首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Using two independent prostate cancer cell lines (LNCaP and MDA-PCa-2a), we demonstrate that coordinated stimulation of lipogenic gene expression by androgens is a common phenomenon in androgen-responsive prostate tumor lines and involves activation of the sterol regulatory element-binding protein (SREBP) pathway. We show 1) that in both cell lines, androgens stimulate the expression of fatty acid synthase and hydroxymethylglutaryl-coenzyme A synthase, two key lipogenic genes representative for the fatty acid and the cholesterol synthesis pathway, respectively; 2) that treatment with androgens results in increased nuclear levels of active SREBP; 3) that the effects of androgens on promoter-reporter constructs derived from both lipogenic genes (fatty acid synthase and hydroxymethylglutaryl-coenzyme A synthase) depend on the presence of intact SREBP-binding sites; and 4) that cotransfection with dominant-negative forms of SREBPs abolishes the effects of androgens. Related to the mechanism underlying androgen activation of the SREBP pathway, we show that in addition to minor effects on SREBP precursor levels, androgens induce a major increase in the expression of sterol regulatory element-binding protein cleavage-activating protein (SCAP), an escort protein that transports SREBPs from their site of synthesis in the endoplasmic reticulum to their site of proteolytical activation in the Golgi. Both time course studies and overexpression experiments showing that increasing levels of SCAP enhance the production of mature SREBP and stimulate lipogenic gene expression support the contention that SCAP plays a pivotal role in the lipogenic effects of androgens in tumor cells.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
ATP citrate-lyase (ACL) is a key enzyme supplying acetyl-CoA for fatty acid and cholesterol synthesis. Its expression is drastically up-regulated when an animal is fed a low fat, high carbohydrate diet after prolonged fasting. In this report, we describe the role of sterol regulatory element-binding proteins (SREBPs) in the transactivation of the rat ACL promoter. ACL promoter activity was markedly stimulated by the overexpression of SREBP-1a and, to a lesser extent, by SREBP-2 in Alexander human hepatoma cells. The promoter elements responsive to SREBPs were located within the 55-base pair sequences from -114 to -60. The gel mobility shift assay revealed four SREBP-1a binding sites in this region. Of these four elements, the -102/-94 region, immediately upstream of the inverted Y-box, and the -70/-61 region, just adjacent to Sp1 binding site, played critical roles in SREBPs-mediated stimulation. The mutation in the inverted Y-box and the coexpression of dominant negative nuclear factor-Y (NF-Y) significantly attenuated the transactivation by SREBP-1a, suggesting that NF-Y binding is a prerequisite for SREBPs to activate the ACL promoter. However, the multiple Sp1 binding sites did not affect the transactivation of the ACL promoter by SREBPs. The binding affinity of SREBP-1a to SREs of the ACL promoter also was much higher than that of SREBP-2. The transactivation potencies of the chimeric SREBPs, of which the activation domains (70 amino acids of the amino terminus) were derived from the different species of their carboxyl-terminal region, were similar to those of SREBPs corresponding to their carboxyl termini. Therefore, it is suggested that the carboxyl-terminal portions of SREBPs containing DNA binding domains are important in determining their transactivation potencies to a certain promoter.  相似文献   

18.
To evaluate the effects of sterol regulatory element-binding proteins (SREBPs) on the expression of the individual enzymes in the cholesterol synthetic pathway, we examined expression of these genes in the livers from wild-type and transgenic mice overexpressing nuclear SREBP-1a or -2. As estimated by a Northern blot analysis, overexpression of nuclear SREBP-1a or -2 caused marked increases in mRNA levels of the whole battery of cholesterogenic genes. This SREBP activation covers not only rate-limiting enzymes such as HMG CoA synthase and reductase that have been well established as SREBP targets, but also all the enzyme genes in the cholesterol synthetic pathway tested here. The activated genes include mevalonate kinase, mevalonate pyrophosphate decarboxylase, isopentenyl phosphate isomerase, geranylgeranyl pyrophosphate synthase, farnesyl pyrophosphate synthase, squalene synthase, squalene epoxidase, lanosterol synthase, lanosterol demethylase, and 7-dehydro-cholesterol reductase. These results demonstrate that SREBPs activate every step of cholesterol synthetic pathway, contributing to an efficient cholesterol synthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号