首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In colorectal cancer, mutation of KRAS (RASMUT) reduces therapeutic options, negatively affecting prognosis of the patients. In this setting, administration of CDK4/6-inhibitors, alone or in combination with other drugs, is being tested as promising therapeutic strategy. Identifying sensitive patients and overcoming intrinsic and acquired resistance to CDK4/6 inhibition represent still open challenges, to obtain better clinical responses. Here, we investigated the role of the CDK inhibitor p27kip1 in the response to the selective CDK4/6-inhibitor Palbociclib, in colorectal cancer. Our results show that p27kip1 expression inversely correlated with Palbociclib response, both in vitro and in vivo. Generating a model of Palbociclib-resistant RASMUT colorectal cancer cells, we observed an increased expression of p27kip1, cyclin D, CDK4 and CDK6, coupled with an increased association between p27kip1 and CDK4. Furthermore, Palbociclib-resistant cells showed increased Src-mediated phosphorylation of p27kip1 on tyrosine residues and low doses of Src inhibitors re-sensitized resistant cells to Palbociclib. Since p27kip1 showed variable expression in RASMUT colorectal cancer samples, our study supports the possibility that p27kip1 could serve as biomarker to stratify patients who might benefit from CDK4/6 inhibition, alone or in combination with Src inhibitors.Subject terms: Colorectal cancer, Cell growth, Cell signalling  相似文献   

4.
It is well documented that Ras functions as a molecular switch for reentry into the cell cycle at the border between G0 and G1 by transducing extracellular growth stimuli into early G1 mitogenic signals. In the present study, we investigated the role of Ras during the late stage of the G1 phase by using NIH 3T3 (M17) fibroblasts in which the expression of a dominant negative Ras mutant, p21(Ha-Ras[Asn17]), is induced in response to dexamethasone treatment. We found that delaying the expression of Ras(Asn17) until late in the G1 phase by introducing dexamethasone 3 h after the addition of epidermal growth factor (EGF) abolished the downregulation of the p27kip1 cyclin-dependent kinase (CDK) inhibitor which normally occurred during this period, with resultant suppression of cyclin Ds/CDK4 and cyclin E/CDK2 and G1 arrest. The immunodepletion of p27kip1 completely eliminated the CDK inhibitor activity from EGF-stimulated, dexamethasone-treated cell lysate. The failure of p27kip1 downregulation and G1 arrest was also observed in cells in which Ras(Asn17) was induced after growth stimulation with a phorbol ester or alpha-thrombin and was mimicked by the addition late in the G1 phase of inhibitors for phosphatidylinositol-3-kinase. Ras-mediated downregulation of p27kip1 involved both the suppression of synthesis and the stimulation of the degradation of the protein. Unlike the earlier expression of Ras(Asn17) at the border between G0 and G1, its delayed expression did not compromise the EGF-stimulated transient activation of extracellular signal-regulated kinases or inhibit the stimulated expression of a principal D-type cyclin, cyclin D1, until close to the border between G1 and S. We conclude that Ras plays temporally distinct, phase-specific roles throughout the G1 phase and that Ras function late in G1 is required for p27kip1 downregulation and passage through the restriction point, a prerequisite for entry into the S phase.  相似文献   

5.
Two distinct mitogenic modes coexist in thyroid epithelial cells. TSH via cAMP induces proliferation and differentiation expression, whereas growth factors including epidermal growth factor (EGF) induce proliferation and dedifferentiation. Divergent models of TSH/cAMP-dependent mitogenesis have emerged from different thyroid cell culture systems. In the FRTL-5 rat cell line, cAMP cross-signals with transduction pathways of growth factors to induce cyclin D1 and p21(cip1) and down-regulate p27(kip1). By contrast, in canine primary cultures, mitogenic pathways of cAMP and growth factors are fully distinct. cAMP does not induce D-type cyclins and p21, it up-regulates p27, and it stimulates the formation and activity of cyclin D3-cyclin-dependent kinase (CDK) 4 complexes. In primary cultures of normal human thyrocytes, EGF + serum increased cyclin D1 and p21 accumulation, and it stimulated the assembly and activity of cyclin D1-CDK4-p21 complexes. By contrast, TSH repressed or did not induce cyclin D1 and p21, and it rather up-regulated p27. TSH did not increase cyclin D1-CDK4 activity, but it stimulated the activating phosphorylation of CDK4 and the pRb-kinase activity of preexisting cyclin D3-CDK4 complexes. As recently demonstrated in dog thyrocytes and other systems, cyclin D1 and cyclin D3 differently oriented the site specificity of CDK4 pRb-kinase activity, which might differently impact some pRb functions. Cyclin D1 or cyclin D3 are thus differentially used in the distinct mitogenic stimulations by growth factors or TSH, and potentially in hyperproliferative diseases generated by the overactivation of their respective signaling pathways. At variance with dog thyroid primary cultures, rat thyroid cell lines might not be valid models of TSH-dependent mitogenesis of human thyrocytes.  相似文献   

6.
The cAMP-dependent mitogenic stimulation elicited by thyroid-stimulating hormone (TSH) in primary cultures of canine thyroid epithelial cells is unique as it upregulates the cyclin-dependent kinase (CDK) inhibitor p27kip1 but not D-type cyclins. TSH and cAMP promote the assembly of required cyclin D3-CDK4 complexes and their nuclear import. Here, the nuclear translocation of these complexes strictly correlated in individual cells with the enhanced presence of nuclear p27. p27, like cyclin D3, supported the TSH-stimulated pRb-kinase activity of the CDK4 complex and, as demonstrated using the high-resolution power of the two-dimensional (2D) gel electrophoresis, the phosphorylation of CDK4, presumably by the nuclear CDK-activating kinase. In the presence of TSH, transforming growth factor beta (TGFbeta) did not affect the assembly of cyclin D3-CDK4, but it strongly inhibited the pRb-kinase activity associated with both cyclin D3 and p27, not only by preventing the nuclear import of cyclin D3-CDK4 and its binding to p27, but also by inhibiting CDK4 phosphorylation within residual p27-bound cyclin D3-CDK4 complexes. No alterations of the relative abundance of multiple (un)phosphorylated forms of cyclin D3 and p27 demonstrated by 2D-gel electrophoresis were associated with these processes. This study suggests a crucial positive role of p27 in the TSH-stimulated nuclear import, phosphorylation, and catalytic activity of cyclin D3-bound CDK4. Moreover, it demonstrates a technique to directly assess the in vivo phosphorylation of endogenous CDK4, which might appear as a last regulated step targeted by the antagonistic cell cycle effects of TSH and TGFbeta.  相似文献   

7.
To control the G1/S transition and the progression through the S phase, the activation of the cyclin-dependent kinase (CDK) 2 involves the binding of cyclin E then cyclin A, the activating Thr-160 phosphorylation within the T-loop by CDK-activating kinase (CAK), inhibitory phosphorylations within the ATP binding region at Tyr-15 and Thr-14, dephosphorylation of these sites by cdc25A, and release from Cip/Kip family (p27kip1 and p21cip1) CDK inhibitors. To re-assess the precise relationship between the different phosphorylations of CDK2, and the influence of cyclins and CDK inhibitors upon them, we introduce here the use of the high resolution power of two-dimensional gel electrophoresis, combined to Tyr-15- or Thr-160-phosphospecific antibodies. The relative proportions of the potentially active forms of CDK2 (phosphorylated at Thr-160 but not Tyr-15) and inactive forms (non-phosphorylated, phosphorylated only at Tyr-15, or at both Tyr-15 and Thr-160), and their respective association with cyclin E, cyclin A, p21, and p27, were demonstrated during the mitogenic stimulation of normal human fibroblasts. Novel observations modify the current model of the sequential CDK2 activation process: (i) Tyr-15 phosphorylation induced by serum was not restricted to cyclin-bound CDK2; (ii) Thr-160 phosphorylation engaged the entirety of Tyr-15-phosphorylated CDK2 associated not only with a cyclin but also with p27 and p21, suggesting that Cip/Kip proteins do not prevent CDK2 activity by impairing its phosphorylation by CAK; (iii) the potentially active CDK2 phosphorylated at Thr-160 but not Tyr-15 represented a tiny fraction of total CDK2 and a minor fraction of cyclin A-bound CDK2, underscoring the rate-limiting role of Tyr-15 dephosphorylation by cdc25A.  相似文献   

8.
This study addresses the nature of the critical labile event that couples at restriction point mitogenic cascades with the autonomous part of the cell cycle. In primary cultures of dog thyroid epithelial cells, kinetic experiments indicate that a labile cAMP-dependent event positively controls a late G1 commitment to DNA replication and RB phosphorylation. As previously shown in this system, the cAMP-dependent mitogenic pathway differs from the most generally envisaged growth factor cascades as it stimulates the accumulation of p27(kip1) but not of cyclins D. Nevertheless, cyclin D3 and CDK4 activity are essential in the cAMP-dependent mitogenesis, and cAMP unmasks the DCS-22 epitope of cyclin D3 and induces the nuclear translocations and assembly of cyclin D3 and CDK4 in a complex that also contains p27(kip1). Unexpectedly, the washing out of forskolin rapidly arrested S phase entry and the accumulation of hyperphosphorylated RB, but did not reverse any of the above events associated with cyclin D3-CDK4 activation. This implies that even after induction of stable nuclear cyclin D3-CDK4 complexes, dog thyrocytes still depend on cAMP for RB phosphorylation and commitment to DNA synthesis, which suggests that a key labile event responsible for a last control of restriction point passage remains to be uncovered, in the cAMP-dependent cell cycle of dog thyrocytes and possibly other systems.  相似文献   

9.
Cardiomyocytes withdraw from cell cycle after terminal differentiation due in part to impaired nuclear import of cyclin D1. Thus, we have previously shown that expression of nuclear localization signal-tagged cyclin D1 (D1NLS) and cyclin-dependent kinase 4 promotes cardiomyocyte proliferation both in vitro and in vivo. Here we show that cyclin D2 fails to stimulate cell cycle in cardiomocytes through a mechanism distinct from that of cyclin D1. We demonstrate that cyclin D2 can express in the nucleus much more efficiently than cyclin D1. Cyclin D2, however, was much less effective in activating CDK2 and cell proliferation than cyclin D1 when expressed transiently in the nucleus of cardiomyocytes using nuclear localization signals. Consistent with such an observation, CDK inhibitors p21cip1 and p27kip1 remained bound to CDK2 in cells expressing cyclin D2, whereas p21 and p27 were sequestered to cyclin D1 in cells expressing D1NLS. These data suggest that cyclin D2 has weaker affinities to the CDK inhibitors and therefore is less efficient in activating cell cycle than cyclin D1. According to such a notion, double knockdown of p21 and p27 in cells expressing D2NLS induced activation of CDK2/CDC2 and BrdU incorporation to levels similar to those in cells expressing D1NLS. Taken together, our data suggest that distinct mechanisms keep cyclin D1 and cyclin D2 from activating cell cycle in terminally differentiated cardiomyocytes.  相似文献   

10.
Cyclins, cyclin-dependent kinases (CDKs) and the CDK inhibitor p27(kip1) are known to be involved in the regulation of G(1)/S phase transition by estrogen in the rodent endometrium. Little is known, however, of the cell-specific location and regulation of these proteins during this process, or the way they mediate the differential effect of estrogen in the epithelium and stroma of the endometrium. Here we studied the cell-specific regulation of D-type cyclin (D(1-3)), of cyclin A and E, of CDK(2) and p27(kip1) by 17beta-estradiol in the endometrium of ovariectomized rats. Time-course changes in these proteins in the endometrium of ovariectomized rats were examined by immunohistochemistry at 2, 4, 8, 12, 20, 28 and 32 h after estrogen stimulation. The expression of proliferation cell nuclear antigen (PCNA) was also studied as a marker of proliferating cells. As expected from previous studies, all the proteins investigated were up-regulated by estrogen, with peak times from 8 to 32 h. The induction of cyclin D(1) is predominant in the glandular epithelium, whereas cyclin D(3) increases mainly in the luminal epithelium. The up-regulation of p27(kip1) is restricted to stromal cells with a 'gradient-like' expression pattern, in which the sub-epithelial (functional) layer showed stronger staining than the basal layer. The differential regulation of cyclins and p27(kip1) in the epithelium and stroma of the endometrium appear indicative of distinct actions of estrogen in different cell types in the uterus, as D-type cyclins mediate the proliferative effect of estrogen in epithelial cells while p27(kip1) might help prevent the same effect in the stroma.  相似文献   

11.
Unique cell cycle control is instituted in confluent osteoblast cultures, driving growth to high density. The postconfluent dividing cells share features with cells that normally exit the cell cycle; p27(kip1) is increased, p21(waf1/cip1) is decreased, free E2F DNA binding activity is reduced, and E2F4 is primarily nuclear. E2F4-p130 becomes the predominant E2F-pocket complex formed on E2F sites, but, unlike the complex that typifies resting cells, cyclin A and CDK2 are also present. Administration of dexamethasone at this, but not earlier stages, results in reduction of cyclin A and CDK2 levels with a parallel decrease in the associated kinase activity, dissociation of cyclin A-CDK2 from the E2F4-p130 complexes, and inhibition of G(1)/S transition. The glucocorticoid-mediated cell cycle attenuation is also accompanied by, but not attributable to, increased p27(kip1) and decreased p21(waf1/cip1) levels. The attenuation of osteoblast growth to high density by dexamethasone is associated with severe impairment of mineralized extracellular matrix formation, unless treatment commences in cultures that have already grown to high density. Both the antimitotic and the antiphenotypic effects are reversible, and both are antagonized by RU486. Thus, glucocorticoids induce premature attenuation of the osteoblast cell cycle, possibly contributing to the osteoporosis induced by these drugs in vivo.  相似文献   

12.
We have investigated the mechanisms by which all-trans retinoic acid (ATRA) causes growth inhibition of ovarian carcinoma cells. As a model, we have studied the CAOV3 cell line, which is sensitive to ATRA, and the SKOV3 cell line, which is resistant. We have found that treatment of CAOV3 cells with ATRA causes a 5-10 fold increase in the protein level of the cyclin dependent kinase inhibitor p27/Kip1. p27/Kip1 protein upregulation is important in ovarian carcinoma as primary tumors are frequently found lacking this protein. The increase in p27/Kip1 is detected by day 3 of ATRA treatment of CAOV3 cells, and is maximal by day 5. Messenger RNA levels of p27/Kip1 do not change in CAOV3 cells following ATRA treatment, however, we have shown that p27/Kip1 mRNA is more stable in ATRA treated CAOV3 cells. Conversely, the ATRA resistant cell line SKOV3 fails to show p27/Kip1 accumulation. Interestingly, the SCF component protein SKP2 appears to be decreased in CAOV3 cells treated with ATRA. We have also shown that the ATRA dependent increase in p27/kip1 protein in CAOV3 cells leads to a decrease in the kinase activity of cyclin dependent kinase 4 (CDK4) following ATRA treatment. Finally, we found that CAOV3 cells stably transfected with a p27/kip1antisense construct, which express lower levels of p27/kip1 following ATRA treatment, and have a higher CDK4 kinase activity are less sensitive to ATRA induced growth suppression. Taken together our data suggest ATRA-induced growth inhibition in CAOV3 ovarian carcinoma cells involves modulation of the CDK inhibitor p27/kip1.  相似文献   

13.
14.
Two distinct mitogenic modes coexist in the physiologically relevant model ofprimary cultures of dog thyroid epithelial cells. The differentiation-associated mitogenicstimulation by TSH and cAMP specifically requires the assembly and activation of cyclin D3-cyclin-dependent kinase (CDK)4 associated to p27kip1, while the dedifferentiatingproliferation induced by growth factors is associated with induction of cyclin D1. Here, wesuggest that the related CDK “inhibitors” p21cip1 and p27 are differentially utilized as positiveCDK4 regulators in these mitogenic stimulations. p21 was induced by EGF+serum, butrepressed by TSH, which, as previously shown, up-regulates p27. In response to EGF+serum,p21 supported the nuclear localization, phosphorylation and pRb-kinase activity of CDK4.Unexpectedly, partly different site-specificities of pRb-kinase activity, leading to similardifferences in the phosphorylation pattern of pRb in intact cells, were associated with cyclinD3-CDK4 bound to p27 in TSH-stimulated cells, or with CDK4 bound to p21 in growthfactor-stimulated cells. These differences were ascribed to the predominant association of thelatter complex to cyclin D1. Indeed, in different cell types and species, cyclin D1 varied fromcyclin D3 by more efficiently driving the phosphorylation of pRb at sites (Ser807/811 andThr826) required for its electrophoretic mobility shift. Therefore, different D-type cyclinscould differently impact some pRb functions, which should be considered not only in theunderstanding of the relationships between cell cycle and differentiation expression in thedistinct mitogenic modes of thyroid cells, but also in various development or differentiationmodels associated with dramatic switches in the expression of individual D-type cyclins.  相似文献   

15.
The cell cycle-regulatory protein, cyclin D1, is the sensor that connects the intracellular cell cycle machinery to external signals. Given this central role in the control of cell proliferation, it was surprising that mice lacking the cyclin D1 gene were viable and fertile. Fertility requires 17beta-estradiol (E2)-induced uterine luminal epithelial cell proliferation. In these cells E2 causes the translocation of cyclin D1/cyclin-dependent kinase 4 (CDK4) from the cytoplasm into the nucleus with the consequent phosphorylation of the retinoblastoma protein. In cyclin D1 null mice, E2 also induces retinoblastoma protein phosphorylation and DNA synthesis in a normal manner. CDK4 activity was slightly reduced in the D1 null mice compared with wild-type mice. This CDK4 activity was due to complexes of cyclin D2/CDK4. Cyclin D2 was translocated into the nucleus in response to E2 in the cyclin D1-/- mice to a much greater degree than in wild-type mice. This cyclin D2/CDK4 complex was also able to bind p27kip1 in cyclin D1-/- uterine luminal epithelial cells, allowing for the activation of CDK2. Our data show that in vivo cyclin D2 can completely compensate for the loss of cyclin D1 and reinforces the conclusions that cyclin Ds are the central regulatory point in the proliferative responses of epithelial cells to estrogens.  相似文献   

16.
We report that cyclin D3/cdk4 kinase activity is regulated by p27kip1 in BALB/c 3T3 cells. The association of p27kip1 was found to result in inhibition of cyclin D3 activity as measured by immune complex kinase assays utilizing cyclin D3-specific antibodies. The ternary p27kip1/cyclin D3/cdk4 complexes do exhibit kinase activity when measured in immune complex kinase assays utilizing p27kip1-specific antibodies. The association of p27kip1 with cyclin D3 was highest in quiescent cells and declined upon mitogenic stimulation, concomitantly with declines in the total level of p27kip1 protein. The decline in this association could be elicited by PDGF treatment alone; this was not sufficient, however, for activation of cyclin D3 activity, which also required the presence of factors in platelet-poor plasma in the culturing medium. Unlike cyclin D3 activity, which was detected only in growing cells, p27kip1 kinase activity was present throughout the cell cycle. Since we found that the p27kip1 activity was dependent on cyclin D3 and cdk4, we compared the substrate specificity of the active ternary complex containing p27kip1 and the active cyclin D3 lacking p27kip1 by tryptic phosphopeptide mapping of GST-Rb phosphorylated in vitro and also by comparing the relative phosphorylation activity toward a panel of peptide substrates. We found that ternary p27kip1/cyclin D3/cdk4 complexes exhibited a different specificity than the active binary cyclin D3/cdk4 complexes, suggesting that p27kip1 has the capacity to both inhibit cyclin D/cdk4 activity as well as to modulate cyclin D3/cdk4 activity by altering its substrate preference.  相似文献   

17.
Dog thyroid epithelial cells in primary culture constitute a physiologically relevant model of positive control of DNA synthesis initiation and G0-S prereplicative phase progression by cAMP as a second messenger for thyrotropin (thyroid-stimulating hormone [TSH]). As previously shown in this system, the cAMP-dependent mitogenic pathway differs from growth factor cascades as it stimulates the accumulation of p27(kip1) but not cyclins D. Nevertheless, TSH induces the nuclear translocations and assembly of cyclin D3 and cdk4, which are essential in cAMP-dependent mitogenesis. Here we demonstrate that transforming growth factor beta(1) (TGFbeta(1)) selectively inhibits the cAMP-dependent cell cycle in mid-G1 and various cell cycle regulatory events, but it weakly affects the stimulation of DNA synthesis by epidermal growth factor (EGF), hepatocyte growth factor, serum, and phorbol esters. EGF+serum and TSH did not interfere importantly with TGFbeta receptor signaling, because they did not affect the TGFbeta-induced nuclear translocation of Smad 2 and 3. TGFbeta inhibited the phosphorylation of Rb, p107, and p130 induced by TSH, but it weakly affected the phosphorylation state of Rb-related proteins in EGF+serum-treated cells. TGFbeta did not inhibit c-myc expression. In TSH-stimulated cells, TGFbeta did not affect the expression of cyclin D3, cdk4, and p27(kip1), nor the induced formation of cyclin D3-cdk4 complexes, but it prevented the TSH-induced relocalization of p27(kip1) from cdk2 to cyclin D3-cdk4. It prevented the nuclear translocations of cdk4 and cyclin D3 without altering the assembly of cyclin D3-cdk4 complexes probably formed in the cytoplasm, where they were prevented from sequestering nuclear p27(kip1) away from cdk2. This study dissociates the assembly of cyclin D3-cdk4 complexes from their nuclear localization and association with p27(kip1). It provides a new mechanism of regulation of proliferation by TGFbeta, which points out the subcellular location of cyclin D-cdk4 complexes as a crucial factor integrating mitogenic and antimitogenic regulations in an epithelial cell in primary culture.  相似文献   

18.
According to current concepts, the cell cycle commitment after restriction (R) point passage requires the sustained stimulation by mitogens of the synthesis of labile d-type cyclins, which associate with cyclin-dependent kinase (CDK) 4/6 to phosphorylate pRb family proteins and sequester the CDK inhibitor p27kip1. In primary cultures of dog thyroid epithelial cells, the cAMP-dependent cell cycle induced by a sustained stimulation by thyrotropin or forskolin differs from growth factor mitogenic pathways, as cAMP does not upregulate d-type cyclins but increases p27 levels. Instead, cAMP induces the assembly of required cyclin D3-CDK4 complexes, which associate with nuclear p27. In this study, the arrest of forskolin stimulation rapidly slowed down the entry of dog thyrocytes into S phase and the phosphorylation of pRb family proteins. The pRb kinase activity, but not the formation, of the cyclin D3-CDK4-p27 complex was strongly reduced. Using two-dimensional gel electrophoresis, a phosphorylated form of CDK4 was separated. It appeared in response to forskolin and was bound to both cyclin D3 and p27, presumably reflecting the activating Thr-172 phosphorylation of CDK4. Upon forskolin withdrawal or after cycloheximide addition, this CDK4 phosphoform unexpectedly persisted in p27 complexes devoid of cyclin D3 but it disappeared from the more labile cyclin D3 complexes. These data demonstrate that the assembly of the cyclin D3-CDK4-p27 holoenzyme and the subsequent phosphorylation and activation of CDK4 depend on distinct cAMP actions. This provides a first example of a crucial regulation of CDK4 phosphorylation by a mitogenic cascade and a novel mechanism of cell cycle control at the R point.  相似文献   

19.
20.
The members of Rho family are well known for their regulation of actin cytoskeleton to control cell migration. The Cip/kip members of cyclin‐dependent (CDK) inhibitors have shown to implicate in cell migration and cytoskeletal dynamics. p57kip2, a CDK inhibitor, is frequently down‐regulated in several malignancy tumors. However, its biological roles in human nasopharyngeal carcinoma (NPC) cells remained to be investigated. Here, we found p57kip2 has nuclear and cytoplasm distributions and depletion of endogenous p57kip2 did not change the cell‐cycle progression. Inhibition of cell proliferation by mitomycin C promoted FBS‐mediated cell migration and accompanied with the downregulation of ΔNp63α and p57kip2, but did not change the level of p27kip1, another CDK inhibitor. By using siRNA transfection and cell migration/invasion assays, we found that knockdown of p57kip2, but not ΔNp63α, involved in promotion of NPC cell migration and invasion via decrease of phospho‐cofilin (p‐cofilin). Treatment with Y‐27632, a specific ROCK inhibitor, we found that dysregulation of ROCK/cofilin pathway decreased p‐cofilin expression and induced cell migration. This change of p‐cofilin induced actin remodeling and pronounced increase of membrane protrusions. Further, silence of p57kip2 not only decreased the interaction between p57kip2 and LIMK‐1 assayed by immunoprecipitation but also reduced the level of phospho‐LIMK1/2. Therefore, this study indicated that dysregulation of p57kip2 promoted cell migration and invasion through modulation of LIMK/cofilin signaling and suggested this induction of inappropriate cell motility might contribute to promoting tumor cell for metastasis. J. Cell. Biochem. 112: 3459–3468, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号