首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deleterious mutations in the CYP21 (steroid 21-hydroxylase) gene cause congenital adrenal hyperplasia (CAH). These mutations usually result from recombinations between CYP21 and an adjacent pseudogene, CYP21P, including deletions and transfers of deleterious mutations from CYP21P to CYP21 (gene conversions). Additional rare mutations that are not gene conversions account for 5-10% of 21-hydroxylase deficiency alleles. Recently, four novel CYP21 point mutations leading to amino acid changes were identified in a population of 57 Spanish families with CAH. A nonsense mutation, K74X, was also identified. The enzymatic activities of 21-hydroxylase mutants G90V, G178A, G291C, and R354H were examined in transiently transfected CHOP cells using progesterone and 17alpha-hydroxyprogesterone as substrates. The G90V, G291C, and R354H mutations effectively eliminated 21-hydroxylase activity. However, the G178A mutant retained significant activity when 17alpha-hydroxyprogesterone was the substrate. These results correlate well with the identification of G90V, G291C, and R354H in patients with severe "salt-wasting" disease and G178A in a patient with the milder simple virilizing form.  相似文献   

2.
Steroid 21-hydroxylase deficiency, due to the genetic impairment of the CYP21 gene, is a major cause of congenital adrenal hyperplasia (CAH). In about 80% of the cases, the defect is related with the transfer of deleterious point mutations from the CYP21P pseudogene to the active CYP21 gene. Sixteen different point mutations have been searched for in 60 Spanish patients with the classic form of CAH and 171 unaffected family members, using selective amplification of the CYP21 gene followed by allele-specific oligonucleotide hybridization (PCR-ASOH) and sequencing analysis. While 31.9% of the disease alleles carry CYP21 deletions or large gene conversions, around 58% of the alleles carry single point mutations. Corresponding segregation of mutations was found in every case indicating that none of them has apparently appeared de novo. The most frequent mutations found in our sample are i2G, V281L, R356W, Q318X, P453S and F306+t, with rates of 30, 14.2, 10, 9.2, 9.2 and 7. 5%, respectively. We found similar frequencies for the A and C polymorphism at position 656 (40 and 31.5%, respectively) in wild-type alleles for the i2G mutation. Around 10% of the alleles, for which no mutations were identified by searching for the sixteen previously known mutations, are currently being sequenced and new possible mutations and polymorphisms have been identified.  相似文献   

3.
To define mutations present in 23 exons and flanking intronic sequences of the cystic fibrosis transmembrane conductance regulator (CFTR) gene in 95 patients from Rio de Janeiro, Brazil, we carried out single-strand conformation polymorphism analysis and automated direct sequencing. Mutation detection was achieved in 45% of the alleles presented, and complete genotyping (two mutated alleles) was accomplished in 34.7% of the patients. Twenty patients (21.1%) were found to carry only one mutation, whereas mutated alleles could not be observed in 42 patients (44.2%). Eleven mutations were found, of which four were characterized as rare mutations: P205S (1.05%), Y1092X (0.53%), S549R (0.53%), and S4X (0.53%). The DF508 mutation in this population sample showed a frequency of 28.42%. The low number of individuals (10 of 95; 10.5%) with compound heterozygous (DF508/non-DF508) genotypes could indicate the presence of another severe mutation leading to the premature death of these individuals. In 4 of the aforementioned 10 individuals with compound heterozygous genotypes, the D-7-2-1-2 (XV2c-KM19-IVS6a-TUB9-M470-T854) haplotype was defined.  相似文献   

4.
Four patients with primapterinuria, postulated to be due to pterin-4α-carbinolamine dehydratase (PCD) deficiency, were diagnosed by biochemical and DNA analysis. All four patients presented in the neonatal period with hyperphenylalaninemia, and elevated neopterin and decreased biopterin levels in the urine. These symptoms are common to 6-pyruvoyltetrahydropterin synthase deficiency and thus there is a danger of misdiagnosis. In addition, all four patients had elevated urinary excretion of primapterin (7-biopterin), the only persistent biochemical abnormality. Analysis of fibroblast DNA from the patients identified the following mutations in the PCBD gene: one patient homozygous for the missense mutation E96K and one homozygous for the nonsense mutation Q97X, both in exon 4; one compound heterozygote with the mutations E96K and Q97X; and one patient with two different homozygous mutations: E26X in exon 2 and R87Q in exon 4. In two families, the parents were investigated and found to be obligate heterozygotes for particular mutations. One sibling was found to be unaffected. These results further substantiate the idea that primapterinuria is associated with mutations in the PCBD gene. Received: 4 March 1998 / Accepted: 17 April 1998  相似文献   

5.
6.
Cerebroretinal microangiopathy with calcifications and cysts (CRMCC) is a rare multisystem disorder characterized by extensive intracranial calcifications and cysts, leukoencephalopathy, and retinal vascular abnormalities. Additional features include poor growth, skeletal and hematological abnormalities, and recurrent gastrointestinal bleedings. Autosomal-recessive inheritance has been postulated. The pathogenesis of CRMCC is unknown, but its phenotype has key similarities with Revesz syndrome, which is caused by mutations in TINF2, a gene encoding a member of the telomere protecting shelterin complex. After a whole-exome sequencing approach in four unrelated individuals with CRMCC, we observed four recessively inherited compound heterozygous mutations in CTC1, which encodes the CTS telomere maintenance complex component 1. Sanger sequencing revealed seven more compound heterozygous mutations in eight more unrelated affected individuals. Two individuals who displayed late-onset cerebral findings, a normal fundus appearance, and no systemic findings did not have CTC1 mutations, implying that systemic findings are an important indication for CTC1 sequencing. Of the 11 mutations identified, four were missense, one was nonsense, two resulted in in-frame amino acid deletions, and four were short frameshift-creating deletions. All but two affected individuals were compound heterozygous for a missense mutation and a frameshift or nonsense mutation. No individuals with two frameshift or nonsense mutations were identified, which implies that severe disturbance of CTC1 function from both alleles might not be compatible with survival. Our preliminary functional experiments did not show evidence of severely affected telomere integrity in the affected individuals. Therefore, determining the underlying pathomechanisms associated with deficient CTC1 function will require further studies.  相似文献   

7.
We have analyzed 640 Spanish cystic fibrosis (CF) families for mutations in the CFTR gene by direct mutation analysis, microsatellite haplotypes, denaturing gradient gel electrophoresis, single-strand conformation analysis and direct sequencing. Seventy-five mutations account for 90.2% of CF chromosomes. Among these we have detected seven novel CFTR mutations, including four missense (G85V, T582R, R851L and F1074L), two nonsense (E692X and Q1281X) and one splice site mutation (711+3A→T). Three variants, two in intronic regions (406-112A/T and 3850-129T/C) and one in the coding region (741C/T) were also identified. Mutations G85V, T582R, R851L, E692X and Q1281X are severe, with lung and pancreatic involvement; 711+3A→T could be responsible for a pancreatic sufficiency/insufficiency variable phenotype; and F1074L was associated with a mild phenotype. These data demonstrate the highest molecular heterogeneity reported so far in CF, indicating that a wide mutation screening is necessary to characterize 90% of the Spanish CF alleles. Received: 3 July 1997 / Accepted: 20 August 1997  相似文献   

8.
A search has been conducted for disease-causing mutations in the PKD1 gene in 147 unrelated ADPKD index cases. Using the polymerase chain reaction with primer pairs located in the 3′ single copy region of the gene and single-strand conformation polymorphism analysis, we detected novel aberrant bands in five individuals that were absent in 100 control samples. Sequencing revealed three nonsense mutations (Q4010X, E4024X, Q4041X), a frameshift mutation (12262 del 2 bp), and a missense mutation (G4031D). In addition, three polymorphisms were detected [12346 + 19delG, heterozygosity (0.13), I4044V (0.23), 12212-34C > A (0.07)]. The mutational mechanism for the recurrent mutation (Q4041X) is likely to be slipped mispairing of an adjacent direct imperfect repeat sequence. Received: 5 April 1997 / Accepted: 26 August 1997  相似文献   

9.
Pseudoxanthoma elasticum (PXE) is a heritable disorder of the connective tissue affecting the skin, eyes, and cardiovascular system. Recently, the PXE candidate gene ABCC6 was identified and a limited number of ABCC6 mutations were observed in different PXE cohorts. To identify novel PXE-causing ABCC6 mutations in German patients with PXE, we investigated a cohort of 54 German PXE patients and 23 family members from 49 apparently nonconsanguineous families. From the mutational analysis we found 27 different ABCC6 sequence variations. Among these, 11 were polymorphisms or neutral alterations and 16 were PXE-causing mutations. The most common mutation in our PXE cohort was the nonsense mutation p.R1141X, which occurred with an allele frequency of 25.9%. Furthermore, we found nine missense, one additional nonsense, and two putative splice site mutations as well as three single-nucleotide deletions. Most of these mutations were unique and occurred in cytoplasmic regions of the MRP6 protein; these mutations are proposed to be critical for the physiological function of the MRP6 protein. In these regions we also found the three novel PXE-causing mutations p.R1114C, p.Y1239H, and p.G1311E, which were identified in three alleles from patients with PXE and were absent in 200 healthy control subjects. In addition, the first genotype-phenotype correlation was observed. By obtaining these genetic mutation data, we are contributing to an overview of all ABCC6 mutations leading to PXE and the pathogenetics of this disease.  相似文献   

10.
Steroid 21 -hydroxylase deficiency is the major cause of congenital adrenal hyperplasia. Genotyping for deletions and nine point mutations in the CYP21 gene has been performed in 38 Spanish patients and their relatives by Southern blot analysis and allele-specific oligonucleotide hybridization. Three clinical variants were included in this study, viz., salt-wasting (SW, 21 patients), simple virilizer (SV, two patients), and late-onset (LO, 15 patients) forms. Twenty-three patient genotypes (16 SW, two SV, and five LO) were fully characterized. In both alleles, all but one of these severe forms (SW and SV) presented mutations that abolished or severely affected enzymatic activity. Patients with LO forms showed mutations that moderately impaired enzymatic activity in both alleles, or severe mutations in only one chromosome. Of 46 chromosomes from severe forms, 41 were characterized in this study (89%). The most frequent mutation was an aberrant splicing site (655 A or C to G) in intron 2, in 30% of these chromosomes. Deletions were found in 20%, and large gene conversions in 13% of these alleles. This screening allowed the characterization of 18 out of 30 LO chromosomes, the most frequent mutation being Val281Leu (37%). Severe mutations were found, in heterozygosis, in one third of LO patients.  相似文献   

11.
Molecular defects in the gene encoding steroid 21-hydroxylase (CYP21) result in impairment of adrenal steroid synthesis in patients affected with autosomal-recessive congenital adrenal hyperplasias (CAH). In this study, we report on the molecular screening of six point mutations, large deletions, gene conversion events and duplications in 25 unrelated Lebanese families affected by CAH due to steroid 21-hydroxylase. The methods used (PCR-digestion and southern blot) allowed the detection of 96% of the disease chromosomes. In classical forms, the most frequent mutation was the splice site mutation in intron 2 accounting for 39% of the disease alleles. Gene conversion events accounted for 14% of the alleles, but no large deletions were found. In nonclassical forms, the V281L mutation in exon 7 represent 86% of the tested alleles. Genotype-phenotype correlations were as expected: Delta 8nt, Q318X and gene conversion correspond to SW forms, whereas the intron 2 splice site mutation may give either SW or SV forms; the V281L mutation was responsible for nonclassical forms. The spectrum of mutations underlines the genetic diversity of the Lebanese population. No correlation could be drawn out between mutations and some specific religious communities, except for the Delta 8nt mutation, which is present only in the Christian Maronite group. Molecular study of the CYP21 gene might constitute a good support for clinicians, especially in consanguineous families, for whom we could provide genetic counselling.  相似文献   

12.
PCSK9 is a liver-secreted blood protein that promotes the degradation of low-density lipoprotein receptors, leading to reduced hepatic uptake of plasma cholesterol. Nucleotide variations in its gene have been linked to hypo- and hyper-cholesterolemia. Two nonsense mutations, Y142X and C679X, are associated to lifelong hypocholesterolemia and a remarkable protection against coronary heart disease (CHD) in African Americans. The aim of this study was to determine the frequency of these cardioprotective mutations in West Africans. Subjects (n = 520) from different ethnic groups were recruited in Burkina-Faso, Benin, and Togo. Only the C679X mutation was detected. All carriers were heterozygous. The overall heterozygosity frequency was 3.3%. It varied significantly among ethnic groups, ranging from 0% to 6.9%. The overall high frequency of the cardioprotective C679X mutation in Africa may contribute to the lower incidence of CHD on this continent. The interethnic frequency differences may reflect historical settlement and migration patterns in the region, possibly combined with positive selection for the mutation driven by yet-unknown environmental factors.  相似文献   

13.
Familial neurohypophyseal diabetes insipidus (FNDI) is an autosomal dominant disorder characterized by progressive postnatal deficiency of arginine vasopressin as a result of mutation in the gene that encodes the hormone. To determine the extent of mutations in the coding region that produce the phenotype, we studied members of 17 unrelated kindreds with the disorder. We sequenced all 3 exons of the gene by using a rapid, direct dye-terminator method and found the causative mutation in each kindred. In four kindreds, the mutations were each identical to mutations described in other affected families. In the other 13 kindreds each mutation was unique. There were two missense mutations that altered the cleavage region of the signal peptide, seven missense mutations in exon 2, which codes for the conserved portion of the protein, one nonsense mutation in exon 2, and three nonsense mutations in exon 3. These findings, together with the clinical features of FNDI, suggest that each of the mutations exerts an effect by directing the production of a pre-prohormone that cannot be folded, processed, or degraded properly and eventually destroys vasopressinergic neurons.  相似文献   

14.
Aspartylglucosaminuria (AGU) is a lysosomal storage disorder caused by mutations in the gene for aspartylglucosaminidase (AGA). This enzyme participates in glycoprotein degradation in lysosomes. AGU results in progressive mental retardation, and no curative therapy is currently available. We have here characterized the consequences of AGA gene mutations in a compound heterozygous patient who exhibits a missense mutation producing a Ser72Pro substitution in one allele, and a nonsense mutation Trp168X in the other. Ser72 is not a catalytic residue, but is required for the stabilization of the active site conformation. Thus, Ser72Pro exchange impairs the autocatalytic activation of the AGA precursor, and results in a considerable reduction of the enzyme activity and in altered AGA precursor processing. Betaine, which can partially rescue the AGA activity in AGU patients carrying certain missense mutations, turned out to be ineffective in the case of Ser72Pro substitution. The Trp168X nonsense allele results in complete lack of AGA polypeptide due to nonsense-mediated decay (NMD) of the mRNA. Amlexanox, which inhibits NMD and causes a translational read-through, facilitated the synthesis of a full-length, functional AGA protein from the nonsense allele. This could be demonstrated as presence of the AGA polypeptide and increased enzyme activity upon Amlexanox treatment. Furthermore, in the Ser72Pro/Trp168X expressing cells, Amlexanox induced a synergistic increase in AGA activity and polypeptide processing due to enhanced processing of the Ser72Pro polypeptide. Our data show for the first time that Amlexanox might provide a valid therapy for AGU.  相似文献   

15.
Direct DNA sequencing of the steroid 21-hydroxylase gene (CYP21) revealed two novel mutations in two patients with severe congenital adrenal hyperplasia. The nonsense mutation Trp23Stop (TGG → TGA) was found in a woman with the simple virilizing form of the disease. She was a compound heterozygote, with the previously described Ile173Asn mutation on her other allele. A boy, who developed salt-wasting in the neonatal period, carried an allele with a novel mutation of the canonical splice acceptor site in intron 1 (AG→GG). He was also a compound heterozygote, with the well-known splice mutation in intron 2 on his other allele. Received: 26 February 1996  相似文献   

16.
17.
AIMS: Steroid 11beta-hydroxylase deficiency (11beta-OHD) is the second most common (5-8%) cause of congenital adrenal hyperplasia (CAH), and results from homozygous or compound heterozygous mutations or deletions of the responsible gene CYP11B1. In order to better understand the molecular basis causing 11beta-OHD, we performed detailed studies of CYP11B1 in a newly described patient diagnosed with the classical signs of 11beta-OHD. METHODS:CYP11B1 of the patient was investigated by polymerase chain reaction (PCR), sequencing, restriction fragment length polymorphism (RFLP) analysis, Southern blotting, and transient cell expression. RESULTS: We identified two new mutated alleles in CYP11B1. In one allele CYP11B1 has a g.940G-->C (p.G314R) missense mutation. On the other allele we found a chimeric gene that consists of part of the aldosterone synthase gene (CYP11B2) at exons 1-3 and part of the 11beta-hydroxylase gene (CYP11B1) at exons 4-9. Inin vitro studies, the g.940G-->C (p.G314R) mutation abolished all hydroxylase activity in comparison with the wild-type 11beta-hydroxylase. The chimeric CYP11B2/CYP11B1 protein retained 11beta-hydroxylase enzymatic activity in vitro. CONCLUSION: This case is caused by compound heterozygosity for a nonfunctional missense mutation and a chimeric CYP11B2/CYP11B1 gene with hydroxylase activity that is controlled by the CYP11B2 promoter. The most likely explanation is that the CYP11B2 promoter does not function in the zona fasciculata/reticularis where cortisol is exclusively synthesized.  相似文献   

18.
The association of autosomal recessive phosphorylase kinase deficiency in liver of a 3 1/2-year-old female child with mutations in the gene encoding the common part of the beta subunit of phosphorylase kinase is reported. The proband had a severe deficiency of phosphorylase kinase in liver, while the phosphorylase kinase activity in erythrocytes was only slightly diminished. She had no symptoms of muscle involvement. The complete coding sequences of the liver gamma subunit and of the beta subunit of phosphorylase kinase of the proband were analyzed for the presence of mutations, by either reverse-transcribed PCR or SSCP analysis. Three deviations from the normal sequence were found in the region encoding the common part of the beta subunit of phosphorylase kinase-namely, a 1827G-->A (W609X) transition, a 2309A-->G (Y770C) transition, and a deletion of nucleotides 2896-2911-whereas no mutations were detected in the sequence encoding the liver gamma subunit of phosphorylase kinase. The 1827G-->A mutation and the deletion both result in the formation of early stop codons. Investigation of DNA showed that the deletion is caused by a splice-acceptor site mutation (IVS30(-1),g-->t). Family analysis revealed that the 1827G-->A and IVS30(-1),g-->t substitutions are located on different parental chromosomes and that compound heterozygosity for these mutations segregates with the disease. The 2309A-->G mutation was detected in 2%-3% of the normal population. Thus, it is concluded that the deficiency of phosphorylase kinase in this proband is caused by compound heterozygosity for the 1827G-->A and the IVS30(-1),g-->t mutations and that the 2309A-->G mutation is a polymorphism. This implies that a defect in the sequence encoding the common part of the beta subunit of phosphorylase kinase may present as liver phosphorylase kinase deficiency.  相似文献   

19.
Autosomal recessive lamellar ichthyosis is a clinically heterogeneous group of severe congenital keratinization disorders that is characterized by generalized hyperkeratosis and variable erythema. About half of the patients have mutations in the TGM1 gene, which encodes the keratinocyte transglutaminase. Linkage studies have shown that at least two further loci for autosomal recessive lamellar ichthyosis must exist. We present here two patients with lamellar ichthyosis caused by mutations in the TGM1 gene. The first patient is compound heterozygous for the novel missense mutation C53S and the splice mutation A3447G. The second patient, a child of consanguineous parents from Tunisia, is homozygous for the unknown nonsense mutation W263X. This is the first report of a mutation, C53S, that affects the region of the keratinocyte transglutaminase that is essential for anchorage of the enzyme to the plasma membrane. A novel, rapid in situ transglutaminase activity assay revealed the absence of keratinocyte transglutaminase activity in both patients. The mutations described are hence causative for the ichthyosis phenotype. Received: 27 October 1997 / Accepted: 24 November 1997  相似文献   

20.
M. Claustres PU PH  MD  PhD 《Andrologie》2001,11(4):195-203
Over the last decade, the genetic basis for CBAVD has been identified by its association with CFTR gene mutations, and CBAVD is now generally considered to be a mild or incomplete form of CF. In this review, the author summarizes the main results of compilation of CFTR gene analysis conducted in French laboratories for 3,923 patients with CF and 800 males with CABVD. The degree of clinical expression can be affected by several variables, including the molecular mechanisms by which the various CFTR mutations impair or disrupt the function of the CFTR chloride channel. Phenotypic expression of CFTR mutational genotypes varies from severe, progressive pulmonary disease with pancreatic insufficiency (CF-PI), to mild pulmonary disease with pancreatic sufficiency (PS) or singleorgan forms of “CFTR-opathies”. In CF, a total of 310 different CFTR mutations accounting for 94% of 7,846 CF alleles have generated almost 500 different genotypes, comprising 2 severe mutations in 88% of cases (CF-PI), one severe mutation in trans to a mild mutation in 11% (CF-PS), and 2 mild mutations in 1% of identified genotypes. In CBAVD, 137 mutations scattered over the whole gene were identified in 60% of 1,600 CBAVD alleles during the study. Among the 150 characterized mutational CFTR genotypes, compound heterozygosity was the rule, and the most frequent CBAVD combinations were ΔF508/5T (35%), ΔF508/other mutation (30%, including ΔF508/R117H-7T: 5,6%), and 5T/other mutation (17%). No combination of two severe mutations was found in CBAVD (0%); by contrast with the CF population, 88% of genotypes identified in CBAVD comprised a severe mutation in trans to a mild mutation, and 12% consisted of 2 mild mutations. A total of 22 genotypes were shared by both CF and CBAVD. The role of the 5T allele as a splicing variant with variable, incomplete disease penetrance in CBAVD is reviewed. Other haplotype backgrounds, such as the TG12 sequence and the M470V polymorphism, may influence CFTR splicing and/or function. This study confirms the high molecular heterogeneity of CFTR mutations in CBAVD and emphasizes the importance of extensive CFTR analysis in these patients. Longterm follow-up studies of CBAVD patients are necessary in order to predict the phenotypic consequences of numerous CFTR mutational genotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号