首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 85 毫秒
1.
The Upper Ordovician (Sandbian; late Whiterockian to Mohawkian) Bromide Formation of south-central Oklahoma was deposited along a distally steepened ramp that descended into the Southern Oklahoma Aulacogen (SOA). It provides an unparalleled opportunity to examine a spectrum of marine facies that extended from back ramp peritidal settings to the center of the basin. The depositional history and environmental context of the unit are reconsidered using lithofacies analysis and the characterization of sequence stratigraphic patterns at a variety of hierarchical scales. Inner-ramp (above fair weather wavebase; FWWB) lithofacies suggest deposition in a range of environments: tidal flat, lagoon, shoreface, semi-restricted shallow subtidal, and bioclastic shoal. Middle-ramp environments between FWWB and storm wavebase (SWB) are thick and faunally diverse, and consist of rhythmically bedded marls, wackestone, packstone, and shales. Outer-ramp environments (below SWB) are represented by either fissile tan-green shale or thin-bedded carbonate mudstone and shale. Ramp stratigraphy, facies associations, and bounding surfaces suggest that three third-order depositional sequences are present in the Bromide. They demonstrate the transition from a clastic-dominated ramp in the late Whiterockian to a carbonate-dominated ramp in the Mohawkian, and show that the deposition of the Bromide was considerably more complex than the simple transgressive–regressive cycle traditionally used to describe accommodation dynamics in the basin. Meter and decameter-scale cycles (high-frequency sequences) are a common motif within the depositional sequences, and the Corbin Ranch Submember records an important peritidal succession prior to a major sequence boundary with the overlying Viola Springs Formation. New correlations based on measured sections, outcrop gamma-ray profiles, and subsurface well-logs document a novel pattern where the middle Bromide depositional sequence 2 (Mountain Lake Member) expanded down-ramp, whereas the succeeding carbonate-dominated sequence 3 (Pooleville Member) was progressively removed down-ramp. This demonstrates the existence of a major, regionally angular unconformity at the base of the Viola Springs Formation that has implications for basin evolution. Other implications include the validation of high-frequency sequences as a model for elementary cycles in mixed carbonate-siliciclastic systems and, more regionally, documentation of a new depositional sequence at the Turinian–Chatfieldian stage boundary.  相似文献   

2.
The Upper Ordovician (uppermost Caradoc-Ashgill) section of western Estonia consists of a series of seven open-shelf carbonate sequences. Depositional facies grade laterally through a series of shelf-to-basin facies belts: grain-supported facies (shallow shelf), mixed facies (middle shelf), mud-supported facies (deep shelf and slope) and black shale facies (basin). Locally, a stromatactis mud mound occurs in a middle-to-deep shelf position. Shallow-to-deep shelf facies occur widely across the Estonian Shelf and grade laterally through a transitional (slope) belt into the basinal deposits of the Livonian Basin.

Each sequence consists of a shallowing-upward, prograding facies succession. Sequences 1 (Upper Nabala Stage) and 2 (Vormsi Stage) record step-wise drowning of underlying shelf units (lower Nabala) that culminated in the deposition of the most basinal facies (Fjäcka Shale) in the Livonian Basin. Sequences 3–6 comprise the overlying Pirgu Stage and record the gradual expansion of shallow and middle-shelf facies across the Estonian Shelf. The Porkuni Stage (sequence 7) is bracketed by erosional surfaces and contains the shallowest-water facies of the preserved strata. The uppermost part of the section (Normalograptus persculptus biozone) is restricted to the Livonian Basin, and includes redeposited carbonate and siliciclastic grains; it is the lowstand systems tract of the lowest Silurian sequence 8. Sequence 7 and the overlying basinal redeposited material (i.e., the lowstand of sequence 8) correspond to the latest Ordovician (Hirnantian) glacial interval, and the bracketing unconformities are interpreted as the widely recognized early and late Hirnantian glacial maximums.

The sequences appear correlative to Upper Ordovician sequences in Laurentia. Graptolite biozones indicated that the Estonian sequences are equivalent to carbonate ramp sequences in the western United States (Great Basin) and mixed carbonate-siliciclastic sequences in the eastern United States (Appalachian Basin–Cincinnati Arch region). These correlations indicate a strong eustatic control over sequence development despite the contrasting tectonic settings of these basins.  相似文献   


3.
The Upper Cenomanian–Lower Turonian litho-stratigraphic units of the Danubian Cretaceous Group of the proximal Bodenwöhrer Senke (Regensburg, Eibrunn and Winzerberg formations, the latter consisting of a lower Reinhausen Member and an upper Knollensand Member), have been investigated with a focus on facies analysis and sequence stratigraphy. Analyses of litho-, bio-, and microfacies resulted in the recognition of 12 predominantly marine facies types for the Eibrunn and Winzerberg formations. Petrographic and paleontological properties as well as gradual transitions in the sections suggest that their depositional environment was a texturally graded, predominantly siliciclastic, storm-dominated shelf. The muddy–siliceous facies types FT 1–3 have been deposited below the storm wave-base in an outer shelf setting. Mid-shelf deposits are represented by fine- to medium-grained, bioturbated, partly glauconitic sandstones (FT 4–6). Coarse-grained, gravelly and/or shell-bearing sandstones (FT 7–10) developed in the inner shelf zone. Highly immature, arkosic coarse-grained sandstones and conglomerates (FT 11 and 12) characterize an incised, high-gradient braided river system. The Winzerberg Formation with its general coarsening- and thickening-upward trend reflects a regressive cycle culminating in a subaerial unconformity associated with a coarse-grained, gravelly unit of marine to fluvial origin known as the “Hornsand” which is demonstrably diachronous. The overlying Altenkreith Member of the Roding Formation signifies the onset of a new transgressive cycle in the early Middle Turonian. The sequence stratigraphic analysis suggests that the deposition of the Upper Cenomanian and Lower Turonian strata of the Bodenwöhrer Senke took place in a single cycle of third-order eustatic sea-level change between the major sequence boundaries SB Ce 5 (mid-Late Cenomanian) and SB Tu 1 (Early–Middle Turonian boundary interval). The southeastern part of the Bodenwöhrer Senke was flooded in the mid-Late Cenomanian (Praeactinocamax plenus transgression) and a second transgressive event occurred in the earliest Turonian. In the central and northwestern parts of the Bodenwöhrer Senke, however, the initial transgression occurred during the earliest Turonian, related to pre-transgression topography. Thus, the Regensburg and Eibrunn formations are increasingly condensed here and cannot be separated anymore. Following an earliest Turonian maximum flooding, the Lower Turonian Winzerberg Formation filled the available accommodation space, explaining its constant thickness of 35–40 m across the Bodenwöhrer Senke and excluding tectonic activity during this interval. Rapid sea-level fall at SB Tu 1 terminated this depositional sequence. This study shows that Late Cenomanian–Early Turonian deposition in the Bodenwöhrer Senke was governed by eustatic sea-level changes.  相似文献   

4.
The Stuttgart Formation (Schilfsandstein) is approximately 50 m thick in Thuringia, representing deposition during the “Mid-Carnian Wet Intermezzo”. Stratigraphically it occurs between the Grabfeld and Weser formations, which formed under arid conditions. It comprises NNE-SSW-trending elongate, anastomosing channelized sand-rich bodies with erosional bases (channel belts) that are several kilometres wide and pass laterally into predominantly mudstones deposited in interfluve areas. The source area of these clastics was the uplifted Norwegian Caledonides. Muddy interfluve facies is dominant in exposures in Thuringia, Central Germany.The Lower Stuttgart Formation has an unconformable base that is locally overlain by metre-thick “Basal Beds”. These consist of grey mudstones and thin sandstones deposited under humid conditions in predominantly shallow brackish water environments after a marine ingression via the Eastern Carpathian/Upper Silesian Gate. The following 30-40 m-grey, fine-grained sandstones, siltstones and mudstones were deposited in fluvial environments in channel belts and interfluve areas under humid conditions. These are followed by predominantly reddish mudstones and sandstones of mainly fluvial origin, deposited under somewhat drier conditions with seasonal droughts. The Upper Stuttgart Formation may be more than 16 m thick; it comprises reddish and grey sandstones and mudstones that were mostly deposited in lake delta settings by recurring flash floods. During the deposition of this unit climate was weakly humid with less prominent seasonal draughts.The modern Ganga Plain of India is an analogue for the depositional setting of the Stuttgart Formation. Climatic conditions in Ganga Plain are humid monsoonal with seasonal droughts and roughly comparable with those interpreted for Mid-Carnian times in Germany. The sandy deposits of incised channel belts and channels and muddy deposits of interfluve areas in the Ganga Plain are comparable with the sandstone-dominated channelized facies and mudstone dominated interfluve facies of the Stuttgart Formation, respectively.  相似文献   

5.
The Ludfordian (Upper Silurian) succession in Podolia, western Ukraine, represents a Silurian carbonate platform developed in an epicontinental sea on the shelf of the paleocontinent of Baltica. Coeval deposits throughout this basin record a positive stable carbon isotope excursion known as the Lau excursion. The record of this excursion in Podolia exhibits an unusual amplitude from highly positive (+6.9 ‰) to highly negative (?5.0 ‰) δ13Ccarb values. In order to link δ13Ccarb development with facies, five sections in the Zbruch River Valley were examined, providing microfacies characterization and revised definitions of the Isakivtsy, Prygorodok, and Varnytsya Formations. The Isakivtsy Fm. is developed as dolosparite replacing originally bioclastic limestone. The Prygorodok Fm., recording strongly depleted (down to ?10.53 ‰) to near zero (0.12 ‰) δ13Ccarb values is developed as laminated, organic-rich dolomicrite with metabentonite and quartz siltstone beds. The Varnytsya Fm. is characterized by peritidal deposition with consistent, slightly negative δ13Ccarb values (?0.57 to ?3.20 ‰). It is proposed that dolomitization of the Isakivtsy Fm. is associated with a sequence boundary and erosional surface. The overlying Prygorodok Fm. represents the proximal part of a TST deposited in restricted and laterally extremely variable environments dominated by microbial carbonate production. The transition to the overlying Varnytsya Fm. facies is marked by a maximum flooding surface. The SB and MFS are potentially correlative within the basin and support a global rapid sea-level fall previously proposed for this interval. The interpretation of the Prygorodok Fm. as coastal lake deposits may explain the unusual δ13Ccarb values and constitute one of the few records of this type of environment identified in the early Paleozoic.  相似文献   

6.
In southern Ontario, ooids are associated with two distinct facies associations in the Queenston Formation, the final stage of Late Ordovician (Ashgill) Taconic basin fill. One facies consists of thin ooid and bioclastic grainstones interbedded with mudrock, and lies near the base of the formation, and, in southwestern Ontario, also forms a local NW-thickening wedge near the middle of the formation. Ooids have radial-fibrous and radial-concentric fabrics (Type A), with chamosite, illite, and Fe-oxide laths at intercrystalline sites. Vertical lithologic and ooid abundance patterns indicate that thresholds to carbonate production were sensitive to changes in terrigenous sediment supply, sea level, circulation, accommodation space, and tectonism.

Ooids in the second facies association are admixed with abraded fragments of open-marine biota, or occur burrow fills, within a <30-cm-thick interval of mudrock near the top of the preserved Queenston succession, a few metres below the Ordovician–Silurian unconformity. Ooids have radial concentric and crosscutting patchy microcrystalline fabrics (Type B). This unit may represent a transgressive or stillstand deposit modified by bioturbation.

The extent of preserved fabric suggests that both ooid types were originally magnesian calcite, but Type A ooids underwent greater burial alteration. This is shown by crystalline mosaics that cross-cut relict primary fabrics; δ13C values (−1.82‰ to +0.67‰) and δ18O values (−4.46‰ to −10.57‰) more negative than marine calcite of similar age; Mn and Fe concentrations more elevated above expected marine values; and a luminescence similar to that of intergranular cements. Burial meteoric diagenesis was likely promoted by excellent permeability of the host sand. We interpret authigenic chamosite and Fe-oxide to reflect diagenesis of iron-bearing and clay detritus trapped during ooid growth. Type B ooids suffered less alteration: δ13C (+1.1‰ to +6.64‰) and δ18O (−3.04‰ to −4.81‰) values overlap the expected marine range, including 13C enrichment that occurs within the Hirnantian (latest Ordovician) excursion. Although Mn and Fe values are still higher than those of modern calcitic ooids, negligible luminescence suggests that recrystallization occurred in the presence of marine-derived pore fluids. Further burial alteration was inhibited due to low permeability of the host mud.

Type A ooid facies in the Queenston Formation forms an ancient analogue for lesser known Quaternary ooid shoals peripheral to tropical deltaic systems. The facies of Type B ooids, while more enigmatic, may preserve a geochemical herald of latest Ordovician climate change. The presence of minor chamosite in Type A ooids defines a possible distal facies of the well-known oolitic ironstones of similar age in the mid-continental USA.  相似文献   


7.
Based on microfacies analyses and sedimentological data, 17 facies are identified within the Middle Miocene carbonates at Siwa Oasis in the northern Western Desert of Egypt. These facies are attributed to five main facies belts. Within these facies and facies belts, five foraminiferal assemblages are recognized. A depositional model relates the reported facies and biofacies to a down-dip depositional profile of an inner to middle carbonate ramp. The facies of the peritidal to restricted lagoon (facies belt 1) and the less-restricted lagoon (facies belt 2) were deposited in the inner ramp behind the barrier/beach shoal facies belt 3. Basinward, lime mudstone of facies belts 4 and 5 accumulated in a proximal to distal middle ramp, respectively. The depositional evolution involved three stages, which are strongly controlled by tectonics and eustatic sea-level changes. The first stage comprises the transgressive Lower Miocene clastic-dominated fluvial facies of the Moghra Formation. The second stage heralds the deposition of the Langhian inner-ramp carbonate and shale facies of the basal Oasis Member of the Marmarica Formation under a relatively high stand of sea level, constrained clastic influx and climate warming. The final stage is represented by Langhian to Serravallian mid-ramp carbonate-dominated facies of the Siwa Escarpment and El Diffa Plateau members under fluctuating sea level, and a westward restriction in clastic supply and water turbidity.  相似文献   

8.
Paleontological and biostratigraphical studies on carbonate platform succession from southwest Iran documented a great diversity of shallow-water benthic foraminifera during the Oligocene–Miocene. Larger foraminifera are the main means for the stratigraphic zonation of carbonate sediments. The distributions of larger benthic foraminifera in two outcrop sections (Abolhayat and Lali) in the Zagros Basin, Iran, are used to determine the age of the Asmari Formation. Four assemblage zones have been recognized by distribution of the larger benthic foraminifera in the study areas. Assemblage 3 (Aquitanian age) and 4 (Burdigalian age) have not been recognized in the Abolhayat section (Fars area), due to sea-level fall. The end Chattian sea-level fall restricted marine deposition in the Abolhayat section and Asmari Formation replaced laterally by the Gachsaran Formation. This suggests that the Miocene part of the formation as recognized in the Lali section (Khuzestan area) of the Zagros foreland basin is not present in the Abolhayat outcrop. The distribution of the Oligocene larger benthic foraminifera indicates that shallow marine carbonate sediments of the Asmari Formation at the study areas have been deposited in the photic zone of tropical to subtropical oceans. Based on analysis of larger benthic foraminiferal assemblages and microfacies features, three major depositional environments are identified. These include inner shelf, middle shelf and outer shelf. The inner shelf facies is characterized by wackestone–packstone, dominated by various taxa of imperforate foraminifera. The middle shelf is represented by packstone–grainstone to floatstone with a diverse assemblage of larger foraminifera with perforate wall. Basinwards is dominated by argillaceous wackestone characterized by planktonic foraminifera and large and flat nummulitidae and lepidocyclinidae. Planktonic foraminifera wackestone is the dominant facies in the outer shelf.  相似文献   

9.
The Asmari Formation, a thick carbonate succession of the Oligo-Miocene in Zagros Mountains (southwest Iran), has been studied to determine its microfacies, paleoenvironments and sedimentary sequences. Detailed petrographic analysis of the deposits led to the recognition of 10 microfacies types. In addition, five major depositional environments were identified in the Asmari Formation. These include tidal flat, shelf lagoon, shoal, slope and basin environmental settings and are interpreted as a carbonate platform developed in an open shelf situation but without effective barriers separating the platform from the open ocean. The Asmari carbonate succession consists of four, thick shallowing-upward sequences (third-order cycles). No major hiatuses were recognized between these cycles. Therefore, the contacts are interpreted as SB2 sequence boundary types. The Pabdeh Formation, the deeper marine facies equivalent of the Asmari Limestone is interpreted to be deposited in an outer slope-basin environment. The microfacies of the Pabdeh Formation shows similarities to the Asmari Formation.  相似文献   

10.
Markus Wilmsen  Emad Nagm 《Facies》2012,58(2):229-247
The Cenomanian–Turonian (Upper Cretaceous) Galala and Maghra el Hadida formations of the Southern Galala Plateau in Wadi Araba (northern Eastern Desert, Egypt) represent marine depositional systems developing in response to the early Late Cretaceous transgression at the southern margin of the Neotethyan Ocean in tropical paleolatitudes. A facies analysis (litho-, bio- and microfacies) of these successions shows the presence of 22 facies types (FTs, six are related to the Galala Formation, while the Maghra el Hadida Formation is represented by 16 FTs). The Galala Formation was deposited in a fully marine lagoonal environment developing in response to a latest Middle to early Late Cenomanian transgression. The rich suspension- and deposit-feeding macrobenthos of the Galala Formation indicate meso- to eutrophic (i.e., green water) conditions. The facies types of the uppermost Cenomanian–Turonian Maghra el Hadida Formation suggest deposition on a homoclinal carbonate ramp with sub-environments ranging from deep-subtidal basin to intertidal back-ramp. Major and rapid shifts in depositional environments, related to (relative) sea-level changes, occurred in the mid-Late Cenomanian, the Early–Middle Turonian boundary interval, the middle part of the Middle Turonian and the Middle–Late Turonian boundary interval.  相似文献   

11.
The sedimentology, microfacies, and stratigraphic age (from planktonic and benthic foraminifera and strontium-isotope stratigraphy) of a 300-m-thick Upper Cretaceous carbonate succession from the Island of ?iovo (central Dalmatia, Croatia) were analyzed in order to determine the lithostratigraphic, depositional, and chronostratigraphic framework. The Cretaceous strata were deposited in the southern part of the long-lasting (Late Triassic to Paleogene) Adriatic-Dinaridic Carbonate Platform (ADCP), one of a few late Mesozoic, intra-Tethyan, peri-Adriatic (sub)tropical archipelagos. The succession is separated by a firmground formational boundary into two lithostratigraphic units: the underlying Middle to Upper Campanian Dol Formation consisting of slope pelagic limestone with intercalated turbidites and debrites, and the overlying Upper Campanian ?iovo Formation composed of outer-ramp bioclastic-lithoclastic and echinoderm-dominated packstone. Age, lithology, and depositional settings of the ?iovo Formation are different from other penecontemporaneous, regionally important inner-platform carbonate successions within the ADCP domain. Therefore, the ?iovo Formation is proposed here as a new lithostratigraphic unit. Regionally important condensed intervals in the form of at least two firmground surfaces, characterized by Thalassinoides burrows (with phosphatic mineralization) that belong to the Glossifungites ichnofacies, occur in the lowermost part of the ?iovo Formation. Abrupt shallowing of depositional environments at the boundary between the Dol and the ?iovo Formation, and the generation of the formational boundary firmground, likely correlate with the regionally recorded Upper Campanian Event that represents a global eustatic sea-level fall. A regionally important subaerial exposure surface with nodular calcrete, rhizoliths, and Microcodium aggregates in the upper part of the ?iovo Formation represents a regional subaerial unconformity that was recorded across the ADCP domain and was interpreted as a consequence of diachronous and differential uplift of various parts of the platform in response to the formation of a forebulge in front of the approaching Dinaridic orogen.  相似文献   

12.
Abstract: Twenty‐nine species of bryozoans from the Upper Ordovician–Lower Silurian Pin Formation (Spiti, India) have been identified. Eight of these are new: Trematopora minima, Ulrichostylus bhargavai, Ptilodictya exiliformis, Phaenopora ordinarius, Oanduellina himalayaica, Pesnastylus? vesiculosum, Ralfina? originalis and Pinocladia triangulata. The fossil record and facies analyses of the area investigated indicate shallow‐water conditions within the subtropical–tropical realm. The distribution pattern of fossils among the Ordovician/Silurian succession on the Northern Gondwana shelf and the influence of the Late Ordovician cooling phases on marine organisms are distinctive owing to a dramatic reduction in diversity globally. As far as the bryozoan taxa of Spiti are concerned, only one (Helopora fragilis) of the 29 species was recorded above the Ordovician/Silurian boundary. Observed bryozoan communities are very similar to faunas of Laurentia, the Baltic, Siberia and southern China of early–late Ordovician age.  相似文献   

13.
The Upper Albian–Turonian Debarsu Formation in its type area around Haftoman, south of Khur (Central Iran) has been investigated using an integrated approach of high-resolution logging, bio- and sequence stratigraphic dating, and facies analysis based on field observations and detailed microfacies studies. The up to 500-m-thick Debarsu Formation consists of stacked, several 10- to?~?100-m-thick, essentially asymmetric shallowing-upward cycles from grey offshore marl via skeletal and intraclastic limestone with large-scale clinoformed foresets to thick-bedded bioclastic, locally rudist-bearing shallow-marine topset strata capped by palaeokarst surfaces. The diverse (micro)facies inventory (29 facies types) is dominated by skeletal carbonates (bioclastic pack-, grain-, float- and rudstone) that reflect deposition on a carbonate ramp with a lagoonal shoreline that was attached to an elevated area in the west and southwest. The outer ramp facies association of the Debarsu ramp contains predominantly microbioclastic marl with open-marine microfossils (planktic foraminifera) and fine-grained bioturbated packstone. The transition into the mid-ramp facies association, dominated by bioclastic pack- and grainstone (foreset strata), is commonly gradational. The inner-ramp facies association is very diverse, mainly consisting of high-energy (well-washed and cross-bedded) grainstone as well as back-ramp or inter-shoal bioclastic float- and rudist bafflestone. The Debarsu Formation occurs in an area of more than 2500 km2 to the west, southwest, and south of Khur but had its depocenter with maximum thicknesses and thick offshore marl intervals in the type area. The large-scale shallowing-upward cycles correspond to third-order depositional sequences. The chronostratigraphic positions of the sequence-bounding unconformities in the Upper Albian to Lower Cenomanian match equivalent surfaces known from other Cretaceous basins on different tectonic plates. However, a large-scale intraformational stratigraphic gap (Middle Cenomanian to lowermost Turonian) at a major palaeokarstic surface in the upper part of the formation must be related to tectonic uplift. The Debarsu Formation shows similarities in (sequence) stratigraphic stacking patterns to hydrocarbon-bearing formations of the southern Tethyan margin (Arabian Plate).  相似文献   

14.
Summary The Turonian to Santonian terrestrial to neritic succession (Lower Gosau Subgroup) in the Northern Calcareous Alps of the eastern part of the Tyrol, Austria, provides an example for deposition on a compartmentalized, narrow, microtidal to low-mesotidal, wave-dominated, mixed siliciclastic-carbonate shelf. The shelf was situated in front of a mainland with a relatively high, articulated relief, and underwent distinct changes in facies architecture mainly as a result of tectonism. The investigated succession was deposited above a deeply incised, articulated truncation surface that formed when the Eo-Alpine orogen, including the area of the future Northern Calcareous Alps, was uplifted and subaerially eroded. Distinct facies associations were deposited from (1) alluvial fans and fan deltas, (2) rivers, (3) siliciclastic lagoonal to freshwater marsh environments, (4) areally/temporally limited carbonate lagoons, (5) transgressive shores, (6) siliciclastic shelf environments, and (7) an aggrading carbonate shelf. During the Turonian to Coniacian, the combination of high rates of both subsidence and sediment accumulation, and a narrow shelf that was compartmentalized with respect to (a) morphology of the substratum, (b) fluviatile input of siliciclastics and contemporaneous input of carbonate clasts from fan deltas, (c) deposition of shallow-water carbonates, and (d) water energy and-depth gave rise to an exceptionally wide spectrum of facies as a distinguishing feature of the succession. With the exception of facies association 7, which formed only once, depositional sequences in the Turonian to Coniacian interval contain all of the facies associations 1 to 6. During Turonian to Coniacian times, the shelf was microtidal to low-mesotidal, and was dominated by waves, storm waves and storm-induced currents. In vegetated marshes, schizohaline to freshwater marl lakes existed. Transgressions occurred onto fan deltas and in association with estuaries, or in association with gravelly to rocky shores. The transgressive successions, including successions deposited from transgressive rocky carbonate shores, are overlain by regressive successions of shelf carbonates or shelf siliciclastics. Deposition of shallow-water carbonates generally occurred within lagoons and over short intervals of time. A „catch-up” succession of shelf carbonates about 100 m thick accumulated only in an area protected from siliciclastic input. In its preserved parts, the Turonian to Coniacian succession does not record deposition adjacent to major active faults. Lateral changes in thickness result mainly from onlap onto the articulated basal truncation surface. Subsidence most probably was controlled by major detachment faults outside the outcrop area, and/or was distributed over a wide area in association with secondary faults above the major detachments. During Coniacian to Early Santonian times, both the older substratum and the overlying Turonian-Coniacian succession were subaerially exposed, faulted and deeply eroded. The following Early Santonian transgression ensued with rocky carbonate shores ahead of a sandy, narrow shoreface-inner shelf environment and a deeper shelf with intermittentlydysaerobic mud. The transgression was associated with the influx of cooler and/or nutrient-rich waters, and heralds an overall deepening. Still during the Early Santonian, the deepening was interrupted by another phase of subaerial exposure. Subsequently, a short phase of shelf deposition was terminated by deepening into bathyal depths.  相似文献   

15.
Two palynofacies associations are documented from the Silurian Tanezzuft Formation in the Ghadames Basin. These are characteristic of the basal ‘Hot Shale’ and the overlying deposits, referred to here as the Cold Shale. The former reflects deposition in distal suboxic anoxic conditions and is dominated by highly oil-prone amorphous organic matter (AOM) typical of deposition in generally anoxic, restricted marine basins. Only a few acritarchs, prasinophyte algae and chitinozoans occur in association: virtually no spores or cryptospores were recorded. Thick-walled prasinophytes are most numerous in this part of the Tanezzuft Formation in both the Ghadames and Murzuq basins, suggesting enhanced surface water productivity. Deposition took place after the melting of the Late Ordovician ice sheets, which led to a major marine transgression. The palynofacies recorded from the overlying ‘Cold Shale’ deposits indicate deposition in distal shelf and basin conditions that were also relatively anoxic. They contain more palynomorphs, especially acritarchs, and generally less AOM. The phytoplankton assemblages are dominated by simple and thin-walled prasinophyte algae (leiospheres), suggesting dysoxic–anoxic conditions. Overall the middle and the upper parts of the Tanezzuft Formation are regarded as being deposited in distal dysoxic–anoxic shelf, distal dysoxic–oxic shelf and distal suboxic–anoxic basin respectively. Because chitinozoans are very rare, age determinations of the samples investigated are based mainly on acritarchs. The Hot Shale is dated as early-mid Rhuddanian (early Llandovery) whereas the rest of the formation is considered to late Rhuddanian–Telychian in age. As documented previously from other samples of the Tanezzuft Formation in both the Ghadames and Murzuq basins, the Hot Shale has a very high TOC content and excellent source potential for liquid hydrocarbons, whereas rest of the formation is less rich in organic matter with larger terrestrial and oxidized components and hence reduced potential for sourcing hydrocarbons (both oil and gas).  相似文献   

16.
To better understand palaeoecological signatures in Palaeozoic acritarch assemblages, the distribution of palynomorphs has been quantitatively studied in eight localities from the Gorstian, lower Ludlow (Late Silurian) of Gotland, Sweden. The localities are situated along an inshore–offshore transect comprising shallow marine lagoonal environments to distal shelf facies. Process-bearing acritarchs and sphaeromorphs constitute the main components within the palynomorph assemblages. The lateral distribution of palynomorphs exhibits characteristic features at three different levels as follows. (1) With regard to the overall composition of the palynomorph assemblages, the abundance of process-bearing acritarchs increases towards the distal shelf, while the abundance of sphaeromorphs decreases. (2) At the generic level, the acritarchs Micrhystridium and Dilatisphaera are more abundant in the proximal facies, while Evittia, Percultisphaera and Oppilatala are more common in distal environments. (3) At an infrageneric level, Micrhystridium morphotypes with shorter processes are mainly present in proximal environments, while those with longer and ramified processes occur in more distal shelf environments. The palynomorph distribution along the inshore–offshore transect highlights the potential of acritarchs and prasinophytes as palaeoenvironmental indicators.  相似文献   

17.
Cretaceous shallow-marine carbonate rocks of SW Slovenia were deposited in the northern part of the Adriatic Carbonate Platform. A 560-m-thick continuous Upper Cenomanian to Santonian carbonate succession has been studied near Hru?ica Village in Matarsko Podolje. With regard to lithological, sedimentological, and stratigraphical characteristics, the succession has been divided into nine lithostratigraphic units, mainly reflecting regressive and transgressive intervals of larger scale. During the latest Cenomanian and Early Turonian, hemipelagic limestones were deposited on top of shallow-marine lagoon and peritidal Upper Cenomanian deposits indicating relative sea-level rise. Subsequently, the deeper marine depositional setting was gradually filled by clinoform bioclastic sand bodies overlain by peritidal and shallow-marine low-energy mainly lagoonal lithofacies. Similar lithofacies of predominately inner ramp/shelf depositional settings prevail over the upper part (i.e., Coniacian to Santonian) of the succession. In the area, the Upper Cetaceous carbonate rocks are separated from the overlying Lower Eocene (Upper Paleocene?) carbonate sequence by regional unconformity denoted by distinct paleokarstic features. On the Adriatic Carbonate Platform the deeper marine carbonate setting, developed at the Cenomanian/Turonian boundary, is usually correlated with OAE2 and related eustatic sea-level rise. Similarly, subsequent reestablished shallow-marine conditions are related to Late Turonian long- and short-term sea-level fall. However, we are suggesting that deeper marine deposits were deposited in a tectonically induced intraplatform basin formed simultaneously with the uplift of the northern and northeastern marginal parts of the Adriatic Carbonate Platform.  相似文献   

18.
The stratigraphic review and the dating, by means of planktonic foraminifera (Globotruncanidae, Heterohelicidae, “Globigerinidae”), of the main marine Maastrichtian and Paleocene series deposited, in Bulgaria (Fore-Balkan and Luda Kamcija zone), within three paleogeographic domains (foreland turbiditic trough: Emine Formation; hemipelagic basin: Bjala Formation; external/distal-dominated carbonate platform: Mezdra Formation) allow to propose new correlations between the series of the different domains along the North-Tethyan margin. Several features characterize these series: absence of significant lithologic break between Maastrichtian and Danian deposits when they are represented; very local deposition of the Iridium-bearing dark clays underlining the K/T boundary; ponctual evidence of a gap, variable in duration, below and above this boundary (this gap is probably generated by extensional/compressional “laramian” tectonics); diachronism of the glauconitic condensation levels, more or less linked to hard-grounds, which are all included within Paleocene carbonate deposits, various in age, and are never situated at the K/T boundary.  相似文献   

19.
The Jahrum Formation was deposited in the foreland basin in southwest Iran (Zagros Basin). The Zagros mountain belt of Iran, a part of the Alpine–Himalayan system, extends from the NW Iranian border through to SW Iran, up to the strait of Hormuz. The various facies of the Jahrum Formation were deposited in four main genetically related depositional environments, including: tidal flat, lagoon, shoal and open marine. These are represented by 14 microfacies. The Jahrum Formation represents sedimentation on a carbonate ramp. Tidal flat facies are represented by fenestral fabric, stromatolitic boundstone and thin-bedded planes. Carbonate deposition in a shallow marine lagoon was characterised by wacke–packstone, dominated by various taxa of imperforate foraminifer. The shoals are made up of medium- to coarse-grained skeletal and peloidal grainstone. This facies was deposited predominantly in an active high energy wave and current regime, and grades basinward into middle ramps facies are represented by wackestones–packstones with a diverse assemblage of echinoderm and large benthic foraminifers with perforate wall. Outer ramp facies consist of alternating marl and limestones rich in pelagic foraminifera. There is no evidence for resedimentation processes in this facies belt. The sequence stratigraphy study has led to recognition of three third-order depositional sequences.  相似文献   

20.
Abstract: A diverse brachiopod fauna from a relatively deep water carbonate facies of the Upper Ordovician Beiguoshan Formation (uppermost Caradoc – lower Ashgill, middle Katian) is characterized by small shells and contains the oldest known Dicoelosia and Epitomyonia, two diagnostic taxa of deep water brachiopod palaeocommunities during the Late Ordovician and Silurian. Three new species are recognized: Dicoelosia cordiformis sp. nov., Dicoelosia perbrevis sp. nov. and Epitomyonia fui sp. nov. These pioneer forms of the family Dicoelosiidae show a relatively high degree of morphological plasticity. The shells of Dicoelosia from the Beiguoshan Formation range from the typical slender‐lobed form with a concavoconvex profile to the strongly equibiconvex, fat‐lobed morphotype that was not known previously until the late Silurian. The Beiguoshan dicoelosiids point to an important attribute of the deep water brachiopods: small generalists with high morphological plasticity, which make them ideal candidates as progenitors for the evolution of shallow water brachiopod faunas in shelf and platform depositional environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号