首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusarium crown and root rot of tomato (Lycopersicon esculentum) caused by Fusarium oxysporum f. sp. radicis‐lycopersici is a new devastative disease of tomato greenhouse crops in Tunisia. Nothing is known neither about the population of this pathogen in this region, nor about the population of F. oxysporum f. sp. lycopersici the causal agent of Fusarium wilt of tomato. In order to examine the genetic relatedness among the F. oxysporum isolates by intergenic spacer restriction fragment length polymorphism (IGS‐RFLP) analysis and to elucidate the origin of the formae specialesradicis‐lycopersici in Tunisia by looking for genetic similarity of Tunisians isolates with isolates from a foreign source, the genetic diversity among F. oxysporum f. sp. radicis‐lycopersici and F. oxysporum f. sp. lycopersici populations was investigated. A total of 62 isolates of F. oxysporum, obtained from symptomless tomato plants, were characterized using IGS typing and pathogenicity tests on tomato plants. All Fusarium isolates were highly pathogenic on tomato. Fusarium oxysporum f. sp. radicis‐lycopersici isolates were separated into five IGS types. From the 53 F. oxysporum f. sp. radicis‐lycopersici isolates, 34 isolates have the same IGS types (IGS type 25), and the remaining 19 isolates were distributed into four IGS types. However, the only nine isolates of F. oxysporum f. sp. lycopersici have six different IGS types. This difference of diversity between the two formae speciales suggests that F. oxysporum f. sp. radicis‐lycopersici isolates have a foreign origin and may have been accidentally introduced into Tunisia.  相似文献   

2.
A group of differential tomato lines was used to identify the races of Fusarium oxysporum f. sp. lycopersici in Zhejiang, China. Marmande verte carries no resistant genes and Marporum carries gene I-1. Both lines Motelle and Mogeor have Gene I-1 and I-2. Tomato seedlings of eighteen days after sowing were inoculated with an isolate of Fusarium oxysporum f. sp. lycopersici, No. 98-2 and kept in a growth chamber. The seedlings were evaluated at fourteen days after inoculation. Results showed that Marmande verte and Marporum were severely infected by the pathogen and established as susceptible. Motelle and Mogeor were not infected and established as resistant. These results indicated that the isolate No. 98-2 represented the race 2 of Fusarium oxysporum f. sp. lycopersici and gene I-2 is necessary for obtaining resistance to this pathogen in the Zhejiang region.  相似文献   

3.
Despite its proven agronomic value, the plant disease suppressive effect of composts from olive waste has not been adequately investigated. In the present study, the disease suppressive potential of two olive waste (OW) composts against soil-borne plant pathogens was investigated. Both OW composts showed sizeable, active microbial populations, which were able to grow actively on chitin and cellulose. In plate inhibition trials, OW compost water extracts (CWEs) exerted a significant inhibitory effect on the growth of the pathogens Fusarium oxysporum f.sp. lycopersici (Fol), Pythium ultimum, Phytophtora infestans, Sclerotina sclerotiorum and Verticillium dahliae; and in pot experiments, the OW composts significantly reduced P. ultimum damping-off and Fol wilt diseases on tomato seedlings. The disease suppressive effect of OW composts seems to be due to the combined effects of suppression phenomena caused by the presence of microorganisms competing for both nutrients and space as well as by the activity of specific antagonistic microorganisms.  相似文献   

4.
Summary Fungi borne on or in ryegrass (Lolium spp.) seeds or invading ryegrass seedlings grown on field soils were isolated and identified. Selected isolates were tested to determine their pathogenicity to ryegrass seedlings. Seed-borne fungi were generally weakly virulent or non-pathogenic to ryegrass seedlings. Pathogenic seed-borne fungi includedChaetomium globosum Kunze: Fr.,Curvularia trifolii (Kauffm.) Boedijn, and species ofPenicillium Link andAspergillus Mich. ex Link. Species of fungi isolated from seedlings grown on field soils de pended on soil and temperature. Soil-borne fungi pathogenic to seedlings includedFusarium avenaceum (Fr.) Sacc.,F. culmorum (W. G. Smith) Sacc.,F. equiseti (Corda) Sacc.,F. oxysporum Schlecht.: Fr.,F. solani (Mart.) Sacc.,Pythium afertile Kanouse and Humphrey,P. debaryanum auct. non Hesse,P. irregulare Buisman,P. ultimum Trow, a sphaerosporangiatePythium sp.,Chaetomium globosum, Thanatephorus cucumeris (Frank) Donk,Trichoderma koningii Oudem., and aPhomopsis sp. Individual isolates of fungi differed in virulence to ryegrass seedlings, and ryegrass cultivars differed in susceptibility to seedling pathogens.  相似文献   

5.
Entomopathogenic fungi were isolated and identified from insects collected from the tropical forest and an agricultural area at El Eden Ecological Reserve, Quintana Roo, Mexico. These fungi were studied to determine their potential as biological control agents of greenhouse Trialeurodes vaporariorum (Homoptera: Aleyrodidae), and to contribute to the knowledge of biodiversity of this area. No pest insects were observed in the tropical forest. In contrast, all insects collected in the agricultural area were considered important pests by the local farmers, with the whitefly, as the most relevant, plentiful in Cucurbitaceae plants. From approximately 3400 collected insects in three different surveys, different anamorphic Ascomycetes were recovered. One isolate of Aspergillus sp., two of Penicillium sp., three of Paecilomyces marquandii, and three of Verticillium sp. out of 308 insects (2.9%) from three insect orders, Hymenoptera, Diptera and Isoptera in the tropical forest. In contrast, a higher number of fungal isolates were recovered from the agricultural area: three isolates from Aspergillus parasiticus, 100 of Fusarium moniliforme, one of Aschersonia sp., and 246 of Fusarium oxysporum out of 3100 insects (11.3%) from three insect orders, Homoptera, Coleoptera and Lepidoptera. The results of this study show Fusarium moniliforme and F oxysporum as highly virulent to infected insects in the agricultural area, with 100 and 246 isolates respectively, out of 350 infected insects of 3100 studied specimens. Laboratory whitefly nymph bioassays with isolates Ed29a of F. moniliforme, Ed322 of F. oxysporum, and Ed22 of P marquandii showed 96 to 97.5% insect mortality with no significant differences (P < 0.05) among them. F. oxysporum Ed322 produced no mortality when inoculated on tomato, bean, squash and maize seedlings (with and without injuries) compared to the 100% mortality caused by phytopathogenic strains, F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis lycopersici.  相似文献   

6.
AIMS: The aim of this work was to study the effect of high temperatures generated during composting process, on the phytopathogen fungus Fusarium oxysporum f.sp. melonis. This investigation was achieved by both in vivo (semipilot-scale composting of horticultural wastes) and in vitro (lab-scale thermal treatments) assays. METHODS AND RESULTS: Vegetable residues infected with F. oxysporum f.sp. melonis were included in compost piles. Studies were conducted in several compost windrows subjected to different treatments. Results showed an effective suppression of persistence and infective capacity, as this process caused complete fungal elimination after 2-3 days of composting. In order to confirm the effect of high temperature during this process, in vitro experiments were carried out. Temperature values of 45, 55 and 65 degrees C were tested. All three treatments caused the elimination of fungal persistence. Treatment at 65 degrees C was especially effective, whereas 45 degrees C eliminated fungal persistence only after 10 days. CONCLUSIONS: The composting process is an excellent alternative for the management of plant wastes after harvesting, as this procedure is able to suppress infective capacity of several harmful phytopathogens such as F. oxysporum f.sp. melonis. SIGNIFICANCE AND IMPACT OF THE STUDY: Fusarium oxysporum f.sp. melonis is a plant pathogen fungus specially important in the province of Almería (south-east Spain), where intensive greenhouse horticulture is very extended. High temperatures reached during composting of horticultural plant wastes ensure the elimination of phytopathogen microorganisms such as F. oxysporum f.sp. melonis from vegetable material, providing an adequate hygienic quality in composts obtained.  相似文献   

7.
Fusarium oxysporum f. sp. dianthi, f. sp. lycopersici, f. sp. cepae, f. sp. niveum and one unidentified F. oxysporum isolate proved to be active necrotrophic mycoparasites. In dual cultures hyphae of Trichoderma hamatum, T. longibrachiatum, T. pseudokoningii, T. harzianum, Botrytis cinerea and Rhizoctonia solani were parasitized and destroyed by F. oxysporum. One isolate of Phytophthora sp. was not affected. Mutual parasitism between F. oxysporum and T. pseudokoningii and T. longibrachiatum has been observed, too. Details of parasitic hyphal interactions: hyphal coiling, penetration sites, resistance sheat formation, hyphal invasion and internal growing are described. The mycoparasitic feature as well as antimicrobial metabolic production of F. oxysporum is probably a common phenomenon to ensure this important plant pathogenic species to compete successfully against other soil-borne fungal pathogens and saprophytes.  相似文献   

8.
The effect of crop rotation and monocropping on the occurrence of bacteria with antagonistic activity toward Pythium debaryanum and Fusarium oxysporum was shown. Arthrobacter spp., fluorescent Pseudomonas spp. and actinomycetes were isolated from winter rape, sugar beet and winter barley rhizosphere and bulk soil from the plots of a long-term crop rotation experiment (18 years). The occurrence of mycoantagonistic isolates and their antibiosis level exhibited specificity for the site, crop and crop rotation. Mycoantagonistic activity was common among actinomycetes and fluorescent Pseudomonas spp. and less frequent among Arthrobacter spp. Antibiosis of fluorescent Pseudomonas spp. and Arthrobacter spp. was in general stronger against P. debaryanum than F. oxysporum. The highest percentage of antagonistic Pseudomonas spp. against P. debaryanum was in the plots of barley crop, while plots of winter rape showed higher frequency of antagonists against F. oxysporum. The highest antibiosis activity of Arthrobacter spp. against both pathogens occurred in isolates from barley and winter rape monoculture, and there were no F. oxysporum antagonists among these bacteria in sugar beet monoculture. Most of actinomycete isolates strongly inhibited growth of P. debaryanum and F. oxysporum. The percentage of mycoantagonistic actinomycetes and their antibiosis level were the highest in the 6-year crop rotation system.  相似文献   

9.
The utility of fatty acid methyl ester (FAME) profiles for characterization and differentiation of isolates of Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici was investigated. Two fatty acid analysis protocols of the normal (MIDI) and a modified MIDI method were used for their utility. Only the modified MIDI method allowed a clear differentiation between F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicislycopersici. FAME profiles using the modified MIDI method gave the most consistent and reproducible analyzed fatty acid data. Evaluation of the FAME profiles based on cluster analysis and principal-component analysis revealed that FAME profiles from tested isolates were correlated with the same vegetative compatibility groups (VCGs) compared to the same races in F. oxysporum f. sp. lycopersici. Results indicated that FAME profiles could be an additional tool useful for characterizing isolates and forma species of F. oxysporum obtained from tomato.  相似文献   

10.
Two different types of citrus composts, and their water extracts, were tested with regard to their utilisations as partial substitutes for peat in growing media for melon seedlings in greenhouse nurseries. Both compost showed higher plant growth than peat. Compost composed by citrus waste and green residue (C2) showed greater plant growth than compost obtained from the same organic matrices mentioned above further the addition of sludge obtained from citrus industry (C1). Compost C2 showed a greater auxinic effect than C1 and it was the only one that showed cytokinic effect. Both composts also demonstrated a biocontrol effect against Fusarium oxysporum for melon plants: the effects were also higher in C2 than in C1. Higher number of isolated fungi was active against F. oxysporum in compost C2, than compost C1. No different bacterial biocontrol efficacy was observed between both composts. The water extracts of both composts gave lower plant yields than their solid matrices, their relative effects being similar to those of the solid composts (C2 extract gave higher plant yields than the extract from C1). The biocontrol effects of compost water extracts followed the same trend.  相似文献   

11.
In the current study, 160 pathogenic strains of Fusarium oxysporum collected from tomato, eggplant and pepper were studied. Eighteen inter‐primer binding site (iPBS)‐retrotransposon primers were used, and these primers generated 205 scorable polymorphic bands. The number of polymorphic bands per primer varied between 9 and 19, with a mean of 11 bands per primer. The highest polymorphism information content (PIC) value was determined as 0.27, and the lowest was 0.05. The unweighted pair‐group method with arithmetic averages (UPGMA) dendrogram including a heat map revealed that the 160 pathogenic strains of F. oxysporum were divided into two main clusters. The first cluster mainly included F. oxysporum f. sp. capsici (FOC) and F. oxysporum f. sp. melongenae (FOMG) isolates. The second cluster mainly comprised F. oxysporum f. sp. lycopersici (FOL) and F. oxysporum f. sp. radicis lycopersici (FORL) isolates. The highest percentage of loci in significant linkage disequilibrium (LD) was detected for FOL, whereas the lowest level of LD was found for FOC, and 95.2%, 99.4%, 99.1% and 97.4% of the relative kinship estimates were less than 0.4 for FOL, FOMG, FORL and FOC, respectively. LD differences were detected among formae speciales, and LD was higher in FOL as compare to FOC species. The findings of this study confirm that iPBS‐retrotransposon markers are highly polymorphic at the intraspecific level in Fusarium spp.  相似文献   

12.
Three composts (Ball, dairy, and greenhouse) were tested for the ability to suppress the development of Fusarium root and stem rot (caused by Fusarium oxysporum f. sp. radicis-cucumerinum) on greenhouse cucumber. Dairy and greenhouse composts significantly reduced disease severity (P = 0.05), while Ball compost had no effect. Assessment of total culturable microbes in the composts showed a positive relationship between disease suppressive ability and total population levels of pseudomonads. In vitro antagonism assays between compost-isolated bacterial strains and the pathogen showed that strains of Pseudomonas aeruginosa exhibited the greatest antagonism. In growth room trials, strains of P. aeruginosa and nonantagonistic Pseudomonas maculicola, plus 2 biocontrol strains of Pseudomonas fluorescens, were tested for their ability to reduce (i) survival of F. oxysporum, (ii) colonization of plants by the pathogen, and (iii) disease severity. Cucumber seedlings grown in compost receiving P. aeruginosa and P. fluorescens had reduced disease severity index scores after 8 weeks compared with control plants without bacteria. Internal stem colonization by F. oxysporum was significantly reduced by P. aeruginosa. The bacteria colonized plant roots at 1.9 × 10(6) ± 0.73 × 10(6) CFU·(g root tissue)-1 and survival was >107 CFU·(g compost)-1 after 6 weeks. The locus for 2,4-diacetylphloroglucinol production was detected by Southern blot analysis and confirmed by PCR. The production of the antibiotic 2,4-diacetylphloroglucinol in liquid culture by P. aeruginosa was confirmed by thin layer chromatography. These results demonstrate that composts containing antibiotic-producing P. aeruginosa have the potential to suppress diseases caused by Fusarium species.  相似文献   

13.
Arbuscular mycorrhizal fungi (AMF) and their bioprotective aspects are of great interest in the context of sustainable agriculture. Combining the benefits of AMF with the utilisation of plant species diversity shows great promise for the management of plant diseases in environmentally compatible agriculture. In the present study, AMF were tested against Fusarium oxysporum f. sp. lycopersici with tomato intercropped with either leek, cucumber, basil, fennel or tomato itself. Arbuscular mycorrhizal (AM) root colonisation of tomato was clearly affected by its intercropping partners. Tomato intercropped with leek showed even a 20 % higher AM colonisation rate than tomato intercropped with tomato. Positive effects of AMF expressed as an increase of tomato biomass compared to the untreated control treatment could be observed in root as well as in shoot weights. A compensation of negative effects of F. oxysporum f. sp. lycopersici on tomato biomass by AMF was observed in the tomato/leek combination. The intercropping partners leek, cucumber, basil and tomato had no effect on F. oxysporum f. sp. lycopersici disease incidence or disease severity indicating no allelopathic suppression; however, tomato co-cultivated with tomato clearly showed a negative effect on one plant/pot with regard to biomass and disease severity of F. oxysporum f. sp. lycopersici. Nonetheless, bioprotective effects of AMF resulting in the decrease of F. oxysporum f. sp. lycopersici disease severity were evident in treatments with AMF and F. oxysporum f. sp. lycopersici co-inoculation. However, these bioprotective effects depended on the intercropping partner since these effects were only observed in the tomato/leek and tomato/basil combination and for the better developed plant of tomato/tomato. In conclusion, the effects of the intercropping partner on AMF colonisation of tomato are of great interest for crop plant communities and for the influences on each other. The outcome of the bioprotective effects of AMF resulting in the decrease on F. oxysporum f. sp. lycopersici disease severity and/or compensation of plant biomass does not depend on the degree of AM colonisation but more on the intercropping partner.  相似文献   

14.
The kinetic of thein vitro production of polygalacturonase and pectin lyase of two closely related fungi,Fusarium oxysporum f.sp.lycopersici andF. oxysporum f.sp.radicis-lycopersici, was examined under various culture conditions such as the source of carbon, the pH, and the age of cultures. Over a 5-day period, the production of these enzymes by various isolates of the sameforma specialis (f. sp.) ofF. oxysporum was not significantly different (P ≥ 0.05). However, the amount of the enzymes produced differed markedly between both f. sp. The different carbon sources added to the culture media, such as citrus pectin, apple pectin, tomato cell wall fragments, andd-galacturonic acid, proved to be higher pectinase inducible substrates than sucrose and glucose. For both fungi, polygalacturonase and pectin lyase activities were optimal at pH 5.0 and 8.0, respectively. Furthermore, pectin lyase production had a partial Ca2+ requirement in contrast to polygalacturonase production which was limited by Ca2+. In most experiments performed, the production of polygalacturonase appeared superior withF. oxysporum f.sp.radicislycopersici than withF. oxysporum f.sp.lycopersici. On the other hand, pectin lyase production ofF. oxysporum f.sp.lycopersici was approximately 10-fold greater than that byF. oxysporum f.sp.radicis-lycopersici in media supplemented withd-galacturonic acid.  相似文献   

15.
Abstract

In the present study the effect of flavonoid compounds on the germination and fungal growth of the soil-borne tomato pathogen Fusarium oxysporum f. sp. lycopersici was studied. Out of 12 flavonoid compounds only myricetin and luteolin exhibited a low stimulating activity on microconidia germination of Fusarium oxysporum f. sp. lycopersici, whereas the other flavonoids tested were inactive when applied at five different concentrations. In our study the tested flavonoids affect fungal growth differently to microconidia germination. Individual flavonoid concentrations resulted in a small increase of fungal growth, but the lowest flavonoid concentrations showed an inhibiting effect on fungal growth for all flavonoids tested. There is evidence to suggest, that low flavonoid concentrations exhibit slight antimicrobial properties against Fusarium oxysporum f. sp. lycopersici.  相似文献   

16.
Callus cultures derived from isogenic lines of the tomato cultivars Moneymaker and Craigella, resistant or susceptible to F. oxysporum f. sp. lycopersici, were inoculated with Fusarium oxysporum f. sp. lycopersici race 1. Fungal growth was restricted on callus derived from resistant plants, after inoculation with a conidial suspension, whereas callus derived from susceptible plants was totally overgrown by the fungus within 7 days. The concentration of the phytoalexin rishitin was significantly higher in the callus culture derived from a resistant tomato line compared with the callus culture from a susceptible line, 2 and 3 days after inoculation with mycelium. The results of the experiments were compared with experiments with whole plants. Rishitin production as well as growth of the fungus was comparable with responses in plant-fungus interaction. Therefore callus culture may be useful in studying the interaction between tomato plants and race 1 of F. oxysporum f. sp. lycopersici.  相似文献   

17.
Biological control of plant pathogens is receiving increasing relevance, as compared to chemical methods, as they are eco-friendly, economical and indirectly improve plant quality and yield attributes. An investigation was undertaken to evaluate the potential of antagonistic cyanobacteria (Anabaena variabilis RPAN59 and A. oscillarioides RPAN69) fortified formulations for suppressing damping off disease in tomato seedlings challenged by the inoculation of a fungal consortium (Pythium debaryanum, Fusarium oxysporum lycopersici, Fusarium moniliforme and Rhizoctonia solani). Treatment with A. variabilis amended formulations recorded significantly higher plant growth parameters, than other treatments, including biological control (Trichoderma formulation) and chemical control (Thiram-Carbendazim). The A. variabilis amended compost-vermiculite and compost formulations exhibited 10?C15?% lower disease severity and 40?C50?% higher values than chemical and biological control treatments in terms of fresh weight and height of the plants. In future, in depth analyses regarding the mechanism involved in biocontrol by cyanobacteria and evaluation of these formulations under field conditions are proposed to be undertaken.  相似文献   

18.
Nematodes are omnipresent in composts and are active in virtually all stages of the composting process. Major shifts in species composition, life strategies, and feeding behavior occur during the composting process. Due to the heat peak, nematodes can be virtually absent, but several taxa appear immediately when the temperatures drop. These comprise both taxa present before the heat peak and new taxa. However, it is not known how nematodes populate the compost. In this study, we aimed to assess the survival and colonization capacity of nematodes in compost. Our results showed that composting processes inaccessible to insects or not in contact with soil did not significantly influence nematode succession during composting. However, differences between treatments were found for some specific taxa (i.e., for Acrostichus sp., Neodiplogasteridae sp., Nygolaimoides sp., and Rhabditidae sp. 1), illustrating the importance of insects for the dispersal of nematodes to compost. Experiments in the lab with the blue bottle fly as a possible carrier demonstrated actual transport of nematodes isolated from compost by the fly (i.e., Halicephalobus cfr. gingivalis, Diploscapter coronatus, Diplogasteritus sp., Acrostichus sp., and Mesorhabditis sp.). Juveniles and dauer stages of Aphelenchoides sp., Panagrolaimus sp., and rhabditids survived an experimentally induced temperature peak, while members of Tylenchidae did not. In conclusion, our results indicate that the rapidly changing nematode community in compost is the result of both differential survival and colonization capacities.  相似文献   

19.
Fusarium oxysporum was isolated from stem of basil plants showing symptoms of wilt, stem blight and collar root rot. Pathogenicity tests indicated that F. oxysporum f. sp. basilici is the causal agent of this disease. This is the first report of this pathogen in Egypt. The suppressive effects of six types of composts on Fusarium wilt disease incidence in basil were evaluated under greenhouse conditions. The effectiveness of these composts and their relation to the microelements content in treated plants was also assessed. Soil treatments with Khaya and Eucalyptus composts significantly reduced the infection percentage and disease severity of basil wilt. Otherwise, the applications of Araucaria, Datura, Ficus and Azadirachta composts showed no effect on both infection percentage and disease severity. Moreover, the Khaya and Eucalyptus compost treatments increased the levels of Iron (Fe), Zinc (Zn) and Manganese (Mn) in treated basil plants than application of Araucaria, Datura, Ficus and Azadirachta composts. In the case of Copper (Cu) content, it was significantly higher only in Eucalyptus-compost-treated plants than in other compost applications. These composts not only reduced the disease incidence but also increased both fresh and dry weight (FW and DW) and microelements contented in basil treated plants. In general, although soil amendment with either Khaya or Eucalyptus compost can reduce the disease incidence of Fusarium wilt on basil plants, microelements contented; FW and DW of these effects can be variable depending on their levels added in soil. According to the results of this study, it can be concluded that the use of compost in the soil as an organic fertiliser increased exchangeable form of microelements in the soil and also the availability of these elements by basil plants.  相似文献   

20.
The method proposed in this study was used to isolate fungi grown under anaerobic conditions and to reveal distinctions in their abundance and species composition in different habitats. The ability of micromycetes of different taxa to grow under anaerobic conditions and ensure alcohol fermentation was determined for a representative sample (344 strains belonging to more than 60 species). The group of fungi growing under anaerobic conditions included species with high, moderate, and low fermentation activity. The ability for anaerobic growth and fermentation depended on the taxonomic affiliation of fungi. In some cases, the expression of these characteristics depended on the habitat from which the strain was isolated. The maximum level of ethanol accumulation in culture liquid (1.2–4.7%) was detected for Absidia spinosa, Aspergillus sp. of group flavus, Aspergillus terreus, Acremonium sp., Mucor circinelloides, Mucor sp., Fusarium oxysporum, F. solani, F. sambucinum, Rhizopus arrhizus var. arrhizus, Trichoderma atroviride, and Trichoderma sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号