首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
We investigated the behavior of renal cells cultivated in microfluidic biochips when exposed to 50 μM of ifosfamide, an antineoplastic drug treatment. The microarray analysis revealed that ifosfamide had any effect in Petri conditions. The microfluidic biochips induced an early inflammatory response in the MDCK in the untreated cells. This was attributed to cells adapting to the dynamics and micro environment created by the biochips. This led to modulations in the mitochondria dysfunction pathway, the Nrf-2 and oxidative stress pathways and some related cancer genes. When exposed to 50 μM of ifosfamide, we detected a modulation of the pathways related to the cancer and inflammation in the MDCK cultivated in the biochips via modulation of the ATM, p53, MAP Kinase, Nrf-2 and NFKB signaling. In addition, the genes identified and related proteins affected by the ifosfamide treatment in the biochips such as TXNRD1, HSP40 (DNAJB4 and DNAJB9), HSP70 (HSPA9), p21 (CDKN1A), TP53, IKBalpha (NFKBIA) are reported to be the molecular targets in cancer therapy. We also found that the integrin pathway was perturbed with the ifosfamide treatment. Finally, the MYC proto-oncogene appeared to be a potential bridge between the integrin signaling and the anti-inflammatory response.  相似文献   

6.
7.
8.
9.
10.
11.

Background

The kidney functions in key physiological processes to filter blood and regulate blood pressure via key molecular transporters and ion channels. Sex-specific differences have been observed in renal disease incidence and progression, as well as acute kidney injury in response to certain drugs. Although advances have been made in characterizing the molecular components involved in various kidney functions, the molecular mechanisms responsible for sex differences are not well understood. We hypothesized that the basal expression levels of genes involved in various kidney functions throughout the life cycle will influence sex-specific susceptibilities to adverse renal events.

Methods

Whole genome microarray gene expression analysis was performed on kidney samples collected from untreated male and female Fischer 344 (F344) rats at eight age groups between 2 and 104 weeks of age.

Results

A combined filtering approach using statistical (ANOVA or pairwise t test, FDR 0.05) and fold-change criteria (>1.5 relative fold change) was used to identify 7,447 unique differentially expressed genes (DEGs). Principal component analysis (PCA) of the 7,447 DEGs revealed sex-related differences in mRNA expression at early (2 weeks), middle (8, 15, and 21 weeks), and late (104 weeks) ages in the rat life cycle. Functional analysis (Ingenuity Pathway Analysis) of these sex-different genes indicated over-representation of specific pathways and networks including renal tubule injury, drug metabolism, and immune cell and inflammatory responses. The mRNAs that code for the qualified urinary protein kidney biomarkers KIM-1, Clu, Tff3, and Lcn2 were also observed to show sex differences.

Conclusions

These data represent one of the most comprehensive in-life time course studies to be published, assessing sex differences in global gene expression in the F344 rat kidney. PCA and Venn analyses reveal specific periods of sexually dimorphic gene expression which are associated with functional categories (xenobiotic metabolism and immune cell and inflammatory responses) of key relevance to acute kidney injury and chronic kidney disease, which may underlie sex-specific susceptibility. Analysis of the basal gene expression patterns of renal genes throughout the life cycle of the rat will improve the use of current and future renal biomarkers and inform our assessments of kidney injury and disease.
  相似文献   

12.
13.
In this article, we present a liver–kidney co‐culture model in a micro fluidic biochip. The liver was modeled using HepG2/C3a and HepaRG cell lines and the kidney using MDCK cell lines. To demonstrate the synergic interaction between both organs, we investigated the effect of ifosfamide, an anticancerous drug. Ifosfamide is a prodrug which is metabolized by the liver to isophosforamide mustard, an active metabolite. This metabolism process also leads to the formation of chloroacetaldehyde, a nephrotoxic metabolite and acrolein a urotoxic one. In the biochips of MDCK cultures, we did not detect any nephrotoxic effects after 72 h of 50 µM ifosfamide exposure. However, in the liver–kidney biochips, the same 72 h exposure leads to a nephrotoxicity illustrated by a reduction of the number of MDCK cells (up to 30% in the HepaRG‐MDCK) when compared to untreated co‐cultures or treated MDCK monocultures. The reduction of the MDCK cell number was not related to a modification of the cell cycle repartition in ifosfamide treated cases when compared to controls. The ifosfamide biotransformation into 3‐dechloroethylifosfamide, an equimolar byproduct of the chloroacetaldehyde production, was detected by mass spectrometry at a rate of apparition of 0.3 ± 0.1 and 1.1 ± 0.3 pg/h/biochips in HepaRG monocultures and HepaRG‐MDCK co‐cultures respectively. Any metabolite was detected in HepG2/C3a cultures. Furthermore, the ifosfamide treatment in HepaRG‐MDCK co‐culture system triggered an increase in the intracellular calcium release in MDCK cells on contrary to the treatment on MDCK monocultures. As 3‐dechloroethylifosfamide is not toxic, we have tested the effect of equimolar choloroacetaldehyde concentration onto the MDCK cells. At this concentration, we found a quite similar calcium perturbation and MDCK nephrotoxicity via a reduction of 30% of final cell numbers such as in the ifosfamide HepaRG‐MDCK co‐culture experiments. Our results suggest that ifosfamide nephrotoxicity in a liver–kidney micro fluidic co‐culture model using HepaRG‐MDCK cells is induced by the metabolism of ifosfamide into chloroacetaldehyde whereas this pathway is not functional in HepG2/C3a‐MDCK model. This study demonstrates the interest in the development of systemic organ–organ interactions using micro fluidic biochips. It also illustrated their potential in future predictive toxicity model using in vitro models as alternative methods. Biotechnol. Bioeng. 2013; 110: 597–608. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
We used human DNA microarray to explore the differential gene expression profiling of atrial natriuretic peptide (ANP)-stimulated renal tubular epithelial kidney cells (LLC-PK1) in order to understand the biological effect of ANP on renal kidney cell's response. Gene expression profiling revealed 807 differentially expressed genes, consisting of 483 up-regulated and 324 down-regulated genes. The bioinformatics tool was used to gain a better understanding of differentially expressed genes in porcine genome homologous with human genome and to search the gene ontology and category classification, such as cellular component, molecular function and biological process. Four up-regulated genes of ATP1B1, H3F3A, ITGB1 and RHO that were typically validated by real-time quantitative PCR (RT-qPCR) analysis serve important roles in the alleviation of renal hypertrophy as well as other related effects. Therefore, the human array can be used for gene expression analysis in pig kidney cells and we believe that our findings of differentially expressed genes served as genetic markers and biological functions can lead to a better understanding of ANP action on the renal protective system and may be used for further therapeutic application.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号