首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetically encoded fluorescent protein-based kinase biosensors are a central tool for illumination of the kinome. The adaptability and versatility of biosensors have allowed for spatiotemporal observation of real-time kinase activity in living cells and organisms. In this review, we highlight various types of kinase biosensors, along with their burgeoning applications in complex biological systems. Specifically, we focus on kinase activity reporters used in neuronal systems and whole animal settings. Genetically encoded kinase biosensors are key for elucidation of the spatiotemporal regulation of protein kinases, with broader applications beyond the Petri dish.  相似文献   

2.
Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abolished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolecular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of mathematical models in designing novel probes for cellular signaling.  相似文献   

3.
Understanding mechanisms of information processing in cellular signaling networks requires quantitative measurements of protein activities in living cells. Biosensors are molecular probes that have been developed to directly track the activity of specific signaling proteins and their use is revolutionizing our understanding of signal transduction. The use of biosensors relies on the assumption that their activity is linearly proportional to the activity of the signaling protein they have been engineered to track. We use mechanistic mathematical models of common biosensor architectures (single-chain FRET-based biosensors), which include both intramolecular and intermolecular reactions, to study the validity of the linearity assumption. As a result of the classic mechanism of zero-order ultrasensitivity, we find that biosensor activity can be highly nonlinear so that small changes in signaling protein activity can give rise to large changes in biosensor activity and vice versa. This nonlinearity is abolished in architectures that favor the formation of biosensor oligomers, but oligomeric biosensors produce complicated FRET states. Based on this finding, we show that high-fidelity reporting is possible when a single-chain intermolecular biosensor is used that cannot undergo intramolecular reactions and is restricted to forming dimers. We provide phase diagrams that compare various trade-offs, including observer effects, which further highlight the utility of biosensor architectures that favor intermolecular over intramolecular binding. We discuss challenges in calibrating and constructing biosensors and highlight the utility of mathematical models in designing novel probes for cellular signaling.  相似文献   

4.
Fish are an important genus within ecosystems, and practical sensing devices, incorporating fish cells, could be used with advantage for environmental monitoring and protection. In this paper, redox mediated biosensors were prepared by immobilizing cultured fish cells at a carbon electrode surface. EPC (from carp) and BF-2 (from bluegill sunfish) cells could be monitored by using a lipophilic mediator (e.g. 2,6-dimethylbenzoquinone) added to the solution bathing the sensor. Currents measured in the external circuit were indicative of the metabolic activity of the immobilized cells and the sensors could be used to determine the presence of chemicals within the bathing medium that perturbed their normal metabolic status.  相似文献   

5.
《Trends in biotechnology》2023,41(8):1055-1065
Biosensors that sense the concentration of a specified target and produce a specific signal output have become important technology for biological analysis. Recently, intelligent biosensors have received great interest due to their adaptability to meet sophisticated demands. Advances in developing standard modules and carriers in synthetic biology have shed light on intelligent biosensors that can implement advanced analytical processing to better accommodate practical applications. This review focuses on intelligent synthetic biology-enabled biosensors (SBBs). First, we illustrate recent progress in intelligent SBBs with the capability of computation, memory storage, and self-calibration. Then, we discuss emerging applications of SBBs in point-of-care testing (POCT) and wearable monitoring. Finally, future perspectives on intelligent SBBs are proposed.  相似文献   

6.
Real-time biosensors are expected to provide significant help in emergency response management should a terrorist attack with the use of biowarfare, BW, agents occur. In spite of recent and spectacular progress in the field of biosensors, several core questions still remain unaddressed. For instance, how sensitive should be a sensor? To what levels of infection would the different sensitivity limits correspond? How the probabilities of identification correspond to the probabilities of infection by an agent? In this paper, an attempt was made to address these questions. A simple probability model was generated for the calculation of risks of infection of humans exposed to different doses of infectious agents and of the probability of their simultaneous real-time detection/identification by a model biosensor and its network. A model biosensor was defined as a single device that included an aerosol sampler and a device for identification by any known (or conceived) method. A network of biosensors was defined as a set of several single biosensors that operated in a similar way and dealt with the same amount of an agent. Neither the particular deployment of sensors within the network, nor the spacious and timely distribution of agent aerosols due to wind, ventilation, humidity, temperature, etc., was considered by the model. Three model biosensors based on PCR-, antibody/antigen-, and MS-technique were used for simulation. A wide range of their metric parameters encompassing those of commercially available and laboratory biosensors, and those of future, theoretically conceivable devices was used for several hundred simulations. Based on the analysis of the obtained results, it is concluded that small concentrations of aerosolized agents that are still able to provide significant risks of infection especially for highly infectious agents (e.g. for small pox those risk are 1, 8, and 37 infected out of 1000 exposed, depending on the viability of the virus preparation) will remain undetected by the present, most advanced, or even future, significantly refined real-time biosensors.  相似文献   

7.
This review describes recent advances in biosensors of potential clinical applications. Biosensors are becoming increasingly important and practical tools in pathogen detection, molecular diagnostics, environmental monitoring, food safety control as well as in homeland defense. Electrochemical biosensors are particularly promising toward these goals arising due to several combined advantages including low-cost, operation convenience, and miniaturized devices. We review the clinical applications of electrochemical biosensors based on a few selected examples, including enzyme-based biosensors, immunological biosensors and DNA biosensors.  相似文献   

8.
A new and promising technique in microbial ecology and environmental biology is the use of whole-cell bacterial biosensors. This minireview describes the use of such biosensors for detection and quantification of various compounds and other conditions affecting bacterial expression of different genes. Three types of biosensors (nonspecific, stress-induced, and specific biosensors) are described including their use in different environments. We present tables of published biosensors, including gene fusions, host organisms, and environments in which they are used. We here describe the use of different reporter genes in the construction of biosensors and discuss their use as tools for monitoring the bioavailability of pollutants and their potential use in studying microbial ecology in general.  相似文献   

9.
Abstract

The importance of highly efficient wastewater treatment is evident from aggravated water crises. With the development of green technology, wastewater treatment is required in an eco-friendly manner. Biotechnology is a promising solution to address this problem, including treatment and monitoring processes. The main directions and differences in biotreatment process are related to the surrounding environmental conditions, biological processes, and the type of microorganisms. It is significant to find suitable biotreatment methods to meet the specific requirements for practical situations. In this review, we first provide a comprehensive overview of optimized biotreatment processes for treating wastewater during different conditions. Both the advantages and disadvantages of these biotechnologies are discussed at length, along with their application scope. Then, we elaborated on recent developments of advanced biosensors (i.e. optical, electrochemical, and other biosensors) for monitoring processes. Finally, we discuss the limitations and perspectives of biological methods and biosensors applied in wastewater treatment. Overall, this review aims to project a rapid developmental path showing a broad vision of recent biotechnologies, applications, challenges, and opportunities for scholars in biotechnological fields for “green” wastewater treatment.  相似文献   

10.
Spatial and temporal compartmentalization of cAMP (and its target proteins) is central to the ability of this second messenger to govern cellular activity over timescales ranging from milliseconds to several hours. Recent years have witnessed a burgeoning of methodologies that enable researchers to directly monitor rapid subcellular cAMP dynamics, which are unobtainable by traditional cAMP assays. In this review, we examine cAMP biosensors that are currently available for measuring cAMP at the single-cell level, compare their various operating principles and discuss their applications.  相似文献   

11.
Environmental biosensors and related techniques for monitoring organochlorines, endocrine disrupting chemicals and cyanobacterial toxins are described. The practical requirements for an ideal environmental biosensor are analyzed. Specific case studies for environmental applications are reported for triazines chlorinated phenols, PCBs, microcystins, and endocrine disrupting chemicals. A new promising approach is reported for microcystins and alkylphenols that utilize electrooptical detection.  相似文献   

12.
The lack of specific, low-cost, rapid, sensitive, and easy detection of biomolecules has resulted in the development of biosensor technology. Innovations in biosensor technology have enabled many biosensors to be commercialized and have enabled biomolecules to be detected onsite. Moreover, the emerging technologies of lab-on-a-chip microdevices and nanosensors offer opportunities for the development of new biosensors with much better performance. Biosensors were first introduced into the laboratory by Clark and Lyons. They developed the first glucose biosensor for laboratory conditions. Then in 1973, a glucose biosensor was commercialized by Yellow Springs Instruments. The commercial biosensors have small size and simple construction and they are ideal for point-of-care biosensing. In addition to glucose, a wide variety of metabolites such as lactate, cholesterol, and creatinine can be detected by using commercial biosensors. Like the glucose biosensors (tests) other commercial tests such as for pregnancy (hCG), Escherichia coli O157, influenza A and B viruses, Helicobacter pylori, human immunodeficiency virus, tuberculosis, and malaria have achieved success. Apart from their use in clinical analysis, commercial tests are also used in environmental (such as biochemical oxygen demand, nitrate, pesticide), food (such as glutamate, glutamine, sucrose, lactose, alcohol, ascorbic acid), and biothreat/biowarfare (Bacillus anthracis, Salmonella, Botulinum toxin) analysis. In this review, commercial biosensors in clinical, environmental, food, and biowarfare analysis are summarized and the commercial biosensors are compared in terms of their important characteristics. This is the first review in which all the commercially available tests are compiled together.  相似文献   

13.
Phenol and its derivatives are widespread contaminants whose sources are both natural and industrial. Phenol is massively produced and used as a starting material for synthetic polymers and fibers. Although phenolic compounds play important biochemical and physiological roles in living systems, their accumulation in the environment as a result of intensive human activity may result in drastic ecological problem. Various analytical techniques are available for the detection of phenol in environmental samples. But they need complex sample pre-treatment so as are time consuming, costly and use heavy devices. On the other hand a biosensor is a device that gives rapid detection, cost effective and easy. A review study was carried out to accumulate the possible biosensors for the detection of phenolic compounds in environmental samples. A number of biological components including microorganisms, enzymes, antibodies, antigens, nucleic acids etc. can be used for the construction of biosensors that was found to detect phenolic compounds. Of all type of biological components microorganisms and enzymes are mostly used. The microorganisms are Pseudomonas, Moraxella, Arthrobacter, Rhodococcus, and Trichosporon. The most used enzymes are tyrosinase, peroxidase, laccase, glucose dehydrogenase, cellobiose dehydrogenase etc. Antibody sensors can detect a very trace level. The biorecognition of DNA biosensors occur by hybridization of DNA. Biosensors are found to work well when the biological sensing element is immobilized. A variety of immobilization techniques were found to use as adsorption, covalent binding, entrapment, cross-linking etc. For immobilization the matrices used was polyvinyl alcohol, Osmium complex, nafion/sol?Cgel silicate, chitosan, silica gel etc.  相似文献   

14.
Genetically-encoded biosensors based on the principle of F?rster resonance energy transfer (FRET) have been widely used in biology to visualize the spatiotemporal dynamics of signaling molecules. Despite the increasing multitude of these biosensors, their application has been mostly limited to cultured cells with transient biosensor expression, due to particular difficulties in the development of transgenic mice that express FRET biosensors. In this study, we report the efficient generation of transgenic mouse lines expressing heritable and functional biosensors for ERK and PKA. These transgenic mice were created by the cytoplasmic co-injection of Tol2 transposase mRNA and a circular plasmid harbouring Tol2 recombination sites. High expression of the biosensors in a wide range of cell types allowed us to screen newborn mice simply by inspection. Observation of these transgenic mice by two-photon excitation microscopy yielded real-time activity maps of ERK and PKA in various tissues, with greatly improved signal-to-background ratios. Our transgenic mice may be bred into diverse genetic backgrounds; moreover, the protocol we have developed paves the way for the generation of transgenic mice that express other FRET biosensors, with important applications in the characterization of physiological and pathological signal transduction events in addition to drug development and screening.  相似文献   

15.
A novel biosensor based on immobilised whole cell Chlorella vulgaris microalgae as a bioreceptor and interdigitated conductometric electrodes as a transducer has been developed and tested for alkaline phosphatase activity (APA) analysis. These sensors were also used for the detection of toxic compounds, namely cadmium ions, in aquatic habitats. Algae were immobilised inside bovine serum albumin (BSA) membranes cross-linked with glutaraldehyde vapours. The detection of the local conductivity variations caused by algae enzymatic reactions could be achieved. The inhibition of C. vulgaris microalgae Alkaline phosphatase activities in presence of cadmium ions was measured. These results were compared with measurements in bioassays. It finally appeared that conductometric biosensors using algae seemed more sensitive than bioassays to detect low levels of cadmium ions (the detection limit for the first experiments was 1 ppb of Cd2+). The main advantages of these alkaline phosphatase biosensors consist of their high specificity in regard to the toxic compounds they enable to detect, but also on their high stability since contrary to enzymatic biosensors, they use whole algae cells with APs on their walls.  相似文献   

16.
Novel biosensors have been designed by reporting an analyte-induced (de)swelling of a stimuli-responsive hydrogel (usually in a form of thin film) with a suitable optical transducer. These simple, inexpensive hydrogel biosensors are highly desirable, however, their practical applications have been hindered, largely because of their slow response. Here we show that quick response hydrogel sensors can be designed from ultrathin hydrogel films. By the adoption of layer-by-layer assembly, a simple but versatile approach, glucose-sensitive hydrogel films with thickness on submicrometer or micrometer scale, which is 2 orders of magnitude thinner than films used in ordinary hydrogel sensors, can be facilely fabricated. The hydrogel films can not only respond to the variation in glucose concentration, but also report the event via the shift of Fabry-Perot fringes using the thin film itself as Fabry-Perot cavity. The response is linear and reversible. More importantly, the response is quite fast, making it possible to be used for continuous glucose monitoring.  相似文献   

17.
Protein-based voltammetric biosensors are sensors based on the electric communication between proteins and electrodes. Recently, more and more nanomaterials are utilized to assist the fabrication of such kind of biosensors. In this review, we mainly detail the biosensors constructed with different kinds of nanomaterials depending on their categories in the past two years.  相似文献   

18.
Novel planar glucose biosensors to be used for continuous monitoring have been developed. The electrodes are produced with the "screen printing" technique, and present a high degree of reproducibility together with a low cost and the possibility of mass production. Prior to enzyme immobilisation, electrodes are chemically modified with ferric hexacyanoferrate (Prussian Blue). This allows the detection of the hydrogen peroxide produced by the enzymatic reaction catalysed by GOD, at low applied potential (ca. 0.0 V versus Ag/AgCl), highly limiting any electrochemical interferences. The layer of Prussian Blue (PB) showed a high stability at the working conditions (pH 7.4) and also after 1 year of storage dry at RT, no loss of activity was observed. The assembled glucose biosensors, showed high sensitivity towards glucose together with a long-term operational and storage stability. In a continuous flow system, with all the analytical parameters optimised, the glucose biosensors detected glucose concentration as low as 0.025 mM with a linear range up to 1.0mM. These probes were also tested over 50-60 h in a continuous flow mode to evaluate their operational stability. A 0.5 mM concentration of glucose was continuously fluxed into a biosensor wall-jet cell and the current due to the hydrogen peroxide reduction was continuously monitored. After 50-60 h, the drift of the signal observed was around 30%. Because of their high stability, these sensors suggest the possibility of using such biosensors, in conjunction with a microdialysis probe, for a continuous monitoring of glucose for clinical purposes.  相似文献   

19.
20.
In this issue of Neuron, Parikh et al. utilize biosensors to probe the cholinergic system in freely moving rats performing cue-detection/reward delivery tasks. They show that cue-evoked cholinergic activity in the medial prefrontal cortex is associated with cue detection and not reward delivery. We discuss the implications of their research in behavioral neuroscience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号