首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vaccinia virus A30L protein is required for the association of electron-dense, granular, proteinaceous material with the concave surfaces of crescent membranes, an early step in viral morphogenesis. For the identification of additional proteins involved in this process, we used an antibody to the A30L protein, or to an epitope appended to its C terminus, to capture complexes from infected cells. A prominent 42-kDa protein was resolved and identified by mass spectrometry as the vaccinia virus G7L protein. This previously uncharacterized protein was expressed late in infection and was associated with immature virions and the cores of mature particles. In order to study the role of the G7L protein, a conditional lethal mutant was made by replacing the G7L gene with an inducible copy. Expression of G7L and formation of infectious virus was dependent on the addition of inducer. Under nonpermissive conditions, morphogenesis was blocked and viral crescent membranes and immature virions containing tubular elements were separated from the electron-dense granular viroplasm, which accumulated in large spherical masses. This phenotype was identical to that previously obtained with an inducible, conditional lethal A30L mutant. Additional in vivo and in vitro experiments provided evidence for the direct interaction of the A30L and G7L proteins and demonstrated that the stability of each one was dependent on its association with the other.  相似文献   

2.
Morphogenesis of vaccinia virus begins with the appearance of crescent-shaped membrane precursors of immature virions in cytoplasmic factories. During the initial characterization of the product of the L2R reading frame, we discovered that it plays an important role in crescent formation. The L2 protein was expressed early in infection and was associated with the detergent-soluble membrane fraction of mature virions, consistent with two potential membrane-spanning domains. All chordopoxviruses have L2 homologs, suggesting an important function. Indeed, we were unable to isolate an infectious L2R deletion mutant. Consequently, we constructed an inducible mutant with a conditional lethal phenotype. When L2 expression was repressed, proteolytic processing of the major core proteins and the A17 protein, which is an essential component of the immature virion membrane, failed to occur, suggesting an early block in viral morphogenesis. At 8 h after infection in the presence of inducer, immature and mature virions were abundantly seen by electron microscopy. In contrast, those structures were rare in the absence of inducer and were replaced by large, dense aggregates of viroplasm. A minority of these aggregates had short spicule-coated membranes, which resembled the beginnings of crescent formation, at their periphery. These short membrane segments at the edge of the dense viroplasm increased in number at later times, and some immature virions were seen. Although the L2 protein was not detected under nonpermissive conditions, minute amounts could account for stunted and delayed viral membrane formation. These findings suggested that L2 is required for the formation or elongation of crescent membranes.  相似文献   

3.
4.
Chiu WL  Chang W 《Journal of virology》2002,76(19):9575-9587
Vaccinia virus, a member of the poxvirus family, contains a conserved J1R open reading frame that encodes a late protein of 17.8 kDa. The 18-kDa J1R protein is associated mainly with the membrane fraction of intracellular mature virus particles. This study examines the biological function of J1R protein in the vaccinia virus life cycle. A recombinant vaccinia virus was constructed to conditionally express J1R protein in an isopropyl-beta-D-galactopyranoside (IPTG)-inducible manner. When J1R is not expressed during vaccinia virus infection, the virus titer is reduced approximately 100-fold. In contrast, J1R protein is not required for viral gene expression, as indicated by protein pulse-labeling. J1R protein is also not required for DNA processing, as the resolution of the concatemer junctions of replicated viral DNA was detected without IPTG. A deficiency of J1R protein caused a severe delay in the processing of p4a and p4b into mature core proteins 4a and 4b, indicating that J1R protein participates in virion morphogenesis. Infected cells grown in the absence of IPTG contained very few intracellular mature virions in the cytoplasm, and enlarged viroplasm structures accumulated with viral crescents attached at the periphery. Abundant intermediate membrane structures of abnormal shapes were observed, and many immature virions were either empty or partially filled, indicating that J1R protein is important for DNA packaging into immature virions. J1R protein also coimmunoprecipited with A45R protein in infected cells. In summary, these results indicate that vaccinia virus J1R is a membrane protein that is required for virus growth and plaque formation. J1R protein interacts with A45R protein and performs an important role during immature virion formation in cultured cells.  相似文献   

5.
Assembly of vaccinia virus envelopes and immature vaccinia particles was interrupted in HeLa cells treated with rifampin (rifampicin). The primary action of rifampin on vaccinia morphogenesis appeared to occur during the stage of envelope formation. When envelopes and immature particles were already present, maturation could continue, even in the presence of rifampin. It was demonstrated that the trilaminar membranes of irregular contour which accumulate in the presence of rifampin are precursors of virus envelopes. When rifampin was removed under controlled conditions, synchronous transitions were observed as the precursor membranes rapidly converted into uniformly curved envelope units with a 10- to 12-nm coat on the convex surface. These experiments provided an opportunity to examine the sequence of some early events in vaccinia morphogenesis. Initially, nascent envelopes remained in clusters around dense viroplasm. Large numbers of single immature particles appeared within 10 min. Nucleation of immature particles was the first evidence of core differentiation and began within 5 to 10 min. Development of lateral bodies and modeling of the biconcave cores was observed within 30 min, and structurally mature virions were present by 2 hr after the removal of rifampin. High resolution autoradiography showed that viral deoxyribonucleic acid, which labeled with (3)H-thymidine during rifampin treatment, was incorporated by the mature vaccinia which formed after rifampin was removed. Concentration of the viral deoxyribonucleic acid in core material evidently occurred after envelope assembly, probably coincident with nucleoid formation. Cytoplasmic crystalloid bodies accumulated during rifampin treatment; they appeared morphologically identical to vaccinia nucleoids and were heavily labeled by (3)H-thymidine.  相似文献   

6.
Vaccinia virus encodes two glutaredoxins, O2L and G4L, both of which exhibit thioltransferase and dehydroascorbate reductase activities in vitro. Although O2L was previously found to be dispensable for virus replication, we now show that G4L is necessary for virion morphogenesis. RNase protection and Western blotting assays indicated that G4L was expressed at late times after infection and was incorporated into mature virus particles. Attempts to isolate a mutant virus with a deleted G4L gene were unsuccessful, suggesting that the protein was required for virus replication. This interpretation was confirmed by the construction and characterization of a conditional lethal recombinant virus with an inducible copy of the G4L gene replacing the original one. Expression of G4L was proportional to the concentration of inducer, and the amount of glutaredoxin could be varied from barely detectable to greater than normal amounts of protein. Immunogold labeling revealed that the induced G4L protein was associated with immature and mature virions and adjacent cytoplasmic depots. In the absence of inducer, the production of infectious virus was severely inhibited, though viral late protein synthesis appeared unaffected except for decreased maturation-dependent proteolytic processing of certain core components. Electron microscopy of cells infected under nonpermissive conditions revealed an accumulation of crescent membranes on the periphery of electron-dense globular masses but few mature particles. We concluded that the two glutaredoxin homologs encoded by vaccinia virus have different functions and that G4L has a role in virion morphogenesis, perhaps by acting as a redox protein.  相似文献   

7.
The vaccinia virus A11R gene has orthologs in all known poxvirus genomes, and the A11 protein has been previously reported to interact with the putative DNA packaging protein A32 in a yeast two-hybrid screen. Using antisera raised against A11 peptides, we show that the A11 protein was (i) expressed at late times with an apparent mass of 40 kDa, (ii) not incorporated into virus particles, (iii) phosphorylated independently of the viral F10 kinase, (iv) coimmunoprecipitated with A32, and (v) localized to the viral factory. To determine the role of the A11 protein and test whether it is indeed involved in DNA packaging, we constructed a recombinant vaccinia virus with an inducible A11R gene. This recombinant was dependent on inducer for single-cycle growth and plaque formation. In the absence of inducer, viral late proteins were produced at normal levels, but proteolytic processing and other posttranslational modifications of some proteins were inhibited, suggesting a block in virus particle assembly. Consistent with this observation, electron microscopy of cells infected in the absence of inducer showed virus factories with abnormal electron-dense viroplasms and intermediate density regions associated with membranes and containing the D13 protein. However, no viral membrane crescents, immature virions, or mature virions were produced. The requirement for nonvirion protein A11 in order to make normal viral membranes was an unexpected and exciting finding, since neither the origin of these membranes nor their mechanism of formation in the cytoplasm of infected cells is understood.  相似文献   

8.
The A19L open reading frame of vaccinia virus encodes a 9-kDa protein that is conserved in all sequenced chordopoxviruses, yet until now it has not been specifically characterized in any species. We appended an epitope tag after the start codon of the A19L open reading frame without compromising infectivity. The protein was synthesized after viral DNA replication and was phosphorylated independently of the vaccinia virus F10 kinase. The A19 protein was present in purified virions and was largely resistant to nonionic detergent extraction, suggesting a location within the core. A conditional lethal mutant virus was constructed by placing the A19 open reading frame under the control of the Escherichia coli lac repressor system. A19 synthesis and infectious virus formation were dependent on inducer. In the absence of inducer, virion morphogenesis was interrupted, and spherical dense particles that had greatly reduced amounts of the D13 scaffold accumulated in place of barrel-shaped mature virions. The infectivity of purified A19-deficient particles was more than 2 log units less than that of A19-containing virions. Nevertheless, the A19-deficient particles contained DNA, and except for the absence of A19 and decreased core protein processing, they appeared to have a similar protein composition as A19-containing virions. Thus, the A19 protein participates in the maturation of immature vaccinia virus virions to infectious particles.  相似文献   

9.
10.
An early step in vaccinia virus morphogenesis, the association of crescent membranes with electron-dense granular material, is perturbed when expression of the viral protein encoded by the A30L or G7L open reading frame is repressed. Under these conditions, we found that phosphorylation of the A17 membrane protein, which is mediated by the F10 kinase, was severely reduced. Furthermore, A30 and G7 stimulated F10-dependent phosphorylation of A17 in the absence of other viral late proteins. Evidence for physical interactions between A30, G7, and F10 was obtained by their coimmunoprecipitation with antibody against A30 or F10. In addition, phosphorylation of A30 was dependent on the F10 kinase and autophosphorylation of F10 was stimulated by A30 and G7. Nevertheless, the association of A30, G7, and F10 occurred even with mutated, catalytically inactive forms of F10. Just as A30 and G7 are mutually dependent on each other for stability, F10 was nearly undetectable in the absence of A30 and G7. The reverse is not true, however, as repression of F10 did not diminish A30 or G7. Interaction of F10 with A30 and G7 presumably occurred within the virus factory areas of the cytoplasm, where each was concentrated. F10 localized predominantly in the cortical region of immature virions, beneath the membrane where A17 is located. F10 remained associated with the particulate core fraction of mature virions after treatment with a nonionic detergent and reducing agent. The formation of protein complexes such as the one involving A30, G7, and F10 may be a mechanism for the regulated packaging and processing of virion components.  相似文献   

11.
The vaccinia virus WR A5L open reading frame (corresponding to open reading frame A4L in vaccinia virus Copenhagen) encodes an immunodominant late protein found in the core of the vaccinia virion. To investigate the role of this protein in vaccinia virus replication, we have constructed a recombinant virus, vA5Li, in which the endogenous gene has been deleted and an inducible copy of the A5 gene dependent on isopropyl-beta-D-thiogalactopyranoside (IPTG) for expression has been inserted into the genome. In the absence of inducer, the yield of infectious virus was dramatically reduced. However, DNA synthesis and processing, viral protein expression (except for A5), and early stages in virion formation were indistinguishable from the analogous steps in a normal infection. Electron microscopy revealed that the major vaccinia virus structural form present in cells infected with vA5Li in the absence of inducer was immature virions. Viral particles were purified from vA5Li-infected cells in the presence and absence of inducer. Both particles contained viral DNA and the full complement of viral proteins, except for A5, which was missing from particles prepared in the absence of inducer. The particles prepared in the presence of IPTG were more infectious than those prepared in its absence. The A5 protein appears to be required for the immature virion to form the brick-shaped intracellular mature virion.  相似文献   

12.
A short sequence, located between the A14L and A15L open reading frames (ORFs) of vaccinia virus, was predicted to encode a hydrophobic protein of 53 amino acids that is conserved in orthopoxviruses, leporipoxviruses, yatapoxiruses, and molluscipoxviruses. We constructed a recombinant vaccinia virus with a 10-codon epitope tag appended to the C terminus of the A14.5L ORF. Synthesis of the tagged protein occurred at late times and was blocked by an inhibitor of DNA replication, consistent with regulation by a predicted late promoter just upstream of the A14.5L ORF. Hydrophobicity of the protein was demonstrated by extraction into the detergent phase of Triton X-114. The protein was associated with purified vaccinia virus particles and with membranes of immature and mature virions that were visualized by electron microscopy of infected cells. Efficient release of the protein from purified virions occurred after treatment with a nonionic detergent and reducing agent. A mutant virus, in which the A14.5L ORF was largely deleted, produced normal-size plaques in several cell lines, and the yields of infectious intra- and extracellular viruses were similar to those of the parent. In contrast, with a mouse model, mutant viruses with the A14.5L ORF largely deleted were attenuated relative to that of the parental virus or a mutant virus with a restored A14.5L gene.  相似文献   

13.
The vaccinia virus E2L (VACWR058) gene is conserved in all sequenced chordopoxviruses and is predicted to encode an 86-kDa protein with no recognizable functional motifs or nonpoxvirus homologs. Although the region immediately upstream of the open reading frame lacked optimal consensus promoter motifs, expression of the E2 protein occurred after viral DNA replication. Transfection studies, however, indicated that the promoter was weak compared to well-characterized intermediate and late promoters. The E2 protein was present in mature virions purified from infected cells but was more abundant in extracellular enveloped forms. Despite the conservation of the E2L gene in chordopoxviruses, deletion mutants could be isolated from both the WR and IHD-J strains of vaccinia virus. These null mutants produced very small plaques in all cell lines tested, reduced amounts of mature infectious virions, and very low numbers of extracellular virions. Nevertheless, viral protein synthesis appeared qualitatively and quantitatively normal. The defect in extracellular virus formation was corroborated by electron microscopy, which also showed some aberration in the wrapping of virions by cisternal membranes. Extracellular virions that did form, however, were able to induce actin tail formation.  相似文献   

14.
Crescents consisting of a single lipoprotein membrane with an external protein scaffold comprise the initial structural elements of poxvirus morphogenesis. Crescents enlarge to form spherical immature virions, which enclose viroplasm consisting of proteins destined to form the cores of mature virions. Previous studies suggest that the L2 protein participates in the recruitment of endoplasmic reticulum (ER)-derived membranes to form immature virions within assembly sites of cytoplasmic factories. Here we show that L2 interacts with the previously uncharacterized 42-amino-acid A30.5 protein. An open reading frame similar in size to the one encoding A30.5 is at the same genome location in representatives of all chordopoxvirus genera. A30.5 has a putative transmembrane domain and colocalized with markers of the endoplasmic reticulum and with L2. By constructing a complementing cell line expressing A30.5, we isolated a deletion mutant virus that exhibits a defect in morphogenesis in normal cells. Large electron-dense cytoplasmic inclusions and clusters of scaffold protein-coated membranes that resemble crescents and immature virions devoid of viroplasm were seen in place of normal structures. Crescent-shaped membranes were continuous with the endoplasmic reticulum membrane and oriented with the convex scaffold protein-coated side facing the lumen, while clusters of completed spherical immature-virion-like forms were trapped within the expanded lumen. Immature-virion-like structures were more abundant in infected RK-13 cells than in BS-C-1 or HeLa cells, in which cytoplasmic inclusions were decorated with scaffold protein-coated membrane arcs. We suggest that the outer surface of the poxvirus virion is derived from the luminal side of the ER membrane.  相似文献   

15.
The vaccinia virus (VV) A17L gene encodes a 21- to 23-kDa virion component that forms a stable complex with the 14-kDa envelope protein (A27L gene). In a previous report, we described the construction of a VV recombinant, VVindA17L, in which the expression of the A17L gene is inducibly regulated by isopropyl-beta-D-thiogalactoside (IPTG). We demonstrated that shutoff of the A17L gene results in a blockade of virion morphogenesis at a very early stage (D. Rodríguez, M. Esteban, and J. R. Rodríguez, J. Virol. 69:4640-4648, 1995). In the present study, we show that virus growth is restored if the inducer is provided not later than 6 h postinfection. Immunofluorescence and immunoelectron microscopy analysis of VVindA17L-infected cells revealed that in the absence of the 21- to 23-kDa protein, the 14-kDa protein is distributed throughout the cytoplasm. After IPTG addition, the 14-kDa protein can be detected around viral factories and immature virions; at later times, it localizes in the external membranes of intracellular mature virions. Immunoelectron microscopy with anti-21- to 23-kDa antibodies showed that soon after induction, the protein accumulates in membranes of the rough endoplasmic reticulum and in the nuclear envelope. With time, the protein localizes in viral crescents and subsequently associates to the membranes of immature and intracellular mature virions. These results are consistent with a model in which the 21- to 23-kDa protein would be synthesized at the endoplasmic reticulum, from where the protein could be translocated to the membranes of the intermediate compartment to generate the precursors of the viral membranes. Also, these results argue that 14-kDa envelope protein becomes posttranslationally associated to viral membranes through its interaction with the 21-kDa protein.  相似文献   

16.
The C-terminal membrane anchor protein encoded by the H3L open reading frame of vaccinia virus is located on the surfaces of intracellular mature virions. To investigate the role of the H3L protein, we constructed deletion (vH3Delta) and inducible (vH3i) null mutants. The H3L protein was not detected in lysates of cells infected with vH3Delta or vH3i in the absence of inducer. Under these conditions, plaques were small and round instead of large and comet shaped, indicative of decreased virus replication or cell-to-cell spread. The mutant phenotype was correlated with reduced yields of infectious intra- and extracellular virus in one-step growth experiments. The defect in vH3i replication could not be attributed to a role of the H3L protein in virus binding, internalization, or any event prior to late gene expression. Electron microscopic examination of cells infected with vH3Delta or vH3i in the absence of inducer revealed that virion assembly was impaired, resulting in a high ratio of immature to mature virus forms with an accumulation of crescent membranes adjacent to granular material and DNA crystalloids. The absence of the H3L protein did not impair the membrane localization of virion surface proteins encoded by the A27L, D8L, and L1R genes. The wrapping of virions and actin tail formation were not specifically blocked, but there was an apparent defect in low-pH-mediated syncytium formation that could be attributed to decreased virus particle production. The phenotypes of the H3L deletion and repression mutants were identical to each other but differed from those produced by null mutations of genes encoding other vaccinia virus membrane components.  相似文献   

17.
Husain M  Moss B 《Journal of virology》2003,77(21):11754-11766
Vaccinia virus assembles two distinct lipoprotein membranes. The primary membrane contains nonglycosylated proteins, appears as crescents in the cytoplasm, and delimits immature and mature intracellular virions. The secondary or wrapping membrane contains glycoproteins, is derived from virus-modified trans-Golgi or endosomal cisternae, forms a loose coat around some intracellular mature virions, and becomes the envelope of extracellular virions. Although the mode of formation of the wrapping membrane is partially understood, we know less about the primary membrane. Recent reports posit that the primary membrane originates from the endoplasmic reticulum-Golgi intermediate compartment (ERGIC). According to this model, viral primary membrane proteins are cotranslationally inserted into the ER and accumulate in the ERGIC. To test the ERGIC model, we employed Sar1(H79G), a dominant negative form of the Sar1 protein, which is an essential component of coatomer protein II (COPII)-mediated cargo transport from the ER to the ERGIC and other post-ER compartments. Overexpression of Sar1(H79G) by transfection or by a novel recombinant vaccinia virus with an inducible Sar1(H79G) gene resulted in retention of ERGIC 53 in the ER but did not interfere with localization of viral primary membrane proteins in factory regions or with formation of viral crescent membranes and infectious intracellular mature virions. Wrapping of intracellular mature virions and formation of extracellular virions did not occur, however, because some proteins that are essential for the secondary membrane were retained in the ER as a consequence of Sar1(H79G) overexpression. Our data argue against an essential role of COPII-mediated cargo transport and the ERGIC in the formation of the viral primary membrane. Instead, viral membranes may be derived directly from the ER or by a novel mechanism.  相似文献   

18.
The initial step in poxvirus morphogenesis, the formation of crescent membranes, occurs within cytoplasmic factories. L2 is one of several vaccinia virus proteins known to be necessary for formation of crescents and the only one synthesized early in infection. Virus replication was unaffected when the L2R open reading frame was replaced by L2R containing an N-terminal epitope tag while retaining the original promoter. L2 colocalized with the endoplasmic reticulum (ER) protein calnexin throughout the cytoplasm of infected and transfected cells. Topological studies indicated that the N terminus of L2 is exposed to the cytoplasm with the hydrophobic C terminus anchored in the ER. Using immunogold labeling and electron microscopy, L2 was detected in tubular membranes outside factories and inside factories near crescents and close to the edge or rim of crescents; a similar labeling pattern was found for the ER luminal protein disulfide isomerase (PDI). The phenotype of L2 conditional lethal mutants and the localization of L2 suggest that it participates in elongation of crescents by the addition of ER membrane to the growing edge. Small amounts of L2 and PDI were detected within immature and mature virions, perhaps trapped during assembly. The repression of L2, as well as A11 and A17, two other proteins that are required for viral crescent formation, profoundly decreased the stability of a subset of viral membrane proteins including those comprising the entry-fusion complex. To avoid degradation, these unstable membrane proteins may need to directly insert into the viral membrane or be rapidly shunted there from the ER.  相似文献   

19.
A vaccinia virus core protein, p39, is membrane associated.   总被引:12,自引:6,他引:6       下载免费PDF全文
We describe herein the characterization of p39, the product of the A4L gene of vaccinia virus. By immunolabelling of thawed cryosections from infected HeLa cells, we show that this protein is initially located in the central region, or viroplasm, of the viral factories, as well as in the immature virions, with very small amounts of labelling observed on the surrounding membranes. The localization of p39 changes dramatically during the transition of the immature virion to the intracellular mature virus (IMV), coincident with the appearance of the core structure in the center of the IMV, with p39 located between this core and the surrounding membranes. Complementary biochemical data, such as partitioning into the Triton X-114 detergent phase and stripping of the viral membranes with Nonidet P-40 and dithiothreitol, suggest that p39 is associated with the innermost of the two membranes surrounding the core. Sodium carbonate treatment also indicates that p39 is associated with membranes, even at the early stages of viral assembly. However, following in vitro translation of p39 in the presence of microsomal membranes, we failed to detect any association of the independently expressed protein with membranes. We also failed to detect any posttranslational acylation of p39 with myristate or palmitate, suggesting that p39 does not achieve its membrane association through lipid anchors. Therefore, p39 is most likely membrane associated through an interaction with an integral membrane protein(s) present in the innermost of the two membranes surrounding the IMV. These data, together with our recent data showing that p39 colocalizes with the spike-like protrusions on the IMV core (N. Roos, M. Cyrklaff, S. Cudmore, R. Blasco, J. Krijnse-Locker, and G. Griffiths, EMBO J. 15:2343-2355, 1996), suggest that p39 may form part of this spike and that it possibly functions as a matrix-like linker protein between the core and the innermost of the two membranes surrounding the IMV.  相似文献   

20.
An immunodominant antigen, p35, is expressed on the envelope of intracellular mature virions (IMV) of vaccinia virus. p35 is encoded by the viral late gene H3L, but its role in the virus life cycle is not known. This report demonstrates that soluble H3L protein binds to heparan sulfate on the cell surface and competes with the binding of vaccinia virus, indicating a role for H3L protein in IMV adsorption to mammalian cells. A mutant virus defective in expression of H3L (H3L(-)) was constructed; the mutant virus has a small plaque phenotype and 10-fold lower IMV and extracellular enveloped virion titers than the wild-type virus. Virion morphogenesis is severely blocked and intermediate viral structures such as viral factories and crescents accumulate in cells infected with the H3L(-) mutant virus. IMV from the H3L(-) mutant virus are somewhat altered and less infectious than wild-type virions. However, cells infected by the mutant virus form multinucleated syncytia after low pH treatment, suggesting that H3L protein is not required for cell fusion. Mice inoculated intranasally with wild-type virus show high mortality and severe weight loss, whereas mice infected with H3L(-) mutant virus survive and recover faster, indicating that inactivation of the H3L gene attenuates virus virulence in vivo. In summary, these data indicate that H3L protein mediates vaccinia virus adsorption to cell surface heparan sulfate and is important for vaccinia virus infection in vitro and in vivo. In addition, H3L protein plays a role in virion assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号