首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two distinct activator proteins for lipoprotein lipase (LPL) have been isolated in approximately equal amounts from ovine plasma. These low molecular weight proteins were readily separated from each other on the basis of size and charge. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated proteins of Mr about 8000 and 5000, with pI in urea-containing gels of about 5.1 and 4.8 respectively. Each of the ovine activator proteins was as effective as human apolipoprotein C-II (apo C-II) in activating LPL, with 1 microgram/ml giving near to maximum activation, and in lowering the apparent Km of LPL for triolein substrate. As the ratio of activator to triolein increased from 0.16 to 5.2 (micrograms/mg) the apparent Km fell from about 0.5 to 0.18 mM. Whereas human apo C-II and the two ovine activators were equally effective in stimulating the hydrolysis of triolein, differences were observed between the human and ovine activators when p-nitrophenylbutyrate was used as substrate. Unlike human apo C-II, which produced significant inhibition of p-nitrophenylbutyrate hydrolysis, the ovine activators were without effect. This suggests that the interaction between the ovine activators and LPL is different from that of human apo C-II.  相似文献   

2.
1. Sephadex fraction V, obtained from human serum high density lipoprotein apoprotein (HDL apoprotein) of normal subjects and of patients with abetalipoproteinemia, was resolved by DEAE-cellulose ion exchange column chromatography into several fractions which were defined in terms of amino acid composition, NH2- and COOH-terminsls, sialic acid content, immunologic and electrophoretic properties, and in vitro activation of purified lipoprotein lipase from rat adipose tissue. 2. Fraction V of HDL apoprotein of both normal and abetalipoproteinemic subjects was found to contain polypeptides corresponding to apolipoproteins C-I, C-II, C-III-1, and C-III-2, which had been described previously in very low-density lipoproteins (VLDL). The content of apo C-III-1 in abetalipoproteinemia-HDL was very low, whereas the percentage, by weight, of apo C-I was about twice as high as that in the normal subjects studied. Furthermore, both normal and abetalipoproteinemia-HDL apoprotein contained a previously unreported peptide which had a molecular weight of about 7 000 and electrophoretic, chemical, and immunological properties distinct from those of the known C apolipoproteins. Of all of the peptides comprising fraction V, only apo C-II activated a purified preparation of rat adipose tissue lipoprotein lipase. This was the case for both normal and abetalipoproteinemic subjects.  相似文献   

3.
Rat apoprotein C-II activated the hydrolysis of triacylglycerol in apoprotein-depleted chylomicrons by lipoprotein lipase in vitro and in the perfused rat heart. Apoproteins C-I and C-III-3 inhibited the hydrolysis of the triacylglycerol moiety in intact and apoprotein C-II-re-activated chylomicrons in vitro, but had no effect on the hydrolysis in situ.  相似文献   

4.
Micellar, discoidal complexes of human apolipoproteins A-I, A-II, C-I, C-II, C-III-1, and C-III-2 with egg phosphatidylcholine (egg-PC) and cholesterol were prepared by the cholate dialysis method. The complexes, isolated by gel filtration, had similar lipid and protein contents by weight, on the average: 1.77:0.083:1.0, egg-PC/cholesterol/apolipoprotein (w/w). The diameters of the discs, visualized by electron microscopy and estimated by gel filtration, ranged from 100 to 200 A. The alpha-helix content of the apolipoproteins in the complexes was from 50-72%, and their fluorescence properties indicated nonpolar, but quite varied environments for the tryptophan residues in the various complexes. Initial reactions of purified human lecithin: cholesterol acyltransferase with the complexes, adjusted to equal egg-PC concentrations, indicated that all the apolipoproteins activate the enzyme from 6-fold to 400-fold over control vesicles of egg-PC and cholesterol. In decreasing order of reactivity were the complexes with A-I, C-I, C-III-1, C-III-2, C-II, and A-II. These results indicate that aside from lipid-binding capacity and high amphipathic alpha-helix content, other structural features are required for optimal enzyme activation by apolipoproteins. Concentration and temperature dependence experiments gave similar apparent Km values, markedly different apparent Vmax, and very similar activation energies (about 19 kcal/mol), for the various complexes. These observations suggest that the rate-limiting enzymatic step of the reaction is common to all the complexes but that the activated enzyme levels differ from complex to complex. We propose that enzyme activation occurs upon binding to complexes via apolipoproteins. Addition of excess (5-fold) free apolipoprotein A-I or A-II to complexes resulted in the exchange of bound for free apolipoproteins and in loss of reactivity with the enzyme.  相似文献   

5.
We have devised a new method for the fractionation of human plasma high density lipoprotein (HDL). The HDL was chromatographed on DEAE-agarose columns using a continuous gradient of 0.06--0.15 M NaCl. The elution pattern obtained showed three phases, each with differing peptide composition. Examination of the three subfraction showed that each contained both apoA-I and apo A-II, but in different proportions. Subfraction 1 contained no apo C-II or C-III-1 and only a trace of apo C-III-2, subfraction 2 contained apo C-II and C-III-1 but no C-III-2, while subfraction 3 contained considerable apo C-III-2 with only traces of apo C-II or C-III-1.  相似文献   

6.
Rotational freedom of the single tryptophan residue in human plasma apolipoproteins C-I (apo C-I) and C-II (apo C-II) was investigated by oxygen quenching and lifetime-resolved anisotropies. The tryptophan in both apo C-I and C-II was highly accessible to oxygen quenching. The tryptophan residue in both apo C-I and C-II and their sodium dodecyl sulfate (SDS) or dimyristoylphosphatidylcholine (DMPC) complexes displayed significant motional freedom on the nanosecond time scale. Lifetime-resolved anisotropies of tryptophan residues under conditions of oxygen quenching revealed an increase in the amplitude of the segmental motions at 40 degrees C as compared to that at 5 degrees C. It was concluded from these studies that both the apoprotein C-I and C-II are highly flexible molecules, and that the nanosecond motions of the tryptophan residue are sensitive to the fluidity of its environment in both SDS and DMPC complexes.  相似文献   

7.
Hepatic lipase. Purification and characterization   总被引:5,自引:0,他引:5  
Hepatic lipase has been purified to homogeneity from rat liver homogenates. The purified enzyme exhibits a single band on SDS-polyacrylamide gel electrophoresis. The molecular size of the native hepatic lipase is 200 000, while on SDS-polyacrylamide gel electrophoresis the apparent minimum molecular weight of the enzyme is 53 000, suggesting that the active enzyme is composed of four subunits. The relationship between triacylglycerol, monoacylglycerol and phospholipid hydrolyzing activities of the purified rat liver enzyme was studied. All three activities had a pH optimum of 8.5. The maximal reaction rates obtained with triolein, monoolein and dipalmitoylphosphatidylcholine were 55 000, 66 000 and 2600 mumol fatty acid/mg per h with apparent Michaelis constant (Km) values of 0.4, 0.25 and 1.0 mM, respectively. Hydrolysis of triolein and monoolein probably takes place at the same site on the enzyme molecule, since competitive inhibition between these two substrates was observed, and a similar loss of hydrolytic activity occurred in the presence of diisopropylfluorophosphate. Addition of apolipoproteins C-II and C-I had no effect on the hydrolytic activity of the enzyme with the three substrates tested. However, the triacylglycerol hydrolyzing activity was inhibited by the addition of apolipoprotein C-III. Monospecific antiserum to the pure hepatic lipase has been raised in a rabbit.  相似文献   

8.
The low molecular weight proteins of rat apo HDL and apo VLDL have been isolated and analyzed by the technique of isoelectric focusing. Sephadex fractions from apo HDL (HS-3) and apo VLDL (VS-3) that contain these proteins reveal three major bands with apparent isoelectric points of pH 4.50, 4.67, and 4.74, as well as three minor bands at pH 4.43, 4.57, and 4.61. In addition, apo HDL has a major band at pI of 4.83. DEAE-Cellulose chromatography was used to prepare purified fractions of these components that were characterized by N-terminal analyses and molecular weight determinantions by SDS gel electrophoresis. The major low molecular weight components of apo HDL were focused on a slab gel and the bands were identified as A-II (pI 4.83), C-II (pI 4.74), C-III-0 (pI 4.67), and C-III-3 (pI 4.50). Neuraminidase treatment of apo HDL, followed by isoelectric focusing, suggested that the other bands, which have not previously been reported, may be additional forms of the C-III protein, differing only in their content of sialic acid.  相似文献   

9.
Changes in whole plasma and lipoprotien apoprotein concentrations were determined after a single injection of Triton WR 1339 into rats. Concentrations of apoproteins A-I (an activator of lecithin:cholesterol acyl transferase), arginine-rich apoprotein (ARP), and B apoprotein were measured by electroimmunoassay. The content of C-II apoprotein (an activaor of lipoprotein lipase) was estimated by the ability of plasma and lipoprotein fractions to promote hydrolysis of triglyceride in the presence of cow's milk lipase and also by isoelectric focusing on polyacrylamide gels. Apoproteins C-II and A-I were rapidly removed from high density lipoprotein (HDL) after Triton treatment and were recovered in the d 1.21 g/ml infranate fraction. A-I was then totally cleared from the plasma within 10--20 hr after injection. Arginine-rich apoprotein was removed from HDL and also partially cleared from the plasma. The rise in very low density lipoprotein (vldl) apoprotein that followed the removal of apoproteins from HDL was mostly antributed to the B apoprotein, although corresponding smaller increases were observed in VLDL ARP and C apoproteins. The triglyceride:cholesterol, triglyceride:protein, and B:C apoprotein ratios of VLDL more closely resembled nascent rather than plasma VLDL 10 hr after Triton injection. These studies suggest that the detergent may achieve its hyperlipidemic effct by disrupting HDL and thus removing the A-I and C-II proteins from a normal activating environment compirsing VLDL, HDL, and the enzymes. The possible involvement of intact HDL in VLDL catabolism is discussed in relation to other recent reports which also suggest that abnormalities of the VLDL-LDL system may be due to the absence of normal HDL.  相似文献   

10.
Like rat C apolipoproteins, each of the C apolipoproteins from human blood plasma (C-I, C-II, C-III-1, and C-III-2) bound to small chylomicrons from mesenteric lymph of estradiol-treated rats and inhibited their uptake by the isolated perfused rat liver. This inhibitory effect of the C apolipoproteins was independent of apolipoprotein E, which is present only in trace amounts in these chylomicrons. Addition of rat apolipoprotein E to small chylomicrons from mesenteric lymph of normal rats did not displace C apolipoproteins and had no effect on the uptake of these particles by the perfused liver, indicating that an increased ratio of E apolipoproteins to C apolipoproteins on chylomicron particles, unaccompanied by depletion of the latter, may not promote recognition by the chylomicron remnant receptor. The hepatic uptake of remnants of rat hepatic very low density lipoproteins (VLDL) and small chylomicrons, which had been produced in functionally eviscerated rats, was also inhibited by addition of C apolipoproteins. These observations are consistent with the hypothesis that the addition of all of the C apolipoproteins to newly secreted chylomicrons and VLDL inhibits premature uptake of these particles by the liver and that depletion of all of these apolipoproteins from remnant particles facilitates their hepatic uptake. Remnants of chylomicrons and VLDL incubated with rat C apolipoproteins efficiently took up C-III apolipoproteins, but not apolipoprotein C-II (the activator protein for lipoprotein lipase). Preferential loss of apolipoprotein C-II during remnant formation may regulate the termination of triglyceride hydrolysis prior to complete removal of triglycerides from chylomicrons and VLDL.  相似文献   

11.
Triolein particles stabilized by a phosphatidylcholine monolayer were used to study the lipoprotein lipase (LpL) reaction. They were prepared in two different sizes and with triolein and phosphatidylcholine in the molar ratios of 0.9-1.2 : 1 (small particles) and 8-17 : 1 (large particles). The rate of hydrolysis by LpL of phosphatidylcholine on the surface of both lipid particles was only 1/20 as much as that of triolein, even if it was activated to the maximum by apolipoprotein C-II (apoC-II). Thus, the phospholipase activity of LpL was low enough to measure the initial rate of hydrolysis of triolein without causing a gross change of the surface of the lipid particle. When the hydrolysis of triolein by LpL was monitored, fatty acid was released at a constant rate until all of the triolein molecules were hydrolyzed. The enzyme required 220 +/- 17 and 66 +/- 9 nM apoC-II for its half-maximal activity (Km (apoC-II] with small and large particles as a substrate (1.15 mM triolein for small and 2.13 mM triolein for large particles), respectively, using various concentrations of LpL. The Km(apoC-II) values for these two substrates became similar when LpL activity was analyzed with respect to the density of apoC-II on the phosphatidylcholine monolayer at the surface of the particles (bound apoC-II/phosphatidylcholine). The concentration of substrate particles did not affect the Km(apoC-II) values. The presence of an adequate amount of apoC-II increased the maximal activity of LpL (Vmax(triolein)) from 0.48 +/- 0.21 to 6.81 +/- 0.45 and from 0.32 +/- 0.04 to 7.13 +/- 0.64 mmol/h/mg with a slight decrease in the apparent Michaelis constant (Km(triolein)) for small (from 90 to 54 microM triolein) and large (from 1.00 to 0.65 mM triolein) particles, respectively. Although the apparent Km for triolein in large particles was about ten times greater than that in small particles, the values became similar when they were corrected for the concentration of phosphatidylcholine (50-100 microM phosphatidylcholine), which corresponded to the surface area of the substrate particles. It was suggested that bound apoC-II molecules were transferred relatively slowly to other lipid particles while LpL molecules moved rapidly among the lipid particles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
In this study we have investigated the effects of very low density lipoprotein (VLDL) lipolysis on the removal of radiolabeled apolipoprotein C-II and apolipoprotein C-III-1 from in vitro lipolyzed lipoproteins. Lipolysis was carried out in vitro using lipoprotein lipase purified from bovine milk, and mixtures with or without plasma. Lipoproteins were isolated by ultracentrifugation and by gel filtration. Labeled apo-C-II and apo-C-III-1 distributed among plasma lipoproteins, predominantly VLDL and high density lipoprotein (HDL). Lipolysis induced transfer of apo-C-II and apo-C-III-1 from VLDL to HDL. The transfer was proportional to the extent of triglyceride hydrolysis, and similar for the two apoproteins. The apo-C-II/apo-C-III-1 radioactivity ratio did not change in either VLDL or the fraction of d greater than 1.006 g/ml during the progression of the lipolytic process. Similar observations were recorded while using plasma-devoid lipolytic systems. Gel filtration of incubation mixtures, on 6% agarose, revealed that the removal of labeled apo-C molecules from VLDL is not a consequence of either centrifugation or high salt concentration. These results suggest that there is no preferential removal of apo-C-II or apo-C-III-1 from lipolyzed VLDL particles. They further indicate that the ratio of apo-C-II to apo-C-III-1 does not regulate the extent of lipolysis of different VLDL particles, at least in VLDL isolated from normolipidemic humans.  相似文献   

13.
The mechanism of inhibition by apolipoprotein C of the uptake and degradation of triglyceride-rich lipoproteins from human plasma via the low density lipoprotein (LDL) receptor pathway was investigated in cultured human skin fibroblasts. Very low density lipoprotein (VLDL) density subfractions and intermediate density lipoprotein (IDL) with or without added exogenous recombinant apolipoprotein E-3 were used. Total and individual (C-I, C-II, C-III-1, and C-III-2) apoC molecules effectively inhibited apoE-3-mediated cell metabolism of the lipoproteins through the LDL receptor, with apoC-I being most effective. When the incubation was carried out with different amounts of exogenous apoE-3 and exogenous apoC, it was shown that the ratio of apoE-3 to apoC determined the uptake and degradation of VLDL. Excess apoE-3 overcame, at least in part, the inhibition by apoC. ApoC, in contrast, did not affect LDL metabolism. Neither apoA-I nor apoA-II, two apoproteins that do not readily associate with VLDL, had any effect on VLDL cell metabolism. The inhibition of VLDL and IDL metabolism cannot be fully explained by interference of association of exogenous apoE-3 with or displacement of endogenous apoE from the lipoproteins. IDL is a lipoprotein that contains both apoB-100 and apoE. By using monoclonal antibodies 4G3 and 1D7, which specifically block cell interaction by apoB-100 and apoE, respectively, it was possible to assess the effects of apoC on either apoprotein. ApoC dramatically depressed the interaction of IDL with the fibroblast receptor through apoE, but had only a moderate effect on apoB-100. The study thus demonstrates that apoC inhibits predominantly the apoE-3-dependent interaction of triglyceride-rich lipoproteins with the LDL receptor in cultured fibroblasts and that the mechanism of inhibition reflects association of apoC with the lipoproteins and specific concentration-dependent effects on apoE-3 at the lipoprotein surface.  相似文献   

14.
The dissociation of very-low-density lipoprotein (VLDL) apoproteins was studied using immunochemical approaches. The analysis of monospecific antibody binding to apo E, C-II and C-III on VLDL surface showed low apoprotein accessibility for the antibodies while the accessibility of apo C-II and C-III in solution was complete. Lipoprotein preparation dilution resulted in increasing of apo E and C-II accessibility. It was suggested that apoprotein dissociation led to apoprotein cluster dissolving on VLDL surface and higher antigen determinant accessibility. The findings confirmed previous theoretical analysis of apoprotein dissociation.  相似文献   

15.
This study has investigated the kinetics of transfer of C apolipoproteins between the vascular and lymph compartments of the rat. Very-low-density lipoprotein, labeled with [125I]apolipoprotein C, was injected intravenously into lymph duct-cannulated rats and the redistribution of radioactivity between lymph and plasma followed at frequent intervals for 3 h. Equilibration between the two compartments was rapid (10-15 min), and thereafter removal from both compartments continued at similar rates. Specific radioactivity determinations showed that lymph C-III-0, C-III-3, and C-III-2,1 apolipoproteins rapidly reached values identical to those of corresponding plasma C apolipoproteins and the interrelationship between the curves were consistent with precursor-product relationships in which all, or most, of the product (lymph apolipoprotein C-III) was derived from the precursor (plasma). However, the specific radioactivity curves for C-II peptide did not cross; the lower value for lymph C-II apolipoprotein suggests that, unlike C-III apolipoproteins, a substantial proportion (approx. 40%) of lymph C-II peptide is not derived from the plasma compartment. The most likely source of the unlabeled lymph apolipoprotein C-II is synthesis and secretion from the intestine.  相似文献   

16.
Lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) were purified to homogeneity from human postheparin plasma. Molecular, catalytic and immunological properties of the purified enzymes were investigated. The native molecular weights of LPL and HTGL were 67,200 and 65,500, respectively, by gel chromatography. The subunit molecular weights of LPL and HTGL were 60,600 and 64,600, respectively, suggesting that these enzymes are catalytically active in a monomeric form. In addition, the purified LPL and HTGL each gave a single protein band when they were detected as glycoproteins with a probe of concanavalin A. The purified enzyme preparations were free of detectable antithrombin III by Western blot analysis. Catalytic properties of the purified enzymes were examined using triolein-gum arabic emulsion and triolein particles stabilized with phospholipid monolayer as substrates. LPL catalyzed the complete hydrolysis of triolein to free oleate and monooleate in the presence of apolipoprotein C-II. Apparent Km values for triolein and apolipoprotein C-II were 1.0 mM and 0.6 microM, and Vmax was 40.7 mmol/h per mg. HTGL hydrolyzed triolein substrate at a rate much slower than LPL, and produced mainly free oleate with little monooleate. Apparent Km and Vmax values were 2.5 mM and 16.1 mmol/h per mg, respectively. Polyclonal antibodies were developed against the purified LPL and HTGL. The purity and specificity of these antisera were ascertained by immunotitration, Ouchterlony double diffusion and Western blot analyses. The anti-human LPL and anti-human HTGL antiserum specifically reacted with the corresponding either native or denaturated enzyme, indicating that two enzymes were immunologically distinct. We developed an assay system for LPL and HTGL in human PHP by selective immunoprecipitation of each enzyme with the corresponding antiserum.  相似文献   

17.
Hepatic lipase has been purified to homogeneity from rat liver homogenates. The purified enzyme exhibits a single band on SDS-polyacrylamide gel electrophoresis. The molecular size of the native hepatic lipase is 200000, while on SDS-polyacrylamide gel electrophoresis the apparent minimum molecular weight of the enzyme is 53000, suggesting that the active enzyme is composed of four subunits. The relationship between triacylglycerol, monoacylglycerol and phospholipid hydrolyzing activities of the purified rat liver enzyme was studied. All three activities had a pH optimum of 8.5. The maximal reaction rates obtained with triolein, monoolein and dipalmitoylphosphatidylcholine were 55000, 66000 and 2600 μmol fatty acid/mg per h with apparent Michaelis constant (Km) values of 0.4, 0.25 and 1.0 mM, respectively. Hydrolysis of triolein and monoolein probably takes place at the same site on the enzyme molecule, since competitive inhibition between these two substrates was observed, and a similar loss of hydrolytic activity occurred in the presence of diisopropylfluorophosphate. Addition of apolipoproteins C-II and C-I had no effect on the hydrolytic activity of the enzyme with the three substrates tested. However, the triacylglycerol hydrolyzing activity was inhibited by the addition of apolipoprotien C-III. Monospecific antiserum to the pure hepatic lipase has been raised in a rabbit.  相似文献   

18.
Chylomicrons with a decreased ratio of C-II/C-III apoproteins on their surface produced by the addition of apoproteins C-III-0 or C-III-3 to intact rat lymph chylomicrons. These chylomicrons inhibited the activity of soluble lipoprotein lipase in vitro, but had no effect on the activity of the endothelium-bound enzyme in the perfused heart.  相似文献   

19.
The nature of disulfide-linked structures of apolipoprotein (apo) E3 in the plasma of E3/3 subjects was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis performed under nonreducing conditions followed by immunoblotting with apoE-specific antibodies. In addition to the expected presence of the heterodimer apoE3-A-II and monomeric apoE3, a band with an apparent Mr approximately 100,000 was also observed in plasma that had been treated with sulfhydryl-trapping reagents. This band and apoE3-A-II were both eliminated by disulfide reduction, which produced a corresponding increase in monomeric apoE3. Both bands were absent in plasma from a subject with the E4/4 phenotype. In spite of its apparent molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the high molecular weight band was demonstrated to represent the disulfide-linked homodimer of apoE3. It was isolated from purified apoE3 preparations that had undergone oxygen-mediated dimerization and shown to elute from a Sephacryl S-300 column in a position with the expected molecular weight of a homodimer. The apoE3 dimer displayed a preference for high density lipoproteins, as determined by agarose chromatography of E3/3 plasma but was stripped from high density lipoproteins by ultracentrifugation. Quantitation of the relative ratios of homodimer, apoE3-A-II, and monomer in the plasma of 22 normolipidemic E3/3 subjects by immunoblotting revealed that the disulfide-linked structures accounted for the majority (approximately 55%) of plasma apoE. Both the homodimer and apoE3-A-II displayed a reduced ability to compete with low density lipoproteins for fibroblast low density lipoprotein receptors (20 and 30% of monomeric apoE3 binding activity, respectively). These results raise the possibility that the amount or availability of receptor-active apoE3 in E3/3 subjects may be rate limiting for metabolic events involving the low density lipoprotein receptor.  相似文献   

20.
R E Burrier  P Brecher 《Biochemistry》1984,23(22):5366-5371
Sonicated dispersions of egg yolk phosphatidylcholine and triolein as vesicles and microemulsions have been used as substrates for the assay of a purified acid lipase. Previous studies have also shown that triolein localized in the surface phase of emulsions is the preferred substrate. In this study, we examined enzyme activity following several surface modifications using both vesicles and microemulsions. When the acidic phospholipids phosphatidylserine and phosphatidic acid were incorporated into both vesicles and microemulsions at up to 10 mol % of the total phospholipid, a dose-dependent reduction in the apparent Km was observed. Using the vesicles as substrate, a dose-dependent decrease in Vmax was also observed. Agarose gel electrophoresis was used to verify suspected changes in net particle charge. Analogous inclusion of phosphatidylethanolamine, sphingomyelin, or cholesterol did not affect kinetic parameters. Addition of oleic acid to sonication mixtures produced vesicles with a decreased apparent Km and Vmax, but triolein hydrolysis in microemulsions was not significantly altered. Triolein-containing vesicles prepared by using dimyristoyl- or dipalmitoylphosphatidylcholine were hydrolyzed maximally at the gel liquid-crystalline transition temperatures of the appropriate phospholipid. Differential scanning calorimetry was used to verify the temperatures of transition in these vesicles. The results indicate that acid lipase activity is influenced by the charge or physical state of the surface phase of model substrates and suggest that degradation of core components of naturally occurring substrates such as lipoprotein may be influenced by chemical changes on the surface of these particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号