首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The GABA transporters (GAT1, GAT2, GAT3, and BGT1) have mostly been discussed in relation to their potential roles in controlling the action of transmitter GABA in the nervous system. We have generated the first mice lacking the GAT2 (slc6a13) gene. Deletion of GAT2 (both mRNA and protein) neither affected growth, fertility, nor life span under nonchallenging rearing conditions. Immunocytochemistry showed that the GAT2 protein was predominantly expressed in the plasma membranes of periportal hepatocytes and in the basolateral membranes of proximal tubules in the renal cortex. This was validated by processing tissue from wild-type and knockout mice in parallel. Deletion of GAT2 reduced liver taurine levels by 50%, without affecting the expression of the taurine transporter TAUT. These results suggest an important role for GAT2 in taurine uptake from portal blood into liver. In support of this notion, GAT2-transfected HEK293 cells transported [3H]taurine. Furthermore, most of the uptake of [3H]GABA by cultured rat hepatocytes was due to GAT2, and this uptake was inhibited by taurine. GAT2 was not detected in brain parenchyma proper, excluding a role in GABA inactivation. It was, however, expressed in the leptomeninges and in a subpopulation of brain blood vessels. Deletion of GAT2 increased brain taurine levels by 20%, suggesting a taurine-exporting role for GAT2 in the brain.  相似文献   

2.
In aldosterone target tissues, 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) is coexpressed with mineralocorticoid receptors (MR) and protects the receptor from activation by glucocorticoids. Null mutations in the encoding gene, HSD11B2, cause apparent mineralocorticoid excess, in which hypertension is thought to reflect volume expansion secondary to sodium retention. Hsd11b2(-/-) mice are indeed hypertensive, but impaired natriuretic capacity is associated with significant volume contraction, suggestive of a urine concentrating defect. Water turnover and the urine concentrating response to a 24-h water deprivation challenge were therefore assessed in Hsd11b2(-/-) mice and controls. Hsd11b2(-/-) mice have a severe and progressive polyuric/polydipsic phenotype. In younger mice (~2 mo of age), polyuria was associated with decreased abundance of aqp2 and aqp3 mRNA. The expression of other genes involved in water transport (aqp4, slc14a2, and slc12a2) was not changed. The kidney was structurally normal, and the concentrating response to water deprivation was intact. In older Hsd11b2(-/-) mice (>6 mo), polyuria was associated with a severe atrophy of the renal medulla and downregulation of aqp2, aqp3, aqp4, slc14a2, and slc12a2. The concentrating response to water deprivation was impaired, and the natriuretic effect of the loop diuretic bumetanide was lost. In older Hsd11b2(-/-) mice, the V2 receptor agonist desmopressin did not restore full urine concentrating capacity. We find that Hsd11b2(-/-) mice develop nephrogenic diabetes insipidus. Gross changes to renal structure are observed, but these were probably secondary to sustained polyuria, rather than of developmental origin.  相似文献   

3.
It is hypothesized that during cholestasis, the liver, kidney, and intestine alter gene expression to prevent BA accumulation; enhance urinary excretion of BA; and decrease BA absorption, respectively. To test this hypothesis, mice were subjected to either sham or bile-duct ligation (BDL) surgery and liver, kidney, duodenum, ileum, and serum samples were collected at 1, 3, 7, and 14 days after surgery. Serum total BA concentrations were 1-5 μmol/l in sham-operated mice and were elevated at 1, 3, 7, and 14 days after BDL, respectively. BDL decreased liver Ntcp, Oatp1a1, 1a5, and 1b2 mRNA expression and increased Bsep, Oatp1a4, and Mrp1-5 mRNA levels. In kidney, BDL decreased Oatp1a1 and increased Mrp1-5 mRNA levels. In intestine, BDL increased Mrp3 and Ibat mRNA levels in ileum. BDL increased Mrp1, 3, 4, and 5 protein expression in mouse liver. These data indicate that the compensatory regulation of transporters in liver, kidney, and intestine is unable to fully compensate for the loss of hepatic BA excretion because serum BA concentration remained elevated after 14 days of BDL. Additionally, hepatic and renal Oatp and Mrp genes are regulated similarly during extrahepatic cholestasis, and may suggest that transporter expression is regulated not to remove bile constituents from the body, but instead to remove bile constituents from tissues.  相似文献   

4.
It is hypothesized that during cholestasis, the liver, kidney, and intestine alter gene expression to prevent BA accumulation; enhance urinary excretion of BA; and decrease BA absorption, respectively. To test this hypothesis, mice were subjected to either sham or bile-duct ligation (BDL) surgery and liver, kidney, duodenum, ileum, and serum samples were collected at 1, 3, 7, and 14 days after surgery. Serum total BA concentrations were 1-5 mumol/l in sham-operated mice and were elevated at 1, 3, 7, and 14 days after BDL, respectively. BDL decreased liver Ntcp, Oatp1a1, 1a5, and 1b2 mRNA expression and increased Bsep, Oatp1a4, and Mrp1-5 mRNA levels. In kidney, BDL decreased Oatp1a1 and increased Mrp1-5 mRNA levels. In intestine, BDL increased Mrp3 and Ibat mRNA levels in ileum. BDL increased Mrp1, 3, 4, and 5 protein expression in mouse liver. These data indicate that the compensatory regulation of transporters in liver, kidney, and intestine is unable to fully compensate for the loss of hepatic BA excretion because serum BA concentration remained elevated after 14 days of BDL. Additionally, hepatic and renal Oatp and Mrp genes are regulated similarly during extrahepatic cholestasis, and may suggest that transporter expression is regulated not to remove bile constituents from the body, but instead to remove bile constituents from tissues.  相似文献   

5.
6.
The prevalence of renal stone disease is increasing, although it remains higher in men than in women when matched for age. While still somewhat controversial, several studies have reported an association between renal stone disease and hypertension, but this may be confounded by a shared link with obesity. However, independent of obesity, hyperoxaluria has been shown to be associated with hypertension in stone-formers, and the most common type of renal stone is composed of calcium oxalate. The chloride-oxalate exchanger slc26a6 (also known as CFEX or PAT-1), located in the renal proximal tubule, was originally thought to have an important role in sodium homeostasis and thereby blood pressure control, but it has recently been shown to have a key function in oxalate balance by mediating oxalate secretion in the gut. We have applied two orthogonal analytical platforms (NMR spectroscopy and capillary electrophoresis with UV detection) in parallel to characterize the urinary metabolic signatures related to the loss of the renal chloride-oxalate exchanger in slc26a6 null mice. Clear metabolic differentiation between the urinary profiles of the slc26a6 null and the wild type mice were observed using both methods, with the combination of NMR and CE-UV providing extensive coverage of the urinary metabolome. Key discriminating metabolites included oxalate, m-hydroxyphenylpropionylsulfate (m-HPPS), trimethylamine-N-oxide, glycolate and scyllo-inositol (higher in slc26a6 null mice) and hippurate, taurine, trimethylamine, and citrate (lower in slc26a6 null mice). In addition to the reduced efficiency of anion transport, several of these metabolites (hippurate, m-HPPS, methylamines) reflect alteration in gut microbial cometabolic activities. Gender-related metabotypes were also observed in both wild type and slc26a6 null groups. Urinary metabolites that showed a sex-specific pattern included trimethylamine, trimethylamine-N-oxide, citrate, spermidine, guanidinoacetate, and 2-oxoisocaproate. The gender-dependent metabolic expression of the consequences of slc26a6 deletion might have relevance to the difference in prevalence of renal stone formation in men and women. The different composition of microbial metabolites in the slc26a6 null mice is consistent with the fact that the slc26a6 transporter is found in a range of tissues, including the kidney and intestine, and provides further evidence for the "long reach" of the microbiota in physiological and pathological processes.  相似文献   

7.
In wild-type (VDR(+/+)) mice, ECaC2 expression was confirmed in the intestine and kidney, while ECaC1 expression was exclusively confined to the kidney. Both mRNAs expression of ECaC1 and ECaC2 in the kidney and ECaC2 mRNA expression in the intestine increased time- and dose-dependently in response to 1alpha,25(OH)(2)D(3) injection in VDR(+/+) mice, but not in VDR(-/-) mice. The mRNA levels of ECaC2 in the intestine of VDR(-/-) mice were remarkably reduced when compared to VDR(+/+) mice, while no significant differences were observed in both mRNA levels of ECaC1 and ECaC2 in the kidney between VDR(+/+) mice and VDR(-/-) mice. In the primary renal tubular cells (PRTC) isolated from VDR(+/+) mice, both ECaCs mRNA expression increased in response to 1alpha,25(OH)(2)D(3) treatment, but not in the PRTC of VDR(-/-) mice. PTH increased both ECaCs mRNA expression in the PRTC of VDR(+/+) mice. These results suggest that 1alpha,25(OH)(2)D(3) directly modulates the gene expression of ECaC1 and ECaC2 together with PTH in the kidney of mice. 1alpha,25(OH)(2)D(3) also modulates the gene expression of ECaC2 in the intestine of mice, however, further studies are needed to elucidate the direct action of 1alpha,25(OH)(2)D(3) on the expression of ECaC2 in the intestine.  相似文献   

8.
9.
10.
本实验从成年小鼠和胎龄4-5月的人胎儿不同器官中分离总RNA。经斑点印迹分析显示,肝细胞生长因子(HGF)mRNA在成年KM小鼠多种器官中表达,其表达水平由高到低依次为:肺、肝、肾、卵巢、睾丸、大脑和胃;在脾、心、骨髓、小肠和骨骼肌组织中以HGFmRNA。在胎龄4-5月的人胎儿中,HGFmRNA表达水平由高到低依次为:大脑、肝、腮腺、胃、小肠、肾、心和骨骼肌;肺和脾组织为阴性。由此可见,HGF在成  相似文献   

11.
beta-Dystrobrevin is a dystrophin-related and -associated protein that is highly expressed in brain, kidney, and liver. Recent studies with the kidneys of the mdx3Cv mouse, which lacks all dystrophin isoforms, suggest that beta-dystrobrevin, and not the dystrophin isoforms, may be the key component in the assembly of complexes similar to the muscle dystrophin-associated protein complexes (DPC) in nonmuscle tissues. To understand the role of beta-dystrobrevin in the function of nonmuscle tissues, we generated beta-dystrobrevin-deficient (dtnb(-/-)) mice by gene targeting. dtnb(-/-) mice are healthy, fertile, and normal in appearance. No beta-dystrobrevin was detected in these mice by Western blotting or immunocytochemistry. In addition, the levels of several beta-dystrobrevin-interacting proteins, namely Dp71 isoforms and the syntrophins, were greatly reduced from the basal membranes of kidney tubules and liver sinusoids and on Western blots of crude kidney and liver microsomes of beta-dystrobrevin-deficient mice. However, no abnormality was detected in the ultrastructure of membranes of kidney and liver cells or in the renal function of these mice. beta-Dystrobrevin may therefore be an anchor or scaffold for Dp71 and syntrophin isoforms, as well as other associating proteins at the basal membranes of kidney and liver, but is not necessary for the normal function of these mice.  相似文献   

12.
13.
14.
We have purified a novel GTP-binding protein, designated as the smg-25A protein (smg p25A), from bovine brain membranes and determined its primary structure. In the present studies, the smg-25A mRNA levels in various tissues have been studied. The 1.6-kilobase smg-25A mRNA is detected in rat brain by Northern blot analysis. This mRNA is not detected in other rat tissues including thymus, lung, heart, liver, small intestine, kidney, and skeletal muscle. The 1.6-kilobase smg-25A mRNA is also detected in bovine adrenal medulla but not in the cortex. Moreover, this mRNA is detected in rat pheochromocytoma PC-12 cells and its level increases after differentiation of the cells into sympathetic neuron-like cells in response to nerve growth factor or dibutyryl cyclic AMP. This mRNA level does not increase in response to 12-O-tetradecanoylphorbol-13-acetate incapable of inducing differentiation. These results suggest that the smg-25A gene is specifically expressed in nerve tissues and that smg p25A plays a role in some neuronal functions.  相似文献   

15.
Lu H  Klaassen C 《Peptides》2006,27(4):850-857
Peptide transporters (Pept) have essential physiological functions and also transport various drugs. Information regarding tissue distribution and gene regulation of Pept in rodents is limited. The present study investigated the distribution of Pept1 and Pept2 mRNA in 19 tissues of male and female Sprague-Dawley rats and C57BL/6 mice, as well as thyroid hormone regulation of renal Pept expression in male rats, using the branched DNA signal amplification assay. Pept1 mRNA was not only highly expressed in small intestine, but also detectable in gonads of both species, kidney of rats, and large intestine of mice. Pept2 mRNA was the highest in kidney, followed by brain and lung. The present study offers the first evidence of considerable Pept2 mRNA expression in pituitary and reproductive organs (testis, prostate, ovary, and uterus). Interestingly, Pept2 mRNA expression in mouse prostate appeared to be much higher than that in rat prostate. Thyroidectomy increased Pept1 and Pept2 mRNA in male rat kidney; such increases were abolished by thyroid hormone replacement.  相似文献   

16.
In birds, the kidneys and lower intestine function in osmoregulation. A 271-amino acid homologue to aquaporin-1 (AQP-1) was isolated from the kidneys, cecae, proximal and distal rectum, and coprodeum of the lower intestine in the house sparrow (Passer domesticus). This protein has six transmembrane domains connected by two cytoplasmic loops and three extracellular loops. It exhibits 94%, 88%, and 78% homology to AQP-1 sequences of chicken, human and toad, respectively. Many of the highly conserved amino acids that are characteristic of AQP-1 are found in the sparrow sequence. RT-PCR was performed and the presence of AQP-1 mRNA was detected in the kidney and all four regions of the lower intestine. Immunoblots of total protein identified a 28-kDa non-glycosylated AQP-1 band and a 56-kDa glycosylated AQP-1 band in the kidney and all four regions of the lower intestine. Immunohistochemistry demonstrated the presence of the AQP-1 protein within both the renal cortex and medulla. In the lower intestine, the protein was present in the proximal rectum, distal rectum, and in the coprodeum. As AQP-1 functions to allow water movement across mammalian cell membranes, its presence in water-permeable cells in a bird suggests it may have a similar function.  相似文献   

17.
18.
The body maintains Mg(2+) homeostasis by renal and intestinal (re)absorption. However, the molecular mechanisms that mediate transepithelial Mg(2+) transport are largely unknown. Transient receptor potential melastatin 6 (TRPM6) was recently identified and shown to function in active epithelial Mg(2+) transport in intestine and kidney. To define the relationship between Mg(2+) status and TRPM6 expression, we used two models of hypomagnesemia: 1) C57BL/6J mice fed a mildly or severely Mg(2+)-deficient diet, and 2) mice selected for either low (MgL) or high (MgH) erythrocyte and plasma Mg(2+) status. In addition, the mice were subjected to a severely Mg(2+)-deficient diet. Our results show that C57BL/6J mice fed a severely Mg(2+)-deficient diet developed hypomagnesemia and hypomagnesuria and showed increased TRPM6 expression in kidney and intestine. When fed a Mg(2+)-adequate diet, MgL mice presented hypomagnesemia and hypermagnesuria, and lower kidney and intestinal TRPM6 expression, compared with MgH mice. A severely Mg(2+)-deficient diet led to hypomagnesemia and hypomagnesuria in both strains. Furthermore, this diet induced kidney TRPM6 expression in MgL mice, but not in MgH mice. In conclusion, as shown in C57BL/6J mice, dietary Mg(2+)-restriction results in increased Mg(2+) (re)absorption, which is correlated with increased TRPM6 expression. In MgL and MgH mice, the inherited Mg(2+) status is linked to different TRPM6 expression. The MgL and MgH mice respond differently to a low-Mg(2+) diet with regard to TRPM6 expression in the kidney, consistent with genetic factors contributing to the regulation of cellular Mg(2+) levels. Further studies of these mice strains could improve our understanding of the genetics of Mg(2+) homeostasis.  相似文献   

19.
Mice of inbred strains A/J, C57BL/6J and C57BL/6J beige were kept on a K+-deficient diet for up to 40 days to determine the magnitude and mechanism of changes in tissue lysosomal enzymes. From days 10 to 40 glucuronidase activity increased 3-fold in kidney of K+-deficient mice, but there was little effect on beta-galactosidase or acid phosphatase activity. Similar increases in kidney glucuronidase activity occurred in inbred strains known to have genetically altered control of the synthesis (A/J) and secretion (C57BL/6J beige) of glucuronidase in kidney proximal-tubule cells. Deprivation of K+ did not affect glucuronidase activity in liver, spleen, lung and brain, but there was a 2-3-FOld increase in glucuronidase activity in heart in the C57BL/6J and C57BL/6J beige strains. As shown by specific antibody titration, increased glucuronidase activity in kidney of K+-deficient mice was accompanied by accumulation of enzyme molecules. Likewise in kidney of deficient mice there was an increased rate of synthesis of glucuronidase as measured by incorporation of labelled leucine into immunoprecipitable glucuronidase. In kidney of K+-deficient mice the elevated glucuronidase activity was found in both collecting-tubule and interstitial cells of the medulla. It is probable therefore that a significant fraction of the increased kidney lysosomal synthesis and enzyme activity is due to infiltrating cells.  相似文献   

20.
To describe further the metabolism of messenger ribonucleic acid (mRNA) in mouse kidney, we examined newly synthesized mRNA deficient in poly(adenylate) [poly(A)]. Approximately 50% of renal polysomal mRNA that labeled selectively in the presence of the pyrimidine analogue 5-fluoroorotic acid lacks or is deficient in poly(A) as defined by its ability to bind to poly(A) affinity columns. Nearly one-half of this poly(A)-deficient mRNA is associated uniquely with a cellular membrane fraction detected by sedimentation of renal cytoplasm in sucrose density gradients containing EDTA and nonionic detergents. Poly(A+) mRNA and poly(A)-deficient mRNA [poly(A-) mRNA] have similar modal sedimentation coefficients (20-22 S) and similar cytoplasmic distribution. Although 95% of newly synthesized poly(A+) mRNA is released in 10 mM EDTA as 20-90 S ribonucleoproteins from polysomes greater than 80 S, only 55% of poly(A)-deficient mRNA is released under the same conditions. Poly(A)-deficient mRNA recovered from greater than 80 S ribonucleoproteins resistant to EDTA treatment lacks ribosomal RNA, is similar in size to poly(A+) mRNA, and is associated with membranous structures, since 70% of poly(A)-deficient mRNA in EDTA-resistant ribonucleoproteins is released into the 20-80 S region by solubilizing membranes with 1% Triton X-100. These membrane-associated renal poly(A-) mRNAs could have unique coding or regulatory functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号