首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 473 毫秒
1.
Skeletal muscle mass, quality and adaptability are fundamental in promoting muscle performance, maintaining metabolic function and supporting longevity and healthspan. Skeletal muscle is programmable and can ‘remember’ early‐life metabolic stimuli affecting its function in adult life. In this review, the authors pose the question as to whether skeletal muscle has an ‘epi’‐memory? Following an initial encounter with an environmental stimulus, we discuss the underlying molecular and epigenetic mechanisms enabling skeletal muscle to adapt, should it re‐encounter the stimulus in later life. We also define skeletal muscle memory and outline the scientific literature contributing to this field. Furthermore, we review the evidence for early‐life nutrient stress and low birth weight in animals and human cohort studies, respectively, and discuss the underlying molecular mechanisms culminating in skeletal muscle dysfunction, metabolic disease and loss of skeletal muscle mass across the lifespan. We also summarize and discuss studies that isolate muscle stem cells from different environmental niches in vivo (physically active, diabetic, cachectic, aged) and how they reportedly remember this environment once isolated in vitro. Finally, we will outline the molecular and epigenetic mechanisms underlying skeletal muscle memory and review the epigenetic regulation of exercise‐induced skeletal muscle adaptation, highlighting exercise interventions as suitable models to investigate skeletal muscle memory in humans. We believe that understanding the ‘epi’‐memory of skeletal muscle will enable the next generation of targeted therapies to promote muscle growth and reduce muscle loss to enable healthy aging.  相似文献   

2.
Epigenetic contribution to stress adaptation in plants   总被引:5,自引:0,他引:5  
Plant epigenetics has recently gained unprecedented interest, not only as a subject of basic research but also as a possible new source of beneficial traits for plant breeding. We discuss here mechanisms of epigenetic regulation that should be considered when undertaking the latter. Since these mechanisms are responsible for the formation of heritable epigenetic gene variants (epialleles) and also regulate transposons mobility, both aspects could be exploited to broaden plant phenotypic and genetic variation, which could improve long-term plant adaptation to environmental challenges and, thus, increase productivity.  相似文献   

3.
In biology, we continue to appreciate the fact that the DNA sequence alone falls short when attempting to explain the intricate inheritance patterns for complex traits. This is particularly true for human disorders that appear to have simple genetic causes. The study of epigenetics, and the increased access to the epigenetic profiles of different tissues has begun to shed light on the genetic complexity of many basic biological processes, both physiological and pathological. Epigenetics refers to heritable changes in gene expression that are not due to alterations in the DNA sequence. Various mechanisms of epigenetic regulation exist, including DNA methylation and histone modification. The identification, and increased understanding of key players and mechanisms of epigenetic regulation have begun to provide significant insight into the underlying origins of various human genetic disorders. One such disorder is CHARGE syndrome (OMIM #214800), which is a leading cause of deaf-blindness worldwide. A majority of CHARGE syndrome cases are caused by haploinsufficiency for the CHD7 gene, which encodes an ATP-dependent chromatin remodeling protein involved in the epigenetic regulation of gene expression. The CHD7 protein has been highly conserved throughout evolution, and research into the function of CHD7 homologs in multiple model systems has increased our understanding of this family of proteins, and epigenetic mechanisms in general. Here we provide a review of CHARGE syndrome, and discuss the epigenetic functions of CHD7 in humans and CHD7 homologs in model organisms.  相似文献   

4.
5.
Epigenetic variation has been observed in a range of organisms, leading to questions of the adaptive significance of this variation. In this study, we present a model to explore the ecological and genetic conditions that select for epigenetic regulation. We find that the rate of temporal environmental change is a key factor controlling the features of this evolution. When the environment fluctuates rapidly between states with different phenotypic optima, epigenetic regulation may evolve but we expect to observe low transgenerational inheritance of epigenetic states, whereas when this fluctuation occurs over longer time scales, regulation may evolve to generate epigenetic states that are inherited faithfully for many generations. In all cases, the underlying genetic variation at the epigenetically regulated locus is a crucial factor determining the range of conditions that allow for evolution of epigenetic mechanisms.  相似文献   

6.
7.
The development of the central nervous system can be divided into a number of phases, each of which can be subject of genetic or epigenetic alterations that may originate particular developmental disorders. In recent years, much progress has been made in elucidating the molecular and cellular mechanisms by which the vertebrate forebrain develops. Therefore, our understanding of major developmental brain disorders such as cortical malformations and neuronal migration disorders has significantly increased. In this review, we will describe the major stages in forebrain morphogenesis and regionalization, with special emphasis on developmental molecular mechanisms derailing telencephalic development with subsequent damage to cortical function. Because animal models, mainly mouse, have been fundamental for this progress, we will also describe some characteristic mouse models that have been capital to explore these molecular mechanisms of malformative diseases of the human brain. Although most of the genes involved in the regulation of basic developmental processes are conserved among vertebrates, the extrapolation of mouse data to corresponding gene expression and function in humans needs careful individual analysis in each functional system.  相似文献   

8.
Being sessile organisms, plants show a high degree of developmental plasticity to cope with a constantly changing environment. While plasticity in plants is largely controlled genetically, recent studies have demonstrated the importance of epigenetic mechanisms, especially DNA methylation, for gene regulation and phenotypic plasticity in response to internal and external stimuli. Induced epigenetic changes can be a source of phenotypic variations in natural plant populations that can be inherited by progeny for multiple generations. Whether epigenetic phenotypic changes are advantageous in a given environment, and whether they are subject to natural selection is of great interest, and their roles in adaptation and evolution are an area of active research in plant ecology. This review is focused on the role of heritable epigenetic variation induced by environmental changes, and its potential influence on adaptation and evolution in plants.  相似文献   

9.
The term "adaptability" or "capacity of adaptation" is the central concept in the general advancement and promotion of research in physiological anthropology. Throughout the history of Homo sapiens, mankind has adapted itself to environmental stress. As a result, numerous physiological polymorphisms in humans are present in our planet-wide distribution. Totally regulated physiological function by integration and coordination is referred to as whole-body coordination and is associated with a high degree of adaptability in humans. Functional potentiality also affects environmental adaptability. Thus, whole-body coordination and functional potentiality are necessary for adaptation to environmental changes. There is an interrelationship among functional potentiality, whole-body coordination, physiological polymorphisms, and environmental adaptability.  相似文献   

10.
The development of the central nervous system can be divided into a number of phases, each of which can be subject of genetic or epigenetic alterations that may originate particular developmental disorders. In recent years, much progress has been made in elucidating the molecular and cellular mechanisms by which the vertebrate forebrain develops. Therefore, our understanding of major developmental brain disorders such as cortical malformations and neuronal migration disorders has significantly increased. In this review, we will describe the major stages in forebrain morphogenesis and regionalization, with special emphasis on developmental molecular mechanisms derailing telencephalic development with subsequent damage to cortical function. Because animal models, mainly mouse, have been fundamental for this progress, we will also describe some characteristic mouse models that have been capital to explore these molecular mechanisms of malformative diseases of the human brain. Although most of the genes involved in the regulation of basic developmental processes are conserved among vertebrates, the extrapolation of mouse data to corresponding gene expression and function in humans needs careful individual analysis in each functional system.  相似文献   

11.
A brief overview of the current views on the functional role of genetic VNTR polymorphism in humans is given. Data on the involvement of VNTRs in the regulation of gene expression and in the formation of complex phenotypes are presented. According to these data, the effects of VNTRs are determined by the number of repeats, the structure of their monomers and flanking haplotypes, epigenetic mechanisms (in the case of localization in imprinted regions) and can be modified by environmental factors. Some possible mechanisms of the influence of VNTRs on the level of expression are considered.  相似文献   

12.
Maternal inheritance,epigenetics and the evolution of polyandry   总被引:1,自引:1,他引:0  
Zeh JA  Zeh DW 《Genetica》2008,134(1):45-54
Growing evidence indicates that females actively engage in polyandry either to avoid genetic incompatibility or to bias paternity in favor of genetically superior males. Despite empirical support for the intrinsic male quality hypothesis, the maintenance of variation in male fitness remains a conundrum for traditional "good genes" models of sexual selection. Here, we discuss two mechanisms of non-Mendelian inheritance, maternal inheritance of mitochondria and epigenetic regulation of gene expression, which may explain the persistence of variation in male fitness traits important in post-copulatory sexual selection. The inability of males to transmit mitochondria precludes any direct evolutionary response to selection on mitochondrial mutations that reduce or enhance male fitness. Consequently, mitochondrial-based variation in sperm traits is likely to persist, even in the face of intense sperm competition. Indeed, mitochondrial nucleotide substitutions, deletions and insertions are now known to be a primary cause of low sperm count and poor sperm motility in humans. Paradoxically, in the field of sexual selection, female-limited response to selection has been largely overlooked. Similarly, the contribution of epigenetics (e.g., DNA methylation, histone modifications and non-coding RNAs) to heritable variation in male fitness has received little attention from evolutionary theorists. Unlike DNA sequence based variation, epigenetic variation can be strongly influenced by environmental and stochastic effects experienced during the lifetime of an individual. Remarkably, in some cases, acquired epigenetic changes can be stably transmitted to offspring. A recent study indicates that sperm exhibit particularly high levels of epigenetic variation both within and between individuals. We suggest that such epigenetic variation may have important implications for post-copulatory sexual selection and may account for recent findings linking sperm competitive ability to offspring fitness.  相似文献   

13.
14.
Phenotypic plasticity is an important mechanism for populations to buffer themselves from environmental change. While it has long been appreciated that natural populations possess genetic variation in the extent of plasticity, a surge of recent evidence suggests that epigenetic variation could also play an important role in shaping phenotypic responses. Compared with genetic variation, epigenetic variation is more likely to have higher spontaneous rates of mutation and a more sensitive reaction to environmental inputs. In our review, we first provide an overview of recent studies on epigenetically encoded thermal plasticity in animals to illustrate environmentally‐mediated epigenetic effects within and across generations. Second, we discuss the role of epigenetic effects during adaptation by exploring population epigenetics in natural animal populations. Finally, we evaluate the evolutionary potential of epigenetic variation depending on its autonomy from genetic variation and its transgenerational stability. Although many of the causal links between epigenetic variation and phenotypic plasticity remain elusive, new data has explored the role of epigenetic variation in facilitating evolution in natural populations. This recent progress in ecological epigenetics will be helpful for generating predictive models of the capacity of organisms to adapt to changing climates.  相似文献   

15.
The mechanisms underlying heritable phenotypic divergence associated with adaptation in response to environmental stresses may involve both genetic and epigenetic variations. Several prior studies have revealed even higher levels of epigenetic variation than genetic variation. However, few population‐level studies have explored the effects of epigenetic variation on species with high levels of genetic diversity distributed across different habitats. Using AFLP and methylation‐sensitive AFLP markers, we tested the hypothesis that epigenetic variation may contribute to differences in plants occupying different habitats when genetic variation alone cannot fully explain adaptation. As a cosmopolitan invasive species, Phragmites australis (common reed) together with high genetic diversity and remarkable adaptability has been suggested as a model for responses to global change and indicators of environmental fluctuations. We found high levels of genetic and epigenetic diversity and significant genetic/epigenetic structure within each of 12 studied populations sampled from four natural habitats of P. australis. Possible adaptive epigenetic variation was suggested by significant correlations between DNA methylation‐based epigenetic differentiation and adaptive genetic divergence in populations across the habitats. Meanwhile, various AMOVAs indicated that some epigenetic differences may respond to various local habitats. A partial Mantel test was used to tease out the correlations between genetic/epigenetic variation and habitat after controlling for the correlation between genetic and epigenetic variations. We found that epigenetic diversity was affected mostly by soil nutrient availability, suggesting that at least some epigenetic differentiation occurred independently of genetic variation. We also found stronger correlations between epigenetic variation and phenotypic traits than between genetic variation and such traits. Overall, our findings indicate that genetically based differentiation correlates with heterogeneous habitats, while epigenetic variation plays an important role in ecological differentiation in natural populations of P. australis. In addition, our results suggest that when assessing global change responses of plant species, intraspecific variation needs to be considered.  相似文献   

16.
Genome evolution in polyploids   总被引:71,自引:0,他引:71  
Polyploidy is a prominent process in plants and has been significant in the evolutionary history of vertebrates and other eukaryotes. In plants, interdisciplinary approaches combining phylogenetic and molecular genetic perspectives have enhanced our awareness of the myriad genetic interactions made possible by polyploidy. Here, processes and mechanisms of gene and genome evolution in polyploids are reviewed. Genes duplicated by polyploidy may retain their original or similar function, undergo diversification in protein function or regulation, or one copy may become silenced through mutational or epigenetic means. Duplicated genes also may interact through inter-locus recombination, gene conversion, or concerted evolution. Recent experiments have illuminated important processes in polyploids that operate above the organizational level of duplicated genes. These include inter-genomic chromosomal exchanges, saltational, non-Mendelian genomic evolution in nascent polyploids, inter-genomic invasion, and cytonuclear stabilization. Notwithstanding many recent insights, much remains to be learned about many aspects of polyploid evolution, including: the role of transposable elements in structural and regulatory gene evolution; processes and significance of epigenetic silencing; underlying controls of chromosome pairing; mechanisms and functional significance of rapid genome changes; cytonuclear accommodation; and coordination of regulatory factors contributed by two, sometimes divergent progenitor genomes. Continued application of molecular genetic approaches to questions of polyploid genome evolution holds promise for producing lasting insight into processes by which novel genotypes are generated and ultimately into how polyploidy facilitates evolution and adaptation.  相似文献   

17.
Li J  Liu Y  Xin X  Kim TS  Cabeza EA  Ren J  Nielsen R  Wrana JL  Zhang Z 《PLoS genetics》2012,8(3):e1002578
MicroRNA (miRNA)-mediated gene regulation is of critical functional importance in animals and is thought to be largely constrained during evolution. However, little is known regarding evolutionary changes of the miRNA network and their role in human evolution. Here we show that a number of miRNA binding sites display high levels of population differentiation in humans and thus are likely targets of local adaptation. In a subset we demonstrate that allelic differences modulate miRNA regulation in mammalian cells, including an interaction between miR-155 and TYRP1, an important melanosomal enzyme associated with human pigmentary differences. We identify alternate alleles of TYRP1 that induce or disrupt miR-155 regulation and demonstrate that these alleles are selected with different modes among human populations, causing a strong negative correlation between the frequency of miR-155 regulation of TYRP1 in human populations and their latitude of residence. We propose that local adaptation of microRNA regulation acts as a rheostat to optimize TYRP1 expression in response to differential UV radiation. Our findings illustrate the evolutionary plasticity of the microRNA regulatory network in recent human evolution.  相似文献   

18.
《Epigenetics》2013,8(7):791-797
  相似文献   

19.
The relationship between genotype (which is inherited) and phenotype (the target of selection) is mediated by environmental inputs on gene expression, trait development, and phenotypic integration. Phenotypic plasticity or epigenetic modification might influence evolution in two general ways: (1) by stimulating evolutionary responses to environmental change via population persistence or by revealing cryptic genetic variation to selection, and (2) through the process of genetic accommodation, whereby natural selection acts to improve the form, regulation, and phenotypic integration of novel phenotypic variants. We provide an overview of models and mechanisms for how such evolutionary influences may be manifested both for plasticity and epigenetic marking. We point to promising avenues of research, identifying systems that can best be used to address the role of plasticity in evolution, as well as the need to apply our expanding knowledge of genetic and epigenetic mechanisms to our understanding of how genetic accommodation occurs in nature. Our review of a wide variety of studies finds widespread evidence for evolution by genetic accommodation.  相似文献   

20.
Organisms can change their physiological/behavioural traits to adapt and survive in changed environments. However, whether these acquired traits can be inherited across generations through non‐genetic alterations has been a topic of debate for over a century. Emerging evidence indicates that both ancestral and parental experiences, including nutrition, environmental toxins, nurturing behaviour, and social stress, can have powerful effects on the physiological, metabolic and cellular functions in an organism. In certain circumstances, these effects can be transmitted across several generations through epigenetic (i.e. non‐DNA sequence‐based rather than mutational) modifications. In this review, we summarize recent evidence on epigenetic inheritance from parental environment‐induced developmental and physiological alterations in nematodes, fruit flies, zebrafish, rodents, and humans. The epigenetic modifications demonstrated to be both susceptible to modulation by environmental cues and heritable, including DNA methylation, histone modification, and small non‐coding RNAs, are also summarized. We particularly focus on evidence that parental environment‐induced epigenetic alterations are transmitted through both the maternal and paternal germlines and exert sex‐specific effects. The thought‐provoking data presented here raise fundamental questions about the mechanisms responsible for these phenomena. In particular, the means that define the specificity of the response to parental experience in the gamete epigenome and that direct the establishment of the specific epigenetic change in the developing embryos, as well as in specific tissues in the descendants, remain obscure and require elucidation. More precise epigenetic assessment at both the genome‐wide level and single‐cell resolution as well as strategies for breeding at relatively sensitive periods of development and manipulation aimed at specific epigenetic modification are imperative for identifying parental environment‐induced epigenetic marks across generations. Considering their diverse epigenetic architectures, the conservation and prevalence of the mechanisms underlying epigenetic inheritance in non‐mammals require further investigation in mammals. Interpretation of the consequences arising from epigenetic inheritance on organisms and a better understanding of the underlying mechanisms will provide insight into how gene–environment interactions shape developmental processes and physiological functions, which in turn may have wide‐ranging implications for human health, and understanding biological adaptation and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号