首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antisera to purified (Na+, K+)-ATPase raised in rabbits and in sheep were purified by an absorption procedure employing purified canine kidney (Na+, K+)-ATPase. The antibodies were fractionated into two components, one which inhibited catalytic activity, and a second which inhibited ouabain binding. Under certain conditions, the fraction that inhibited ouabain binding also inhibited catalytic activity, and the effectiveness of both was dependent to some extent on the ligands present in the incubation medium. Thus, both antibody fractions appeared to detect conformations of the enzyme that depended upon ligand-induced perturbations. When the antibody raised against catalytic activity was incubated with erythrocyte membrane fragments, an inhibition of the (Na+, K+)-ATPase occurred, but only minimal or no effect on potassium influx or on digoxin-induced inhibition of potassium flux in intact erythrocytes was noted. In a similar experiment, however, the antibody against ouabain binding significantly inhibited potassium influx, suggesting specificity in terms of the macromolecular surfaces of the pump which were exposed to the external medium. We concluded that there may be organ and species differences among (Na+, K+)-ATPase preparations. Antibodies prepared in rabbits and sheep were fractionated by absorption to dog brain enzyme. Both the antibody fraction which bound to the brain enzyme and that which did not bind inhibited the dog kidney (Na+, K+)-ATPase, but only the former inhibited dog brain (Na+, K+)-ATPase. When the two fractions were recombined, inhibition was restored to the extent of the unfractionated antibody.  相似文献   

2.
Several strains of kidney and liver cells cultured in a synthetic medium were found to be resistant to ouabain. These cell strains were characterized because this resistance may serve as a good marker in genetic studies on somatic cells in chemically defined conditions in the absence of Na+ related growth factors and hormones. The phenotype was stable in the absence of selection for at least two years, and the original strains before adaptation to the synthetic medium were found to have ouabain sensitivity equal to the corresponding cells in the synthetic medium. The resting membrane potential, Na+,K+-ATPase activity, and growth rate of the resistant cells were similar to those of ouabain-sensitive cells. The resistance of the cells was not affected by serum or antibodies against some cytoskeletal proteins and the sensitivity of the Na+,K+-ATPase was not restored by partial purification of the membranes. Western blotting of the Na+,K+-ATPase of the ouabain-resistant cells showed that the molecular weights of its two subunits and its immunoreactivity were similar to those of the enzyme from the ouabain-sensitive strain. Thus the ouabain resistance is caused not by ouabain-like hormone produced by the cells or change in the cytoskeletal system, but by a mutation resulting in expression of an ouabain-resistant ATPase gene.  相似文献   

3.
The early activation of Na+,K+-ATPase-mediated ion fluxes after concanavalin A (ConA) stimulation of pig lymphocytes is caused by an increase in intracellular Na+ concentration. A second mechanism of regulation of Na+,K+-ATPase activity becomes apparent between 3 and 5 h after mitogenic stimulation, but prior to onset of increase in cell volume; this consists of an increase (about 75%) in the number of ouabain-binding sites (from 35 X 10(3) +/- 12 X 10(3)/cell in resting to 60 X 10(3) +/- 27 X 10(3)/cell in activated lymphocytes). The increase in ouabain binding was attributed to an increase in the number of active Na+,K+-ATPase molecules, based on the following evidence: there was an increase in the Vmax of ouabain binding, without variation in the Km; the increase in ouabain binding was accompanied by a proportional increase in K+ influx, when the assay was performed in the presence of the Na+ ionophore monesin, which was used to eliminate the difference in intracellular Na+ concentration between resting and activated cells; there was proportionality between ouabain-inhibitable ATPase activity in permeabilized cells and the number of ouabain-binding sites in resting and activated lymphocytes. The ConA-induced increase in ouabain-binding sites was influenced neither by amiloride nor by incubation in low Na+ medium, under conditions which prevented both increase in intracellular Na+ concentration and K+ influx. Increase in intracellular Na+ concentration was ineffective in altering the number of active pump molecules in resting cells. During incubation with ConA, the presence of ouabain did not affect the increase in ouabain-binding sites; thus, regulation of the number of pump sites is independent of the regulation of their activity. The ConA-induced increase in number of ouabain-binding sites did not require protein synthesis; indeed, cycloheximide, anisomycin, and puromycin, under conditions in which they inhibited protein synthesis by by 95%, induced the increase to approximately the same extent as did ConA. This suggests the presence in resting lymphocytes of a rapidly turning over protein that either prevents the ATPase subunits from assembling or from integrating into the membrane.  相似文献   

4.
Na+,K+-ATPase, the enzymatic moiety that operates as the electrogenic sodium-potassium pump of the cell plasma membrane, is inhibited by cardiac glycosides, and this specific interaction of a drug with an enzyme has been considered to be responsible for digitalis-induced vascular smooth muscle contraction. Although studies aimed at localization, isolation, and measurement of the Na+,K+-ATPase activity (or Na+, K- pump activity) indicate its presence in vascular smooth muscle sarcolemma, its characterization as the putative vasopressor receptor site for cardiac glycosides has depended on pharmacological studies of vascular response in vivo and on isolated artery contractile responses in vitro. More recently, radioligand-binding studies using [3H]ouabain have aided in the characterization of drug-enzyme interaction. Such studies indicate that in canine superior mesenteric artery (SMA), Na+,K+-ATPase is the only specific site of interaction of ouabain with resultant inhibition of the enzyme. The characteristics of [3H]ouabain binding to this site are similar to those of purified or partially purified Na+,K+-ATPase of other tissues, which suggests that if Na+,K+-ATPase inhibition is causally related to digitalis-mediated effects on vascular smooth muscle contraction, then therapeutic concentrations of cardiac glycosides could act to cause SMA vasoconstriction. The additional finding from radioligand-binding studies that Na+,K+-ATPase exists in much smaller quantities (density of sites per cell) in SMA than in either heart or kidney may have implications concerning its physiological, biochemical or pharmacological role in modulating vascular muscle tone.  相似文献   

5.
Little is known concerning the effects of Na+-coupled solute transport on (Na+,K+)-ATPase mediated cation pumping in the intact cell. We investigated the effect of amino acid transport and growth factor addition on the short term regulation of (Na+,K+)-ATPase cation transport in HeLa cells. The level of pump activity in the presence of amino acids or growth factors was compared to the level measured in phosphate buffered saline. These rates were further related to the maximal pump capacity, operationally defined as ouabain inhibitable 86Rb+ influx in the presence of 15 microM monensin. Of the growth factors tested, only insulin was found to moderately (22%) increase (Na+,K+)-ATPase cation transport. The major determinant of pump activity was found to be the transport of amino acids. Minimal essential medium (MEM) amino acids increased ouabain inhibitable 86Rb+ influx to a level close to that obtained with monensin, indicating that the (Na+,K+)-ATPase is operating near maximal capacity during amino acid transport. This situation may apply to tissue culture conditions and consequently measurements of (Na+,K+)-ATPase activity in buffer solutions alone may yield little information about cation pumping under culture conditions. This finding applies especially to cells having high rates of amino acid transport. Furthermore, rates of amino acid transport may be directly or indirectly involved in the long-term regulation of the number of (Na+,K+)-ATPase molecules in the plasma membrane.  相似文献   

6.
An increase in endogenous Na+,K+-ATPase inhibitor(s) with digitalis-like properties has been reported in chronic renal insufficiency, in Na+-dependent experimental hypertension and in some essential hypertensive patients. The present study specifies some properties and some biochemical characteristics of a semipurified compound from human urine having digitalis-like properties. The urine-derived inhibitor (endalin) inhibits Na+,K+-ATPase activity and [3H]-ouabain binding, and cross-reacts with anti-digoxin antibodies. The inhibitory effect on ATPases of endalin is higher on Na+,K+-ATPase than on Mg2+-ATPase and Ca2+-ATPase. The mechanism of endalin action on highly purified Na+,K+-ATPase was compared to that of ouabain and was similar in that it reversibly inhibited Na+,K+-ATPase activity; it inhibited Na+,K+-ATPase non-competitively with ATP; its inhibitory effect was facilitated by Na+; K+ decreased its inhibitory effect on Na+,K+-ATPase; it competitively inhibited ouabain binding to the enzyme; its binding was maximal in the presence of Mg2+ and Pi; it decreased the Na+ pump activity in human erythrocytes; it reduced serotonin uptake by human platelets; and it was diuretic and natriuretic in rat bioassay. The endalin differed from ouabain in only three aspects: its inhibitory effect was not really specific for Na+,K+-ATPase; its binding to the enzyme was undetectable in the presence of Mg2+ and ATP; it was not kaliuretic in rat bioassay. Endalin is a reversible and partial specific inhibitor of Na+,K+-ATPase, its Na+,K+-ATPase inhibition closely resembles that of ouabain and it could be considered as one of the natriuretic hormones.  相似文献   

7.
Endogenous cardiotonic steroids (ECS) are putative ligands of the inhibitory binding site of the membrane sodium pump (Na+, K+-ATPase). There is growing evidence that cardiotonic steroids may promote the growth of cardiac and vascular myocytes, including evidence indicating growth stimulation at concentrations in the same range as circulating ECS concentrations. We investigated four parameters to determine whether ouabain, a proposed ECS, promotes growth of immortalized rat proximal tubule epithelial cells: cell count by hemocytometer; metabolic activity as reflected in the mitochondrial conversion of the tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, to its formazan product (MA); DNA synthesis reflected as bromodeoxyuridine incorporation (DNA); and mitosis reflected as histone phosphorylation state detected using anti-phosphohistone 3 antibody (HP). Maximum stimulatory responses were observed at 1 nm ouabain (MA, 20.3% increase, p < 0.01; DNA, 28.4% increase, p < 0.001; HP, maximum response at 0.5 h, 50% increase, p < 0.001). We observed that growth stimulation was associated with stimulation of ERK1/2 phosphorylation (ERK-P), and both growth and ERK-P could be blocked by the MEK inhibitor (U0126, 100 nm). Western blot analysis revealed that the only alpha isoform of Na+, K+-ATPase that could be detected in these cultures was the highly ouabain-resistant alpha1 isoform. Measurement of ouabain inhibition of ion transport in these cultures using 86Rb+ uptake revealed the predominance of the expected ouabain-resistant isoform (IC50 = 24 microm) and an additional minor ( approximately 15%) ouabain-sensitive inhibition with IC50 approximately 30 pm. Similar bimodal transport inhibition curves were obtained in freshly dissected rat proximal tubules. These results indicate that renal epithelial cells may be a sensitive target of the ERK1/2-activating and growth-promoting effects of ouabain even in the presence of ouabain-resistant Na+, K+-ATPase.  相似文献   

8.
Analysis of sodium-22 binding to purified sodium + potassium ion-activated adenosine triphosphatase (Na+, K+)-ATPase reveals the presence of two classes of binding sites. The higher affinity site (Kd = 0.2 mM) binds 6 to 7 nmol of sodium per mg of protein. Pretreatment of (Na+, K+)-ATPase with ouabain blocks the binding of sodium to this higher affinity site. Neither heat-denatured enzyme nor phospholipids extracted from the (Na+, K+)-ATPase contain a ouabain-inhibitable, higher affinity sodium binding site. The ouabain enzyme complex therefore appears to contain altered binding sites for cations.  相似文献   

9.
A multistep selection for ouabain resistance was used to isolate a clone of HeLa S3 cells that overproduces the plasma membrane sodium, potassium activated adenosinetriphosphatase (Na+,K+-ATPase). Measurements of specific [3H]ouabain-binding to the resistant clone, C+, and parental HeLa cells indicated that C+ cells contain 8-10 X 10(6) ouabain binding sites per cell compared with 8 X 10(5) per HeLa cell. Plasma membranes isolated from C+ cells by a vesiculation procedure and analyzed for ouabain-dependent incorporation of [32P]phosphate into a 100,000-mol-wt peptide demonstrated a ten- to twelvefold increase in Na+,K+-ATPase catalytic subunit. The affinity of the enzyme for ouabain on the C+ cells was reduced and the time for half maximal ouabain binding was increased compared with the values for the parental cells. The population doubling time for cultures of C+ cells grown in dishes was increased and C+ cells were unable to grow in suspension. Growth of C+ cells in ouabain-free medium resulted in revertant cells, C-, with biochemical and growth properties identical with HeLa. Karyotype analysis revealed that the ouabain-resistant phenotype of the C+ cells was associated with the presence of minute chromosomes which are absent in HeLa and C- cells. This suggests that a gene amplification event is responsible for the Na+,K+-ATPase increase in C+ cells.  相似文献   

10.
In the experiments carried out with the suspension of the myometrium cell plasmatic membranes treated with 0.1% digitonin solution the authors investigated influence of the calix[4]arenes C-97 and C-107 (codes are shown) on ouabain effect on the Na+,K+-ATPase activity. It was shown that calixarenes in concentration 100 tiM inhibited by 97-98% the enzymatic Na+,K+-ATPase activity, while they did not practically influence on the basal Mg2+-ATPase activity, and suppressed much more effective than ouabain the sodium pump enzymatic activity: in the case of the action of the calixarenes the value of the apparent constant of inhibition I0.5 was < 0.1 microM while for ouabain it was 15-25 microM. The negative cooperative effect was typical of the inhibitory action of calixarenes, as well as ouabain: the value of Hills factor nH = 0.3-0.5 <1. The modelling compound M-3 (0.1 microM 4 microM)--a fragment of the calixarene C-107--did not practically influence the enzymatic activities as Na+,K+-ATPase and basal Mg2+-ATPase. Hence the influence of calixarene C-107 on the Na+, K+-ATPase activity is caused by cooperative action of two fragments M-3 and effect of calixarene bowl, rather than by simple action of the fragment M-3. Calixarenes C-97 and C-107, used in concentration corresponding to values of I0.5 (40 and 60 nM, accordingly), essentially stimulated inhibiting action of ouabain on the specific Na+, K+-ATPase activity in the memrane fraction. Under coaction of ouabain with calixarene C-97 or C-107 there was no additive effect of the action of these inhibitors on the Na+,K+-ATPase activity. Calixarene C-97 brought in the incubation medium in concentration of 10 nM not only led to inhibition of the Na+,K+-ATPase activity relative to control, but also simultaneously increased the affinity of the enzyme for the cardiac glycoside: the magnitudes of the apparent constant of inhibition I0.5 were 21.0 +/- 5.2 microM and 5.3 +/- 0.7 microM. It is concluded, that highly effective inhibitors of the Na+,K+-ATPase activity--calixarenes C-97 and C-107 can enhance the effect of the sodium pump conventional inhibitor--ouabain, increasing the affinity of the enzyme for the cardiac glycoside (on the example of calixarene C-97).  相似文献   

11.
Regulation of Na+ transport in brown adipose tissue.   总被引:2,自引:0,他引:2       下载免费PDF全文
In order to test the hypothesis that Na+, K+-ATPase (Na+,K+-dependent ATPase) is involved in the noradrenaline-mediated stimulation of respiration in brown adipose tissue, the effects of noradrenaline on Na+,K+-ATPase in isolated brown-fat-cell membrane vesicles, and on 22Na+ and K+ (86Rb+) fluxes across the membranes of intact isolated cells, were measured. The ouabain-sensitive fraction of the K+-dependent ATPase activity in the isolated membrane-vesicle preparation was small and was not affected by the presence of noradrenaline in the incubation media. The uptake of 86Rb+ into intact hormone-sensitive cells was inhibited by 80% by ouabain, but it was insensitive to the presence of noradrenaline. 22Na+ uptake and efflux measured in the intact cells were 8 times more rapid than the 86Rb+ fluxes and were unaffected by ouabain. This indicated the presence of a separate, more active, transport system for Na+ than the Na+,K+-ATPase. This is likely to be a Na+/Na+ exchange activity under normal aerobic conditions. However, under anaerobic conditions, or conditions simulating anaerobiosis (2 mM-NaCN), the unidirectional uptake of Na+ increased dramatically, while efflux was unaltered.  相似文献   

12.
86Rb+ was used as an isotopic tracer for the measurement of K+-uptake into quiescent murine bone marrow-derived macrophages. 86Rb+ uptake was inhibited by ouabain indicating a Na+K+-ATPase is being measured. In support of this finding, increased sensitivity to ouabain inhibition was seen when the K+ content of the medium was reduced. A purified colony stimulating factor (CSF-1) was shown to stimulate the ouabain-sensitive 86Rb+ uptake in a dose-dependent manner. Such colony stimulating factor stimulation of 86Rb+ (K+) influx was rapid, with a maximal effect seen 10 minutes after growth factor addition followed by a gradual decrease. Thus increased Na+K+-ATPase activity was an early response of macrophages to the colony stimulating factor.  相似文献   

13.
Insulin stimulated the uptake of 86Rb+ (a K+ analog) in rat adipocytes and increased the steady state concentration of intracellular potassium. Half-maximal stimulation occurred at an insulin concentration of 200 pM. Both basal- and insulin-stimulated 86Rb+ transport rates depended on the concentration of external K+, external Na+, and were 90% inhibited by 10(-3) M ouabain and 10(-3) M KCN, indicating that the hormone was activating the (Na+,K+)-ATPase. Insulin had no effect on the entry of 22Na+ or exit of 86Rb+. Kinetic analysis demonstrated that insulin acted by increasing the maximum velocity, Vmax, of 86Rb+ entry. Inhibition of the rate of Rb+ uptake by ouabain was best described by a biphasic inhibition curve. Scatchard analysis of ouabain binding to intact cells indicated binding sites with multiple affinities. Only the rubidium transport sites which exhibited a high affinity for ouabain were stimulated by insulin. Stimulation required insulin binding to an intact cell surface receptor, as it was reversible by trypsinization. We conclude that the uptake of 86Rb+ by the (Na+,K+)-ATPase is an insulin-sensitive membrane transport process in the fat cell.  相似文献   

14.
W J Ball 《Biochemistry》1986,25(22):7155-7162
The effects of a monoclonal antibody, prepared against the purified lamb kidney Na+,K+-ATPase, on the enzyme's Na+,K+-dependent ATPase activity were analyzed. This antibody, designated M10-P5-C11, is directed against the catalytic subunit of the "native" holoenzyme. It inhibits greater than 90% of the ATPase activity and acts as a noncompetitive or mixed inhibitor with respect to the ATP, Na+, and K+ dependence of enzyme activity. It inhibits the Na+- and Mg2+ATP-dependent phosphoenzyme intermediate formation. In contrast, it has no effect on K+-dependent p-nitrophenylphosphatase (pNPPase) activity, the interconversion of the phosphoenzyme intermediates, and ADP-sensitive or K+-dependent dephosphorylation. It does not alter ATP binding to the enzyme nor the covalent labeling of the enzyme at the presumed ATP site by fluorescein 5'-isothiocyanate (FITC), but it prevents the ATP-induced stimulation in the rate of cardiac glycoside [3H]ouabain binding to the Na+,K+-ATPase. M10-P5-C11 binding appears to inhibit enzyme function by blocking the transfer of the gamma-phosphoryl of ATP to the phosphorylation site after ATP binding to the enzyme has occurred. In the presence of Mg2+ATP, it also prevents the ATP-induced transmembrane conformational change that enhances cardiac glycoside binding. This uncoupling of ATP binding from its stimulation of ouabain binding and enzyme phosphorylation demonstrates the existence of an enzyme-Mg2+ATP transitional intermediate preceding the formation of the Na+-dependent ADP-sensitive phosphoenzyme intermediate. These results are also consistent with a model of the Na+,K+-ATPase active site being composed of two distinct but interacting regions, the ATP binding site and the phosphorylation site.  相似文献   

15.
In order to investigate the specificity of noradrenergic effects on Na+, K+-ATPase, we infused noradrenergic agonists into the cerebral ventricles of rats, with or without depletion of forebrain norepinephrine. Infusion of norepinephrine, isoproterenol, or phenylephrine increased ouabain binding in intact rats, whereas clonidine infusion decreased binding. Depletion of forebrain norepinephrine by destruction of the dorsal noradrenergic bundle reduced ouabain binding. Norepinephrine infusion reversed the effect of dorsal bundle lesion; isoproterenol and phenylephrine increased ouabain binding in lesioned rats, but did not restore the effect of the lesions. Clonidine had no effect in lesioned rats. Effects on Na+, K+-ATPase activity were similar, but smaller. These results suggest that stimulation of both alpha 1- and beta-noradrenergic receptors may be necessary for optimal Na+, K+-ATPase, and that clonidine reduces Na+, K+-ATPase indirectly through decreased norepinephrine release.  相似文献   

16.
The modulatory effects of calcium ions on highly active Na+, K(+)-ATPase from calf brain and pig kidney tissues have been studied. The inhibitory action of Ca2+free on this enzyme depends on the level of ATP (but not AcP). The reduction of pH from 7.4 to 6.0 noticeably increases, but the elevation of pH to 8.0, in its turn, decreases the inhibition of ATP-hydrolyzing activity by calcium. With the increase of K+ concentration (in contrast to Na+) the sensibilization of Na+, K(+)-ATPase to Ca ions is observed. In the presence of potassium ions Mg2+free effectively modifies the inhibitory action of Ca2+free on this enzyme. Ca2+free (0.16-0.4 mM) decreases the sensitivity of Na+, K(+)-ATPase to action of the specific inhibitor ouabain in the presence of ATP. In the presence of AcP (phosphatase reaction) such a change of enzyme sensitivity to ouabain isn't observed. The influence of membranous effects of Ca2+ on the interaction of Na+, K(+)-ATPase with the essential ligands and cardiosteroids is discussed.  相似文献   

17.
Long term elevation of the intracellular Na+/K+ ratio inhibits macromolecule synthesis and proliferation in the majority of cell types studied so far, including vascular smooth muscle cells (VSMC). We report here that inhibition of the Na+,K+ pump in VSMC by ouabain or a 1-h preincubation in K+-depleted medium attenuated apoptosis triggered by serum withdrawal, staurosporine, or okadaic acid. In the absence of ouabain, both DNA degradation and Caspase-3 activation in VSMC undergoing apoptosis were insensitive to modification of the extracellular Na+/K+ ratio as well as to hyperosmotic cell shrinkage. In contrast, protection of VSMC from apoptosis by ouabain was abolished under equimolar substitution of Na+o with K+o, showing that the antiapoptotic action of Na+,K+ pump inhibition was caused by inversion of the intracellular Na+/K+ ratio. Unlike VSMC, the same level of increment of the [Na+]i/[K+]i ratio caused by a 2-h preincubation of Jurkat cells with ouabain did not affect chromatin cleavage and Caspase-3 activity triggered by treatment with Fas ligand, staurosporine, or hyperosmotic shrinkage. Thus, our results show for the first time that similar to cell proliferation, maintenance of a physiologically low intracellular Na+/K+ ratio is required for progression of VSMC apoptosis.  相似文献   

18.
Addition of serum to density-arrested BALB/c-3T3 cells causes a rapid increase in uptake of Na+ and K+, followed 12 h later by the onset of DNA synthesis. We explored the role of intracellular univalent cation concentrations in the regulation of BALB/c-3T3 cell growth by serum growth factors. As cells grew to confluence, intracellular Na+ and K+ concentrations ([Na+]i and [K+]i) fell from 40 and 180 to 15 and 90 mmol/liter, respectively. Stimulation of growth of density-inhibited cells by the addition of serum growth factors increased [Na]i by 30% and [K+]i by 13-25% in early G0/G1, resulting in an increase in total univalent cation concentration. Addition of ouabain to stimulated cells resulted in a concentration-dependent steady decrease in [K+]i and increase in [Na+]i. Ouabain (100 microM) decreased [K+]i to approximately 60 mmol/liter by 12 h, and also prevented the serum- stimulated increase in 86Rb+ uptake. However, 100 microM ouabain did not inhibit DNA synthesis. A time-course experiment was done to determine the effect of 100 microM ouabain on [K+]i throughout G0/G1 and S phase. The addition of serum growth factors to density-inhibited cells stimulated equal rates of entry into the S phase in the presence or absence of 100 microM ouabain. However, in the presence of ouabain, there was a decrease in [K+]i. Therefore, an increase in [K+]i is not required for entry into S phase; serum growth factors do not regulate cell growth by altering [K+]i. The significance of increased total univalent cation concentration is discussed.  相似文献   

19.
Na+,K+-ATPase activity was monitored by measuring ouabain-sensitive K+-dependent p-nitrophenylphosphatase (p-NPPase) activity in rat submandibular gland slices. Carbachol (carbamylcholine chloride) stimulated the p-NPPase activity in the presence of calcium but not in its absence. Carbachol activation of the enzyme was totally ouabain sensitive and could be blocked by atropine. A minimal requirement of sodium ion extracellularly was required for this carbachol stimulation. cGMP and its dibutyryl analogue was also effective in stimulating the enzyme activity, whereas, cAMP was ineffective. Calcium, however, was not required for cGMP activation of the p-NPPase activity. The result indicates that calcium is the second messenger and cGMP is the tertiary connection between cholinergic stimulation and Na+,K+-ATPase activation in these glands. Activation of Na+,K+-ATPase is postulated to be responsible for primary fluid formation.  相似文献   

20.
Liposomes containing either purified or microsomal (Na+,K+)-ATPase preparations from lamb kidney medulla catalyzed ATP-dependent transport of Na+ and K+ with a ratio of approximately 3Na+ to 2K+, which was inhibited by ouabain. Similar results were obtained with liposomes containing a partially purified (Na+,K+)-ATPase from cardiac muscle. This contrasts with an earlier report by Goldin and Tong (J. Biol. Chem. 249, 5907-5915, 1974), in which liposomes containing purified dog kidney (Na+,K+)-ATPase did not transport K+ but catalyzed ATP-dependent symport of Na+ and Cl-. When purified by our procedure, dog kidney (Na+,K+)-ATPase showed some ability to transport K+ but the ratio of Na+ : K+ was 5 : 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号