首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pathologic fracture of the hip due to metastatic lesions in bone is a serious problem. This study examined the effect of metastatic lesions on the material properties and quantitative computed tomography (QCT) data of trabecular bone. Twelve distal femora were obtained, four with lytic and/or blastic metastatic lesions (group L), four without lesions but from donors who died from breast, prostate, or lung cancer (group NL), and four from donors with no cancer (group NC). Each specimen was CT scanned, and 56, 15x15x15-mm cubes of trabecular bone were cut. QCT density (rho(QCT)), compressive elastic modulus (E), compressive yield and ultimate strengths (S(y) and S(u)), and ash density (rho(ash)) of each cube were determined. Regression analysis was performed between rho(ash) and E, S(y), S(u) and rho(QCT), and analysis of covariance was used to identify differences between groups. Power relationships that did not depend on group (p >/= 0.1) were found between E and rho(ash) (0.74 /= 0.94; p<0.001). rho(ash) was strongly related to rho(QCT) (r >/= 0.99; p<0.001). These results indicate that metastatic disease does not significantly impair the ability of QCT to provide an accurate and precise estimate of rho(ash) that can be used to estimate mechanical properties of trabecular bone with and without metastases.  相似文献   

2.
《Journal of biomechanics》2014,47(13):3272-3278
Finite element (FE) models of bone derived from quantitative computed tomography (QCT) rely on realistic material properties to accurately predict bone strength. QCT cannot resolve bone microarchitecture, therefore QCT-based FE models lack the anisotropy apparent within the underlying bone tissue. This study proposes a method for mapping femoral anisotropy using high-resolution peripheral quantitative computed tomography (HR-pQCT) scans of human cadaver specimens. Femur HR-pQCT images were sub-divided into numerous overlapping cubic sub-volumes and the local anisotropy was quantified using a ‘direct-mechanics’ method. The resulting directionality reflected all the major stress lines visible within the trabecular lattice, and provided a realistic estimate of the alignment of Harvesian systems within the cortical compartment. QCT-based FE models of the proximal femur were constructed with isotropic and anisotropic material properties, with directionality interpolated from the map of anisotropy. Models were loaded in a sideways fall configuration and the resulting whole bone stiffness was compared to experimental stiffness and ultimate strength. Anisotropic models were consistently less stiff, but no statistically significant differences in correlation were observed between material models against experimental data. The mean difference in whole bone stiffness between model types was approximately 26%, suggesting that anisotropy can still effect considerable change in the mechanics of proximal femur models. The under prediction of whole bone stiffness in anisotropic models suggests that the orthotropic elastic constants require further investigation. The ability to map mechanical anisotropy from high-resolution images and interpolate information into clinical-resolution models will allow testing of new anisotropic material mapping strategies.  相似文献   

3.
OBJECTIVE: To investigate possible detrimental effects on bone tissue induced by ovariectomy and tamoxifen (TMX) using bone densitometry and histomorphologic analysis. STUDY DESIGN: Twenty-four rats were allocated into 4 groups: group 1, intact normal rats (n = 6); group 2, ovariectomized rats (n = 6); group 3, normal female rats that received 1 mg/kg/day TMX dissolved in dimethyl sulfoxide (DMSO) for 2 months (n = 6); group 4, normal female rats that received DMSO for the same duration and with a volume equal to that of TMX (n = 6). Results of histomorphometric analysis for trabecular thickness, number of osteoblasts and osteoclasts, trabecular number, and area and cortical thickness were compared. RESULTS: No significant effects of ovariectomy on femoral or lumbar bone mineral density (BMD) were found. In the TMX group, the value of femoral BMD increased significantly compared to control group cellular and pathologic changes. TMX caused significant decrease in osteoblasts compared to the control group. CONCLUSION: TMX has a positive effect on inorganic bone tissue, but a negative effect on number of osteoblasts and osteoclasts. Future studies investigating estrogenic and antiestrogenic effects of TMX should include cellular parameters related to proliferation using histopathologic and histomorphometric analyses.  相似文献   

4.
Although adult skeletal morphological variation is best understood within the framework of age-related processes, relatively little research has been directed towards the structure of and variation in trabecular bone during ontogeny. We report here new quantitative and structural data on trabecular bone microarchitecture in the proximal tibia during growth and development, as demonstrated in a subadult archaeological skeletal sample from the Late Prehistoric Ohio Valley. These data characterize the temporal sequence and variation in trabecular bone structure and structural parameters during ontogeny as related to the acquisition of normal functional activities and changing body mass. The skeletal sample from the Fort Ancient Period site of SunWatch Village is composed of 33 subadult and three young adult proximal tibiae. Nondestructive microCT scanning of the proximal metaphyseal and epiphyseal tibia captures the microarchitectural trabecular structure, allowing quantitative structural analyses measuring bone volume fraction, degree of anisotropy, trabecular thickness, and trabecular number. The microCT resolution effects on structural parameters were analyzed. Bone volume fraction and degree of anisotropy are highest at birth, decreasing to low values at 1 year of age, and then gradually increasing to the adult range around 6-8 years of age. Trabecular number is highest at birth and lowest at skeletal maturity; trabecular thickness is lowest at birth and highest at skeletal maturity. The results of this study highlight the dynamic sequential relationships between growth/development, general functional activities, and trabecular distribution and architecture, providing a reference for comparative studies.  相似文献   

5.
The prospects for the use of quantitative computed tomography (QCT) for evaluation of mechanical properties of tibial trabecular bone were investigated. Computed tomography (CT) data from the proximal tibial epi- and metaphysis of six human cadaver knees were correlated with mechanical data obtained from compression tests and penetration strength measurements. In addition CT and intraoperative penetration data were compared in 20 patients. If spatial agreement between CT and mechanical measurement sites is optimized, close correlations are found between the relative linear attenuation coefficient determined by CT and the ultimate strength (r = 0.84), the yield strength (r = 0.85), the elastic modulus (r = 0.78), the ultimate energy absorption (r = 0.83), the yield energy absorption (r = 0.81), and the penetration strength (r = 0.82). It is concluded that these correlations are sufficient to make QCT a valuable tool for non-invasive evaluation of the spatial distribution of bone properties in several clinical applications.  相似文献   

6.
Application of bone densitometry to clinical use requires the availability of accessible reference data and is helped by an interpretative framework that is based on bone physiology. The aim of this contribution is to provide both reference data and help in the interpretation of results for peripheral quantitative computed tomography (Stratec XCT2000 performed at the distal radius of young subjects. Data from a previous reference data study on 478 subjects between 6 and 40 years were re-analyzed and smooth curves were fitted. The corresponding equations allow for calculation of age- and sex-specific z-scores of bone mineral content, volumetric bone mineral density (vBMD) of the trabecular compartment, vBMD of the entire radial cross-section, total cross-sectional area and cortical thickness. These data should facilitate the clinical use of peripheral quantitative computed tomography in young subjects.  相似文献   

7.
Vertebral trabecular bone mineral density (BMD) was measured by quantitative computed tomography (QCT) in 1061 subjects (610 females and 451 males aged from 7 to 91 and from 12 to 89, respectively) with known history of diseases or taking medicines affecting bone metabolism. Peak BMD values in our patients were observed at the age of 20-29 years with further gradual decrement in men and more steep in women. Negative relationship between BMD and age was r = -0.991 for men and r = -0.968 for women. Analyzing BMD changes by decades we observed the largest decrement in men after 60 (13.1% for 60-69 and 14.1% for 70-79 years of age) and in women after 50 (22.5% for 50-59, 22.1% for 60-69 and 20.8% for 70-79 years) which was most probably due to decline in sex hormones production that is known to significantly influence bone metabolism. This was confirmed by BMD values three-phase approximation in women showing the lowest rate of calcium loss by trabecular bone in reproductive period (1.9 mg/cm3/yr) and the highest in perimenopause (3.98 mg/cm3/yr). Annual calcium loss in postmenopause was 2.22 mg/cm3.  相似文献   

8.
There are a large number of clinical and experimental studies that analyzed trabecular architecture as a result of bone adaptation. However, only a limited amount of quantitative data is currently available on the progress of trabecular adaptation during growth. In this paper, we proposed a two-step numerical simulation method that predicts trabecular adaptation progress during growth using a recently developed topology optimization algorithm, design space optimization (DSO), under the hypothesis that the mechanisms of DSO are functionally equivalent to those of bone adaptation. We applied the proposed scheme to trabecular adaptation simulation in human proximal femur. For the simulation, the full trabecular architecture in human proximal femur was represented by a two-dimensional μFE model with 50 μm resolution. In Step 1, we determined a reference value that regulates trabecular adaptation in human proximal femur. In Step 2, we simulated trabecular adaptation in human proximal femur during growth with the reference value derived in Step 1. We analyzed the architectural and mechanical properties of trabecular patterns through iterations. From the comparison with experimental data in the literature, we showed that in the early growth stage trabecular adaptation was achieved mainly by increasing bone volume fraction (or trabecular thickness), while in the later stage of the development the trabecular architecture gained higher structural efficiency by increasing structural anisotropy with a relatively low level of bone volume fraction (or trabecular thickness). We demonstrated that the proposed numerical framework predicted the growing progress of trabecular bone that has a close correlation with experimental data.  相似文献   

9.
The lifestyle of extinct tetrapods is often difficult to assess when clear morphological adaptations such as swimming paddles are absent. According to the hypothesis of bone functional adaptation, the architecture of trabecular bone adapts sensitively to physiological loadings. Previous studies have already shown a clear relation between trabecular architecture and locomotor behavior, mainly in mammals and birds. However, a link between trabecular architecture and lifestyle has rarely been examined. Here, we analyzed trabecular architecture of different clades of reptiles characterized by a wide range of lifestyles (aquatic, amphibious, generalist terrestrial, fossorial, and climbing). Humeri of squamates, turtles, and crocodylians have been scanned with microcomputed tomography. We selected spherical volumes of interest centered in the proximal metaphyses and measured trabecular spacing, thickness and number, degree of anisotropy, average branch length, bone volume fraction, bone surface density, and connectivity density. Only bone volume fraction showed a significant phylogenetic signal and its significant difference between squamates and other reptiles could be linked to their physiologies. We found negative allometric relationships for trabecular thickness and spacing, positive allometries for connectivity density and trabecular number and no dependence with size for degree of anisotropy and bone volume fraction. The different lifestyles are well separated in the morphological space using linear discriminant analyses, but a cross-validation procedure indicated a limited predictive ability of the model. The trabecular bone anisotropy has shown a gradient in turtles and in squamates: higher values in amphibious than terrestrial taxa. These allometric scalings, previously emphasized in mammals and birds, seem to be valid for all amniotes. Discriminant analysis has offered, to some extent, a distinction of lifestyles, which however remains difficult to strictly discriminate. Trabecular architecture seems to be a promising tool to infer lifestyle of extinct tetrapods, especially those involved in the terrestrialization.  相似文献   

10.
Noninvasive and/or nondestructive techniques are capable of providing more macro- or microstructural information about bone than standard bone densitometry. Although the latter provides important information about osteoporotic fracture risk, numerous studies indicate that bone strength is only partially explained by bone mineral density. Quantitative assessment of macro- and microstructural features may improve our ability to estimate bone strength. The methods available for quantitatively assessing macrostructure include (besides conventional radiographs) quantitative computed tomography (QCT) and volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), micro-computed tomography (muCT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (muMR). vQCT, hrCT and hrMR are generally applicable in vivo; muCT and muMR are principally applicable in vitro. Although considerable progress has been made in the noninvasive and/or nondestructive imaging of the macro- and microstructure of bone, considerable challenges and dilemmas remain. From a technical perspective, the balance between spatial resolution versus sampling size, or between signal-to-noise versus radiation dose or acquisition time, needs further consideration, as do the trade-offs between the complexity and expense of equipment and the availability and accessibility of the methods. The relative merits of in vitro imaging and its ultrahigh resolution but invasiveness versus those of in vivo imaging and its modest resolution but noninvasiveness also deserve careful attention. From a clinical perspective, the challenges for bone imaging include balancing the relative advantages of simple bone densitometry against the more complex architectural features of bone or, similarly, the deeper research requirements against the broader clinical needs. The considerable potential biological differences between the peripheral appendicular skeleton and the central axial skeleton have to be addressed further. Finally, the relative merits of these sophisticated imaging techniques have to be weighed with respect to their applications as diagnostic procedures requiring high accuracy or reliability on one hand and their monitoring applications requiring high precision or reproducibility on the other.  相似文献   

11.
The use of artificial bones in implant testing has become popular due to their low variability and ready availability. However, friction coefficients, which are critical to load transfer in uncemented implants, have rarely been compared between human and artificial bone, particularly for wet and dry conditions. In this study, the static and dynamic friction coefficients for four commercially used titanium surfaces (polished, Al(2)O(3) blasted, plasma sprayed, beaded) acting on the trabecular component of artificial bones (Sawbones) were compared to those for human trabecular bone. Artificial bones were tested in dry and wet conditions and normal interface stress was varied (0.25, 0.5, 1.0MPa). Friction coefficients were mostly lower for artificial bones than real bone. In particular, static friction coefficients for the dry polished surface were 20% of those for real bone and 42-61% for the dry beaded surface, with statistical significance (alpha<0.05). Less marked differences were observed for dynamic friction coefficients. Significant but non-systematic effects of normal stress or wet/dry condition on friction coefficients were observed within each surface type. These results indicate that the use of artificial bone models for pre-clinical implant testing that rely on interface load transfer with trabecular bone for mechanical integrity can be particularly sensitive to surface finish and lubrication conditions.  相似文献   

12.

Background

Teriparatide (TPTD) is an anabolic agent indicated for the treatment of severely osteoporotic patients who are at high risk of fragility fractures. The originally approved duration of TPTD treatment in several regions, including Europe, was 18 months. However, studies of areal bone mineral density (aBMD) showed additional benefit when treatment is continued beyond 18 months, and the drug is currently licenced for 24 months. Improvements in cortical structure at the proximal femur have already been shown in patients given TPTD for 24 months using quantitative computed tomography (QCT). Here, we investigate whether cortical and endocortical trabecular changes differ between an 18- and 24-month treatment.

Methods

Since an 18- versus 24-month TPTD study using QCT has not been conducted, we studied combined QCT data from four previous clinical trials. Combined femoral QCT data from three 18-month TPTD studies (‘18-month group’) were compared with data from a fourth 24-month trial (‘24-month group’). Cortical parameters were measured over the entire proximal femur which allowed for a comparison of the mean changes as well as a visual comparison of the colour maps of changes after 18 and 24 months TPTD.

Results

For both the combined 18-month group and the 24-month group, overall cortical thickness and endocortical trabecular density increased, while overall cortical bone mineral density decreased. While the changes in the 24-month group were of greater magnitude compared to the 18-month group, the differences were only significant for the endocortical trabecular density (ECTD), corrected for age, weight, femoral neck T-score, total hip T-score and the baseline mean ECTD.

Conclusion

Although the combination of data from different clinical trials is not optimal, these data support the concept that the duration of TPTD in the 18–24 month phase is of clinical relevance when considering improvement in hip structure.  相似文献   

13.
With the prevalent use of DXA-measured BMD to assess pathologic hip fractures and its recently reported lack of reliability to predict fracture or account for efficacy of anti-resorptive therapy, it is reasonable to assess whether variations in the primary and secondary tensile and compressive trabecular microstructure can account for variations in proximal femur strength in comparison to DXA-measured BMD. To that end, microstructural and densitometric measures of trabecular bone specimens, from discrete sites within the proximal femur, were correlated with their mechanical properties. We hypothesize that accounting for regional variations in trabecular microstructure will improve predictions of proximal femur strength and stiffness compared to bone density measured by DXA. Forty-seven samples (seven donors) from seven distinct sites of human proximal femur underwent DXA and muCT imaging and mechanical testing. The results revealed significant variations in BMC, morphometric indices and mechanical properties within the proximal femur. This work has demonstrated that the mechanical performance of each sub-region is highly dependent on the corresponding trabecular microstructure. BMD measured by DXA at standard regions of interest cannot resolve the variations in trabecular density and microstructure that govern the mechanical behavior of the proximal femur. This work suggests that a quantitative Singh index that uses high resolution QCT to monitor the trabecular microstructure at specific sub-regions of the proximal femur may allow better predictions of hip fracture risk in individual patients and an improved assessment of changing bone structure in response to pharmacological interventions.  相似文献   

14.
Knowledge of the structural development of the human vertebrae from non-weight-bearing before birth to weight-bearing after birth is still poor. We studied the mineralized tissue of the developing lumbar L4 vertebral body at ages 15 weeks postconception to 97 years from the tissue level (trabecular architecture) to the material level (micro- and nanostructure). Trabecular architecture was investigated by 2D histomorphometry and the material level was examined by quantitative backscattered electron imaging (for typical calcium content, CaMaxFreq) and scanning small-angle X-ray scattering (for mean mineral particle thickness). During early development, the trabecular orientation changed from a radial to a vertical/horizontal pattern. For bone area per tissue area and trabecular width in postnatal cancellous bone, the maximum was reached at adolescence (20 years), while for trabecular number the maximum was reached at childhood (approximately 1 year). CaMaxFreq was lower in early bone (approximately 21 wt%) than in mineralized cartilage (approximately 29 wt%) and adolescent bone (approximately 23 wt%). In conclusion, the changes at the tissue level were observed to continue throughout life while the development of bone at the material level (CaMaxFreq, mineral particle thickness and orientation) is essentially complete after the first years of life. CaMaxFreq and mean particle thickness increase rapidly during the first years and reach saturation. Remarkably, when these parameters are plotted versus logarithm of age, they appear linear.  相似文献   

15.
The goal of this study was to determine, through a longitudinal follow-up, whether sex influences bone adaptation during simulated weightlessness. Twelve-week-old male and female Wistar rats were hindlimb unweighted for 2 wk, and the time course of bone alteration was monitored in vivo by means of densitometry and unbiased three-dimensional quantitative microcomputed tomography at 7 and 14 days. Compared with male rats, female rats had twice more cancellous bone volume at the proximal tibia at baseline, and this bone volume continued to increase, whereas in males it stabilized. Conversely, cortical area was greater in males than in females, and in both sexes cortical bone was still expanding. Hindlimb unloading resulted in larger reductions in males than in females in both cortical and cancellous compartments. In females, trabecular thickness and number decreased mildly, whereas in males trabecular number was dramatically reduced. In both sexes, the trabecular network became less connected and more rod-like shaped. Bone cellular activities evaluated by histomorphometry showed decreased bone formation rate in both sexes and increased resorption activity only in males. In conclusion, in female rats unloaded-related cancellous alterations reversed the growing process, whereas in males, which show lower growth process, it induced an accentuation of age-related cancellous bone changes for most of the parameters.  相似文献   

16.
The mechanisms behind the influence of PHPT on the skeleton are closely connected with bone turnover. Throughout life, the skeleton is continuously renewed by bone remodeling, a process which serves the purpose of repairing damaged bone and adapting the skeleton to changes in physical load. In this process, old bone is removed by osteoclastic resorption and new bone is laid down by osteoblastic formation. Bone mass increases with growth in the first decades of life, and around the age of 30 years the peak bone mass is reached. Thereafter, as a result of mechanisms involving bone remodeling, a net bone loss is seen: 1) A reversible bone loss because of increase in the remodeling space, i.e., the amount of bone resorped but not yet reformed during the remodeling cycle. This mechanism leads to decrease in average trabecular thickness and cortical width, and to increase in cortical porosity. 2) An irreversible bone loss caused by negative bone balance, where the amount of bone formed by the osteoblasts is exceeded by the amount of bone resorbed by the osteoclasts at the same remodeling site. Consequently, progressive thinning of trabecular elements, reduced cortical width and increased cortical porosity is seen. 3) Finally, perforation of trabecular plates by deep resorption lacunae leads to complete irreversible removal of structural bone components. Parathyroid hormone, together with vitamin D, are the principal modulators in calcium homeostasis. The main actions of PTH are executed in bone and kidneys. In the kidneys, PTH increases the tubular re-absorption of calcium, thereby tending to increase serum calcium. PTH also induces increased conversion of 25(OH)-D to 1,25(OH)2-D. This last action, enhances intestinal calcium absorption and increased skeletal calcium mobilization, which further adds to the circulating calcium pool. In bone, the "acute" regulatory actions of PTH on serum calcium are probably accompliced via activation of osteocytes and lining cells. A second mechanism of PTH in bone is the regulation of bone remodeling. The action seems to be an increased recruitment from osteoblastic precursor cells and activation of mature osteoclasts. It is supposed that these responses are predominantly mediated indirectly through actions on osteoblast-like or nonosteoblast-like stromal cells, as osteoclasts themselves to not have PTH receptors. Bone metabolism and bone mass are studied by biochemical bone markers, bone histomorphometry, and densitometry. As bone markers and bone histomorphometry give information on bone metabolism from different points of view, these methods are preferably combined. Histomorphometry gives detailed information about bone turnover on cellular level, the whole remodeling sequence is described, and the bone balance can be calculated. However, they focus on a small volume, and may, therefore, not be representative for the whole skeleton. On the other hand, studies of bone markers supply general information about turnover in the whole skeleton, but they do not give facts on the bone turnover on the cellular or tissue level and bone balance. Bone densitometry is the principal method in studying bone mass, but valuable information concerning bone structure also comes from histomorphometry. Bone remodeling is considerably increased in PHPT. Studies of bone markers show increase in both resorptive and formative markers, and the increases seem to be of equivalent size. This is in agreement with histomorphometric findings and shows that the coupling between resorption and formation is preserved. By histomorphometry on iliac crest biopsies, trabecular bone remodeling is found increased by 50%, judged by the increase in activation frequency; a measure of how often new remodeling is initiated on the trabecular bone surface. In PHPT, such remodeling activity is repeated about once every year. Reconstruction of the whole remodeling sequence does not show major deviations in lengths of the resorptive and formative periods compared to normal. Furthermore, the amount of bone removed by the osteoclasts during the resorptive phase is matched by the amount of new bone formed by the osteoblasts leading to a bone balance very close to zero. Compared with trabecular bone, the turnover rate in cortical bone is considerably lower, around 10%. Remodeling of the cortical bone takes place at the endocortical, the pericortical, and the Haversian surfaces. Endocortical bone remodeling activities are very similar to trabecular remodeling activities with good correlation between individual parameters. Periosteal remodeling activity is negligible in PHPT, as it is in the normal state. Cortical porosity, which reflects the remodeling activity on the Haversian surface, is increased by 30-65% in PHPT. (ABSTRACT TRUNCATED)  相似文献   

17.
In growing children, lumbar and femoral areal bone mineral density (aBMD), as measured by dual-energy X-ray absorptiometry (DXA), is influenced by skeletal growth and bone size. Correction of lumbar bone mineral density (BMD) for bone volume (volumetric BMD [vBMD]), by the use of mathematical extrapolations, reduces the confounding effect of bone size, but vBMD remains dependent on age and bone size during growth. Femoral (neck and mid-shaft) vBMD, assessed by DXA, is independent of age prior to puberty, but a slight increase occurs in late puberty and after menarche. Femoral (mid-shaft) cortical bone density and radial cortical and trabecular bone densities, assessed by quantitative computed tomography (QCT), show no peak during childhood or adolescence. Bone strength index, calculated by peripheral QCT, increases with age and correlates with handgrip strength, bone cross-sectional area and cortical area. Puberty is one of the main factors that influences lumbar bone mineral content and aBMD accumulation, but a high incidence of fractures occurs during this period of life, which may be associated with a reduced aBMD.  相似文献   

18.
Cylindrical bone specimens from the proximal epiphysis of ten normal human proximal tibiae were randomly assigned to a destructive axial compression test-series (N = 94) or to a protocol of standardized mechanical conditioning followed by non-destructive repeated testing to 0.6% strain and a final destructive test (N = 121). Specimen X-ray quantitative computed tomography (QCT) obtained at different scanning energies (100, 120 and 140 kVp) yielded closely related results (r = 1.00). Accordingly, predictions of physically measured densities or mechanical properties were not improved by using more than one scanning energy. QCT and physically measured densities were intimately related (QCT at 140 kVp to apparent density using linear regression: r = 0.94, and to apparent ash density: r = 0.95) and did not differ significantly in their ability to predict the mechanical properties, thus favouring the more easily implemented QCT for routine work. Evaluation of the relation of apparent density to Young's modulus and ultimate strength suggested that a power law regression model is preferable to a linear model, although linear model prediction of mechanical properties does not have significantly worse accuracy within the narrow density range investigated. The effect of conditioning on the behaviour of bone specimens subjected to destructive compression tests was to increase the stiffness and strength by approximately 50 and 20% respectively.  相似文献   

19.
The ability to evaluate fracture risk at an early time point is essential for improved prognostics as well as enhanced treatment in cases of bone loss such as from osteoporosis. Improving the diagnostic ability is inherent upon both high-resolution non-invasive imaging, and a thorough understanding of how the derived indices of structure and density relate to its true mechanical behavior. Using sheep femoral trabecular bone with a range of strength, the interrelationship of mechanical and microstructural parameters was analyzed using multi-directional mechanical testing and micro-computed tomography. Forty-five cubic trabecular bone samples were harvested from 23 adult female sheep, some of whom had received hind-limb vibratory stimuli over the course of 2 years with consequently enhanced mechanical properties. These samples were pooled into a low, medium, or high strength group for further analysis. The findings show that microCT indices that are structural in nature, e.g., structural model index (SMI) (r2=0.85, p<0.0001) is as good as more density oriented indices like bone volume/total volume (BV/TV) (r2=0.81, p<0.0001) in predicting the ultimate strength of a region of trabecular bone. Additionally, those indices more related to global changes in trabecular structure such as connectivity density (ConnD) or degree of anisotropy (DA) are less able to predict the mechanical properties of bone. Interrelationships of trabecular indices such as trabecular number (TbN), thickness (TbTh), and spacing (TbSp) provide clues as to how the trabecular bone will remodel to ultimately achieve differences in the apparent mechanical properties. For instance, the analysis showed that a loss of bone primarily affects the connectedness and overall number of trabeculae, while increased strength results in an increase of the overall thickness of trabeculae while not improving the connectedness. Certainly, the microCT indices studied are able to predict the bulk mechanical properties of a trabecular ROI well, leaving unaccounted only about 15-20% of its inherent variability. Diagnostically, this implies that future work on the early prediction of fracture risk should continue to explore the role of bone quality as the key factors or as an adjuvant to bone quantity (e.g., apparent density).  相似文献   

20.
Ontogenetic changes in the human femur associated with the acquisition of bipedal locomotion, especially the development of the bicondylar angle, have been well documented. The purpose of this study is to quantify changes in the three-dimensional structure of trabecular bone in the human proximal femur in relation to changing functional and external loading patterns with age. High-resolution X-ray computed tomography scan data were collected for 15 juvenile femoral specimens ranging in age from prenatal to approximately nine years of age. Serial slices were collected for the entire proximal femur of each individual with voxel resolutions ranging from 0.017 to 0.046 mm depending on the size of the specimen. Spherical volumes of interest were defined within the proximal femur, and the bone volume fraction, trabecular thickness, trabecular number, and fabric anisotropy were calculated in three dimensions. Bone volume fraction, trabecular number, and degree of anisotropy decrease between the age of 6 months and 12 months, with the lowest values for these parameters occurring in individuals near 12 months of age. By age 2-3 years, the bone volume, thickness, and degree of anisotropy increase slightly, and regions in the femoral neck become more anisotropic corresponding to the thickening of the inferior cortical bone of the neck. These results suggest that trabecular structure in the proximal femur reflects the shift in external loading patterns associated with the initiation of unassisted walking in infants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号