首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single voltage-dependent K+ and Cl- channels in cultured rat astrocytes   总被引:2,自引:0,他引:2  
The kinetic reactions of a voltage-dependent K+ channel, which constituted about 14% of all the recorded K+ channels in the membrane of cultured rat astrocytes were studied in detail. A scheme of one open and three closed states is necessary to describe the kinetic reactions of this channel. The channel contributes little to the resting membrane potential. Its steady state open probability (Po) is 0.06 at -70 mV. When the cell is depolarized to O mV, Po approaches 1. This represents a 17-fold increase. Such channels could contribute to the potassium clearance by enhancing the effect of "spatial buffering." Additionally, single anion-selective channels with very high conductances were found in inside-out patches in approximately 15% of all recorded channels in the membrane of rat astrocytes. Channel openings are characterized by more than one conductance level; the main level showed a mean conductance of 400 pS. These channels are divided into two groups. Approximately 90% of the recorded chloride channels showed a strong voltage dependency of their current fluctuations. Within a relatively small potential range (+/- 15 mV) the channels have a high probability of being in the active state. After a voltage jump to varying testing potentials in the range of +/- 20 to +/- 50 mV the channels continued to be in the active state for some time and then closed to a shut state. If the testing potential persisted, the channels were not able to leave this shut state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
This article reviews some recent studies on the voltage-gated ion channels in the plasmalemma of the satellite cells of the peripheral and central nervous systems. Following the finding that rabbit Schwann cells exhibit a large binding capacity for saxitoxin (Ritchie and Rang, 1983) electrophysiological studies have shown that these cells not only express plasmalemmal voltage-gated sodium channels but also voltage-gated potassium channels (Chiu, Shrager and Ritchie, 1984; Shrager, Chiu and Ritchie, 1985). Whole-cell recording with the patch-clamp method reveals that the properties of these two kinds of channel are quite similar to those of the corresponding channels in the nodal axolemma, except that the peak current-voltage relation of the sodium channels is shifted about 30 mV in the depolarizing direction. Similar voltage-gated sodium and potassium channels exist in rat cultured astrocytes (Bevan et al., 1985). Furthermore, the outward current on depolarization in astrocytes has a component other than that carried in the potassium channels. About 75% of the total outward current is blocked by external TEA or internal caesium; and it is presumed to be a potassium current. The remainder, however, is insensitive to these potassium channel blocking agents; but it is abolished by exposure to the two stilbene sulphonates, DIDS and SITS (Gray and Ritchie, 1986). This remaining current persists in the presence of the large organic cation N-methyl-(+)-glucamine in the patch pipette. It is, however, reduced when the chloride of the external medium is replaced by methyl-sulphate, sulphate, or isethionate; and it is abolished when the external anion is gluconate (M.W., 190). The TEA-insensitive component of outward current in astrocytes thus seem to involve an influx of chloride ions through a voltage-gated channel whose diameter is such that anions larger than gluconate cannot pass. The current in the channels is neglible at potentials more negative than about -40 mV.  相似文献   

3.
Astrocytes (both type 1 and type 2), cultured from the central nervous system of newborn or 7 day old rats show voltage gated sodium and potassium channels that are activated when the membrane is depolarized to greater than -40 mV. The sodium channels in these cells have an h-infinity curve similar to that of nodal membranes but the activation (peak current-voltage) curves are shifted along the voltage axis by about +30 mV. These sodium currents are blocked only by high concentrations of tetrodotoxin. The voltage activated potassium currents in both types of astrocyte show at least two components; an inactivating component that is suppressed at holding potentials of greater than -40 mV and a persistent, non-inactivating current. Several types of single channel currents were observed in outside-out membrane patches from type 2 astrocytes. One type of potassium channel showed inactivation on depolarization and may contribute to the whole-cell inactivating current. In contrast, oligodendrocytes showed no obvious voltage gated membrane channels. The properties of the type 2 astrocyte-oligodendrocyte progenitor cell were investigated in two ways: 1) by examination of cells just beginning to differentiate along the "electrically silent" oligodendrocyte pathway or 2) by recording from progenitor cells cultured for 24 hours in the presence of cycloheximide to block the appearance of new membrane channels. In both cases, voltage gated inward (sodium) and outward (potassium) currents were noted. The outward current response showed both an inactivating and a non-inactivating component. Similar voltage activated inward and outward membrane currents were noted in reactive astrocytes freshly isolated (3-6 hours) from lesioned areas of adult rat brains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Ionic currents of enzymatically dispersed type I and type II cells of the carotid body have been studied using the whole cell variant of the patch-clamp technique. Type II cells only have a tiny, slowly activating outward potassium current. By contrast, in every type I chemoreceptor cell studied we found (a) sodium, (b) calcium, and (c) potassium currents. (a) The sodium current has a fast activation time course and an activation threshold at approximately -40 mV. At all voltages inactivation follows a single exponential time course. The time constant of inactivation is 0.67 ms at 0 mV. Half steady state inactivation occurs at a membrane potential of approximately -50 mV. (b) The calcium current is almost totally abolished when most of the external calcium is replaced by magnesium. The activation threshold of this current is at approximately -40 mV and at 0 mV it reaches a peak amplitude in 6-8 ms. The calcium current inactivates very slowly and only decreases to 27% of the maximal value at the end of 300-ms pulses to 40 mV. The calcium current was about two times larger when barium ions were used as charge carriers instead of calcium ions. Barium ions also shifted 15-20 mV toward negative voltages the conductance vs. voltage curve. Deactivation kinetics of the calcium current follows a biphasic time course well fitted by the sum of two exponentials. At -80 mV the slow component has a time constant of 1.3 +/- 0.4 ms whereas the fast component, with an amplitude about 20 times larger than the slow component, has a time constant of 0.16 +/- 0.03 ms. These results suggest that type I cells have predominantly fast deactivating calcium channels. The slow component of the tails may represent the activity of a small population of slowly deactivating calcium channels, although other possibilities are considered. (c) Potassium current seems to be mainly due to the activity of voltage-dependent potassium channels, but a small percentage of calcium-activated channels may also exist. This current activates slowly, reaches a peak amplitude in 5-10 ms, and thereafter slowly inactivates. Inactivation is almost complete in 250-300 ms. The potassium current is reversibly blocked by tetraethylammonium. Under current-clamp conditions type I cells can spontaneously fire large action potentials. These results indicate that type I cells are excitable and have a variety of ionic conductances. We suggest a possible participation of these conductances in chemoreception.  相似文献   

5.
Cells in blood vessel walls express connexin (Cx)43, Cx40, and Cx37. We recently characterized gap junction channels in rat basilar artery smooth muscle cells and found features attributable not only to these three connexins but also to an unidentified connexin, including strong voltage dependence and single channel conductance of 30-40 pS. Here, we report data consistent with identification of Cx45. Immunofluorescence using anti-human Cx45 and anti-mouse Cx45 antibodies revealed labeling between alpha-actin-positive cells, and RT-PCR of mRNA from arteries after endothelial destruction yielded amplicons exhibiting 90-98% identity with mouse Cx45 and human Cx45. Dual-perforated patch clamping was performed after exposure to oligopeptides that interfere with docking of Cx43, Cx40, or Cx45. Cell pairs pretreated with blocking peptides for Cx43 and Cx40 exhibited strongly voltage-dependent transjunctional conductances [voltage at which voltage-dependent conductance declines by one-half (V1/2) = +/-18.9 mV] and small single channel conductances (31 pS), consistent with the presence of Cx45, whereas cell pairs pretreated with blocking peptide for Cx45 exhibit weaker voltage-dependent conductances (V1/2 = +/-37.9 mV), consistent with block of Cx45. Our data suggest that Cx45 is transcribed, expressed, and forms functional gap junction channels in rat cerebral arterial smooth muscle.  相似文献   

6.
The striatum is the biggest nucleus of the basal ganglia and receives input from almost all cortical regions, substantia nigra and the thalamus. Striatal neuronal circuitry is well characterized, but less is known about glial physiology. To this end, we evaluated astrocyte electrophysiological properties using whole-cell patch-clamp recording in dorsal striatal brain slices from P15 to P21 rat. The majority of cells (95%) were passive astrocytes that do not express any detectable voltage-gated channels. Passive astrocytes were subcategorized into three groups based on time-dependent current properties. The observed proportion of the different astrocyte subtypes did not change within the age range evaluated here, but was modulated during reduction of specific conductances and gap junction coupling. Striatal astrocytes were extensively interconnected and closure of gap junctions with octanol (1 mM), carbenoxolone (100 μM) or increased intracellular calcium (2 mM), significantly altered intrinsic properties. When simultaneously blocking potassium channels and gap junction coupling almost no passive conductance was detected, implying that the major currents in striatal astrocytes derive from potassium and gap junction conductance. Uncoupling of the syncytium reduced currents activated in response to a hyperpolarizing pulse, suggesting that changes in gap junction coupling alters astrocyte electrophysiological responses. Our findings indicate that the prevalent gap junction coupling is vital for astrocyte function in the striatum, and that whole-cell recordings will be distorted by currents activated in neighboring cells.  相似文献   

7.
B A Barres  L L Chun  D P Corey 《Neuron》1989,2(4):1375-1388
Two functionally different forms of the voltage-dependent sodium channel were observed in glia and in neurons of the mammalian nervous system. Both forms had identical conductance and tetrodotoxin sensitivity and displayed steady-state inactivation, a strongly voltage-dependent rate of activation, and a faster but weakly voltage-sensitive rate of inactivation. However, the glial form had significantly slower kinetics and a more negative voltage dependence, suggesting that it was functionally specialized for glia. This form was found in most glial types studied, while the neuronal form was observed in retinal ganglion cells, cortical motor neurons, and O2A glial progenitor cells. Both forms occurred in type-2 astrocytes. The presence of the glial form correlated with the RAN-2 surface antigen.  相似文献   

8.
Membranes vesicles, prepared from bovine rod outer segments were fused with planar lipid bilayers. Two different ion channels were identified by recording currents from single channels. Both types of channels were selective for sodium rather than potassium and were impermeable to chloride ions. Unit conductances were 20 and 120 pS, respectively, in 150 mM sodium chloride. The channel with the larger unit conductance was sensitive to the transmembrane potential. This channel rapidly activated within less than 10 ms after a voltage jump to a more negative membrane potential and then inactivated after several seconds. The duration of the active period and the properties of the channel depended on the amplitude of the voltage jump. The channel of smaller unit conductance did not show any voltage-dependent activation or inactivation. Both types of channels were insensitive to light in the planar bilayer system. Channels incorporated into planar bilayers on a Teflon sandwich septum or on the tip of a glass micropipette gave similar results.  相似文献   

9.
Magnitude and location of surface charges on Myxicola giant axons   总被引:14,自引:11,他引:3       下载免费PDF全文
The effects of changes in the concentration of calcium in solutions bathing Myxicola giant axons on the voltage dependence of sodium and potassium conductance and on the instantaneous sodium and potassium current-voltage relations have been measured. The sodium conductance-voltage relation is shifted along the voltage axis by 13 mV in the hyperpolarizing direction for a fourfold decrease in calcium concentration. The potassium conductance-voltage relation is shifted only half as much as that for sodium. There is no effect on the shape of the sodium and potassium instantaneous current-voltage curves: the normal constant-field rectification of potassium currents is maintained and the normal linear relationship of sodium currents is maintained. Considering that shifts in conductances would reflect the presence of surface charges near the gating machinery and that shape changes of instantaneous current-voltage curves would reflect the presence of surface charges near the ionic pores, these results indicate a negative surface charge density of about 1 electronic charge per 120 A2 near the sodium gating machinery, about 1 e/300 A2 for the potassium gating machinery, and much less surface charge near the sodium or potassium pores. There may be some specific binding of calcium to these surface charges with an upper limit on the binding constant of about 0.2 M-1. The differences in surface charge density suggest a spatial separation for these four membrane components.  相似文献   

10.
Patch-clamp measurements were made on osteoblast-like cells isolated from embryonic chick calvaria. Cell-attached-patch measurements revealed two types of high conductance (100-250 pS) channels, which rapidly activated upon 50-100 mV depolarization. One type showed sustained and the other transient activation over a 10-sec period of depolarization. The single-channel conductances of these channel types were about 100 or 250 pS, depending on whether the pipettes were filled with a low K+ (3 mM) or high K+ (143 mM) saline, respectively. The different reversal potentials under these conditions were consistent with at least K+ conduction. Whole-cell measurements revealed the existence of two types of outward rectifying conductances. The first type conducts K+ ions and activates within 20-200 msec (depending on the stimulus) upon depolarizing voltage steps from less than -60 mV to greater than -30 mV. It inactivates almost completely with a time constant of 2-3 sec. Recovery from inactivation is biphasic with an initial rapid phase (1-2 sec) followed by a slow phase (greater than 20 sec). The second whole-cell conductance activates at positive membrane potentials of greater than +50 mV. It also rapidly turns on upon depolarizing voltage steps. Activation may partly disappear at the higher voltages. Its single channels of 140 pS conductance were identified in the whole cell and did conduct K+ ions but were not highly Cl- or Na+ selective. The results show that osteoblasts may express various types of voltage controlled ionic channels. We predict a role for such channels in mineral metabolism of bone tissue and its control by osteoblasts.  相似文献   

11.
The development of voltage-dependent ionic conductances of foetal mouse spinal cord neurones was examined using the whole-cell patch-clamp technique on neurones cultured from embryos aged 10-12 days (E10-E12) which were studied between the first day in vitro (V1) to V10. A delayed rectifier potassium conductance (Ik) and a leak conductance were observed in neurones of E10, V1, E11, V1, and E12, V1 as well as in neurones cultured for longer periods. A rapidly activating and inactivating potassium conductance (IA) was seen in neurones from E11. V2 and E12, V1 and at longer times in vitro. A tetrodotoxin (TTX) sensitive sodium-dependent inward current was observed in neurones of E11 and E12 from V1 onwards. Calcium-dependent conductances were not detectable in these neurones unless the external calcium concentration was raised 10-to 20-fold and potassium conductances were blocked. Under these conditions calcium currents could be observed as early as E11. V3 and E12, V2 and at subsequent times in vitro. The pattern of development of voltage-dependent ionic conductances in murine spinal neurones is such that initially leak and potassium currents are present followed by sodium current and subsequently calcium current.  相似文献   

12.
On the voltage-dependent action of tetrodotoxin.   总被引:2,自引:0,他引:2       下载免费PDF全文
The use of the maximum rate-of-rise of the action potential (Vmax) as a measure of the sodium conductance in excitable membranes is invalid. In the case of membrane action potentials, Vmax depends on the total ionic current across the membrane; drugs or conditions that alter the potassium or leak conductances will also affect Vmax. Likewise, long-term depolarization of the membrane lessens the fraction of total ionic current that passes through the sodium channels by increasing potassium conductance and inactivating the sodium conductance, and thereby reduces the effect of Vmax of drugs that specifically block sodium channels. The resultant artifact, an apparent voltage-dependent potency of such drugs, is theoretically simulated for the effects of tetrodotoxin on the Hodgkin-Huxley squid axon.  相似文献   

13.
Computer simulations of a dendrite possessing voltage-sensitive potassium conductances were used to determine the effects of these conductances on synaptic transmission and on the propagation of synaptic signals within the dendritic tree. Potassium conductances had two principal effects on voltage transients generated by current injections or synaptic conductances. Locally (near the source of the transient), voltage-gated potassium channels produced a potassium shunt current that reduced the amplitude of voltage transients generated by depolarizing currents. This shunt current increased as the amplitude of the depolarizing transient increased and so acted to prevent large synaptic transients from reaching levels that would saturate due to a reduction in driving force. In the presence of rapidly activating potassium currents, excitatory synapses produced larger synaptic currents that were more linearly related to synaptic conductance, but these produced smaller voltage transients. The maximum amplitudes of the voltage transients were limited by the voltage sensitivity of the K+ conductance and the rate at which it could activate. Sufficiently rapid synaptic currents could outrun the K+ conductance and thus achieve high local peak amplitudes. These effects of K+ conductances were unrelated to whether they were located on dendrites or not, being related only to their proximity to the source of synaptic current. The second class of effects of K+ conductances depended on their alteration of the electrotonic structure of the postsynaptic cell and so were observed only when they were located on postsynaptic dendrites. Voltage-gated K+ conductances produced voltage-dependent electrotonic expansion of depolarized dendrites, which had the effect of isolating synaptic inputs on depolarized dendrites from events on the rest of the neuron. Thus, synapses on the same dendrite interacted destructively to a degree much greater than that expected from the classical driving force nonlinearity. Synapses located proximally to a depolarized dendritic region were less effected than those located distally, and the range of the nonlinear interaction between synapses was dependent on the kinetics of activation and deactivation of the conductance. When present in conjunction with rapidly activating dendritic sodium conductance, the potassium conductance sharpened the requirement for spatial and temporal coincidence to produce synaptic boosting by inward currents, and suppressed out-of-synchrony synaptic inputs.  相似文献   

14.
This review discusses the activation of ion transport pathways during regulatory volume decrease in opossum kidney (OK) cells. OK cells regulate their volume when exposed to a hypotonic medium. The changes in cell volume are caused by activation of ion transport pathways and the accompanying osmotically driven water movement so that the increased cell volume returns toward physiological levels. The reshrinking of hypotonically swollen cells is termed regulatory volume decrease. In OK cells separate K+ and Cl- conductances are activated. The Na+/H+ cotransport system seems not to be involved. The potassium pathway is mediated by a K+ channel with a slope conductance of about 12 pS. The occasionally observed widely distributed Ca2(+)- and voltage-dependent K+ channel of large unit conductance (120 pS) seems not to be involved. The volume regulatory decrease is accompanied by a cell depolarization from a resting potential of about -60 mV to about -20 mV followed by a repolarization. It will be discussed whether the depolarization is caused by the observed activation of stretch-sensitive ion channels of about 30 and 40 pS, respectively. The transient behavior of the cell volume parallels the time-dependent change of the total membrane current. For both recording techniques the volume regulatory decrease can be blocked by quinine. In addition an inward rectifying K+ channel of about 80 pS has been observed in high KCl solution.  相似文献   

15.
A voltage-gated chloride conductance in rat cultured astrocytes   总被引:4,自引:0,他引:4  
Large voltage-dependent outward currents are recorded with the whole-cell patch-clamp technique from rat cultured astrocytes under conditions where an outward movement of potassium ions is excluded (either by blockage of the potassium channels pharmacologically or by replacement of the internal potassium by the impermeant large organic cation N-methyl-(+)-glucamine). The current, which is activated at potentials more positive than -40 to -50 mV, is normally carried by an inward movement of chloride ions. Its reversal potential is the same as the chloride equilibrium potential. With depolarization to +60 mV (for 225 ms) little or no inactivation of the current occurs: with depolarizations to +90 to +110 mV a time-dependent decay is seen. The current, which is often not marked immediately after formation of the whole-cell clamp, generally increases over a period of a few minutes to a maximum (after which it usually declines), as if some as yet unknown intracellular factor keeping the channels closed were being washed away from the membrane. The time course of this phenomenon is not affected by changing of the internal free calcium concentration (from 10(-8)M to 10(-6)M) or by an intracellular mixture of cyclic AMP (1 mM), ATP (4 mM) and Mg+ (2 mM). The conductance is slightly increased when the chloride of the bathing medium is replaced by bromide; is much reduced on replacement by methylsulphate, sulphate, isethionate, or acetate; and is virtually abolished on replacement by the large anion gluconate. The outward current is inhibited by the disulphonate stilbenes DIDS and SITS; this blocking action was initially partly reversible, although never completely so. It is suggested that the chloride conductance plays a role in the spatial buffering of potassium by astrocytes.  相似文献   

16.
Summary The voltage-dependent properties of inwardly rectifying potassium channels were studied in adult and neonatal rat ventricular myocytes using patch voltage-clamp techniques. Inward rectification was pronounced in the single-channel currentvoltage relation and outward currents were not detected at potentials positive to the calculated reversal potential for potassium (E k). Single-channel currents having at least three different conductances were observed and the middle one was predominant. Its single-channel conductance was nonlinear ranging from 20 to 40 pS. Its open-time distribution was fit by a single exponential and the time constants decreased markedly with hyperpolarization fromE k. The distribution of the closed times required at least two exponentials for fitting, and their taus were related to the bursting behavior displayed at negative potentials. The steady-state probability of being open (P o) for this channel was determined from the single-channel records; in symmetrical isotonic K solutionsP o was 0.73 at –60 mV, but fell to 0.18 at –100 mV. The smaller conductance was about one-half the usual value and the open times were greatly prolonged. The large conductance was about 50 percent greater than the usual value and the open times were very brief. TheP o(V) relation, the kinetics and the conductance of the predominant channel account for most of the whole cell inwardly rectifying current. The kinetics suggest that an intrinsic K+-dependent mechanism may control the gating, and the conductance of this channel. In the steady state, the opening and closing probabilities for the two smaller channels were not independent of each other, suggesting the possibility of a sub-conductance state or cooperativity between different channels.  相似文献   

17.
A voltage-gated hydrogen ion-selective conductance has been previously described in the immature oocyte of the urodele amphibian Ambystoma. The present study was prompted by reports that changes in membrane voltage and internal pH, as well as in internal sodium ion concentration, occur during the hormone-induced maturation of oocytes from other amphibians. As activation of membrane currents might mediate changes in internal ion concentrations in addition to altering the membrane voltage, microelectrode recording techniques have been employed to examine changes in membrane conductances which occur during maturation of Ambystoma oocytes. It was observed that during the first 5 hr of maturation the magnitude of the hydrogen ion conductance gradually decreased, and that subsequently there was an increase in the amplitude of a voltage-dependent noninactivating sodium conductance. After 6 to 7 hr, after the loss of the hydrogen conductance and at about the time of germinal vesicle breakdown, the resting potential of the oocyte spontaneously shifted from approximately -10 mV to approximately +30 mV, where it remained until at least 24 hr after the initiation of maturation. This voltage transition was due to the appearance of mechanisms generating inward current in the oocyte membrane; part of this inward current was due to the tonic activation of the sodium conductance. Changes in internal pH and internal sodium ion concentration occurred during maturation, as judged from shifts in the reversal potentials of both hydrogen and sodium currents. A gradual decrease in internal hydrogen ion concentration was observed up until the time of disappearance of the hydrogen conductance (change in internal pH from about 7.15 in immature oocytes to about 7.40 by 3 hr after application of progesterone). This was followed, as sodium conductance increased, by an apparent rise in the internal sodium ion concentration (from about 6 mM to about 17 mM by 10 hr postprogesterone).  相似文献   

18.
Currents through DPI 201-106 modified single cardiac sodium channels in guinea pig ventricular cells were measured using the patch clamp technique in the cell-free configuration to control the sodium concentrations on both sides of the patch membrane. Current-voltage relationships of the single channels were obtained by application of linear voltage ramps from -140 to 100 mV. With 10 mmol/l Na+ at the inner surface of the patch, openings of sodium channels with conductances of 17 pS (selectivity ratios PK/PNa = 0.083 and PK/PNa = 0.58) and 12 pS (selectivity ratios PK/PNa = 0.084 and PK/PNa = 1.832) were obtained. With 30 mmol/l internal sodium, conductances of 20, 10, and 7 pS and selectivity ratios of 0.084, 0.386, and 0.543, respectively, could be measured. It is concluded that substates of sodium channel currents are due to changes in single channel conductance as well as in selectivity, or to changes of both independently of each other which accounts for the variability of conductance levels of cardiac Na channels.  相似文献   

19.
M Chua  W J Betz 《Biophysical journal》1991,59(6):1251-1260
The channels present on the surface membrane of isolated rat flexor digitorum brevis muscle fibers were surveyed using the patch clamp technique. 85 out of 139 fibers had a novel channel which excluded the anions chloride, sulfate, and isethionate with a permeability ratio of chloride to sodium of less than 0.05. The selectivity sequence for cations was Na+ = K+ = Cs+ greater than Ca++ = Mg++ greater than N-Methyl-D-Glucamine. The channel remained closed for long periods, and had a large conductance of approximately 320 pS with several subconductance states at approximately 34 pS levels. Channel activity was not voltage dependent and the reversal potential for cations in muscle fibers of approximately 0 mV results in the channel's behaving as a physiological leakage conductance. Voltage activated potassium channels were present in 65 of the cell attached patches and had conductances of mostly 6, 12, and 25 pS. The voltage sensitivity of the potassium channels was consistent with that of the delayed rectifier current. Only three patches contained chloride channels. The scarcity of chloride channels despite the known high chloride conductance of skeletal muscle suggests that most of the chloride channels must be located in the transverse tubular system.  相似文献   

20.
We examined the effects of Pandinus imperator scorpion venom on voltage-gated potassium channels in cultured clonal rat anterior pituitary cells (GH3 cells) using the gigohm-seal voltage-clamp method in the whole-cell configuration. We found that Pandinus venom blocks the voltage-gated potassium channels of GH3 cells in a voltage-dependent and dose-dependent manner. Crude venom in concentrations of 50-500 micrograms/ml produced 50-70% block of potassium currents measured at -20 mV, compared with 25-60% block measured at +50 mV. The venom both decreased the peak potassium current and shifted the voltage dependence of potassium current activation to more positive potentials. Pandinus venom affected potassium channel kinetics by slowing channel opening, speeding deactivation slightly, and increasing inactivation rates. Potassium currents in cells exposed to Pandinus venom did not recover control amplitudes or kinetics even after 20-40 min of washing with venom-free solution. The concentration dependence of crude venom block indicates that the toxins it contains are effective in the nanomolar range of concentrations. The effects of Pandinus venom were mimicked by zinc at concentrations less than or equal to 0.2 mM. Block of potassium current by zinc was voltage dependent and resembled Pandinus venom block, except that block by zinc was rapidly reversible. Since zinc is found in crude Pandinus venom, it could be important in the interaction of the venom with the potassium channel. We conclude that Pandinus venom contains toxins that bind tightly to voltage-dependent potassium channels in GH3 cells. Because of its high affinity for voltage-gated potassium channels and its irreversibility, Pandinus venom may be useful in the isolation, mapping, and characterization of voltage-gated potassium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号