of phosphatidic acid (PA), which binds to the 3-PHOSPHOINOSITIDE-DEPENDENT-KINASE1 (PDK1). This activates a kinase pathway which might be crucial for balancing defense and growth responses. The review describes plant defense compounds which are necessary for the mutualistic interaction between the two symbionts. Furthermore, it is proposed that the PA/PDK1 pathway may be crucial for balancing defense responses and growth stimulation during the interaction with P. indica.  相似文献   

13.
14.
15.
Sugar for my honey: carbohydrate partitioning in ectomycorrhizal symbiosis   总被引:1,自引:0,他引:1  
Simple, readily utilizable carbohydrates, necessary for growth and maintenance of large numbers of microbes are rare in forest soils. Among other types of mutualistic interactions, the formation of ectomycorrhizas, a symbiosis between tree roots and certain soil fungi, is a way to overcome nutrient and carbohydrate limitations typical for many forest ecosystems. Ectomycorrhiza formation is typical for trees in boreal and temperate forests of the northern hemisphere and alpine regions world-wide. The main function of this symbiosis is the exchange of fungus-derived nutrients for plant-derived carbohydrates, enabling the colonization of mineral nutrient-poor environments. In ectomycorrhizal symbiosis up to 1/3 of plant photoassimilates could be transferred toward the fungal partner. The creation of such a strong sink is directly related to the efficiency of fungal hexose uptake at the plant/fungus interface, a modulated fungal carbohydrate metabolism in the ectomycorrhiza, and the export of carbohydrates towards soil growing hyphae. However, not only the fungus but also the plant partner increase its expression of hexose importer genes at the plant/fungus interface. This increase in hexose uptake capacity of plant roots in combination with an increase in photosynthesis may explain how the plant deals with the growing fungal carbohydrate demand in symbiosis and how it can restrict this loss of carbohydrates under certain conditions to avoid fungal parasitism.  相似文献   

16.
Piriformospora indica , an endophytic fungus of the Sebacinaceae family, colonizes the roots of a wide variety of plant species and promotes their growth, in a manner similar to arbuscular mycorrhizal fungi. The results of the present study demonstrate that the fungus interacts also with the non-mycorrhizal host Arabidopsis thaliana and promotes its growth. The interaction is detectable by the appearance of a strong autofluorescence in the roots, followed by the colonization of root cells by fungal hyphae and the generation of chlamydospores. Promotion of root growth was detectable even before noticeable root colonization. Membrane-associated proteins from control roots and roots after cultivation with P. indica were separated by two-dimensional gel-electrophoresis and identified by electrospray ionization mass spectrometry and tandem mass spectrometry. Differences were found in the expression of glucosidase II, beta-glucosidase PYK10, two glutathione- S -transferases and several so-far uncharacterized proteins. Based on conserved domains present in the latter proteins their possible roles in plant–microbe interaction are predicted. Taken together, the present results suggest that the interaction of Arabidopsis thaliana with P. indica is a powerful model system to study beneficial plant–microbe interaction at the molecular level. Furthermore, the successful accommodation of the fungus in the root cells is preceded by protein modifications in the endoplasmatic reticulum as well as at the plasma membrane of the host.  相似文献   

17.
Piriformospora indica is a mutualistic root-colonising basidiomycete that tranfers various benefits to colonized host plants including growth promotion, yield increases as well as abiotic and biotic stress tolerance. The fungus is characterized by a broad host spectrum encompassing various monocots and dicots.1,2 Our recent microarray-based studies indicate a general plant defense suppression by P. indica and significant changes in the GA biosynthesis pathway.3 Furthermore, barley plants impaired in GA synthesis and perception showed a significant reduction in mutualistic colonization, which was associated with an elevated expression of defense-related genes. Here, we discuss the importance of plant hormones for compatibility in plant root-P. indica associations. Our data might provide a first explanation for the colonization success of the fungus in a wide range of higher plants.Key words: compatibility, plant defense, gibberellic acid, symbiosis, plant hormones  相似文献   

18.
The role of flowering in root‐fungal symbiosis is not well understood. Because flowering and fungal symbionts are supported by carbohydrates, we hypothesized that flowering modulates root‐beneficial fungal associations through alterations in carbohydrate metabolism and transport. We monitored fungal colonization and soluble sugars in the roots of Arabidopsis thaliana following inoculation with a mutualistic fungus Phomopsis liquidambari across different plant developmental stages. Jasmonate signalling of wild‐type plants, sugar transport, and root invertase of wild‐type and jasmonate‐insensitive plants were exploited to assess whether and how jasmonate‐dependent sugar dynamics are involved in flowering‐mediated fungal colonization alterations. We found that flowering restricts root‐fungal colonization and activates root jasmonate signalling upon fungal inoculation. Jasmonates reduce the constitutive and fungus‐induced accumulation of root glucose and fructose at the flowering stage. Further experiments with sugar transport and metabolism mutant lines revealed that root glucose and fructose positively influence fungal colonization. Diurnal, jasmonate‐dependent inhibitions of sugar transport and soluble invertase activity were identified as likely mechanisms for flowering‐mediated root sugar depletion upon fungal inoculation. Collectively, our results reveal that flowering drives root‐fungus cooperation loss, which is related to jasmonate‐dependent root soluble sugar depletion. Limiting the spread of root‐fungal colonization may direct more resources to flower development.  相似文献   

19.
Smith SE  Smith FA 《Mycologia》2012,104(1):1-13
Recent research on arbuscular mycorrhizas has demonstrated that AM fungi play a significant role in plant phosphorus (P) uptake, regardless of whether the plant responds positively to colonization in terms of growth or P content. Here we focus particularly on implications of this finding for consideration of the balance between organic carbon (C) use by the fungi and P delivery (i.e. the C-P trade between the symbionts). Positive growth responses to arbuscular mycorrhizal (AM) colonization are attributed frequently to increased P uptake via the fungus, which results in relief of P deficiency and increased growth. Zero AM responses, compared with non-mycorrhizal (NM) plants, have conventionally been attributed to failure of the fungi to deliver P to the plants. Negative responses, combined with excessive C use, have been attributed to this failure. The fungi were viewed as parasites. Demonstration that the AM pathway of P uptake operates in such plants indicates that direct P uptake by the roots is reduced and that the fungi are not parasites but mutualists because they deliver P as well as using C. We suggest that poor plant growth is the result of P deficiency because AM fungi lower the amount of P taken up directly by roots but the AM uptake of P does compensate for the reduction. The implications of interplay between direct root uptake and AM fungal uptake of P also include increased tolerance of AM plants to toxins such as arsenate and increased success when competing with NM plants. Finally we discuss the new information on C-P trade in the context of control of the symbiosis by the fungus or the plant, including new information (from NM plants) on sugar transport and on the role of sucrose in the signaling network involved in responses of plants to P deprivation.  相似文献   

20.
印度梨形孢促进蒺藜苜蓿生长及其提高耐盐性研究   总被引:1,自引:0,他引:1  
【目的】研究盐胁迫下印度梨形孢定殖对豆科模式植物蒺藜苜蓿生长发育的影响。【方法】通过分析不同生境下植物的根长、根鲜重和茎鲜重,以及体内抗氧化物酶活性、脯氨酸含量、甜菜碱醛脱氢酶基因(BADH)的表达,确定印度梨形孢对蒺藜苜蓿生长的促进作用,并初步阐释印度梨形孢诱导植物耐盐性的机制。【结果】印度梨形孢能在蒺藜苜蓿根部定殖并能促进植物的生长发育,有效缓解盐胁迫造成的生长抑制。印度梨形孢能提高植物体内抗氧化物酶活性,增加游离脯氨酸含量并诱导BADH基因的表达。【结论】印度梨形孢作为植物生长促进因子可以用来提高植物耐盐性,实现盐碱土壤的间接改良。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号