首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
With the intention of studying calcium-dependent ciliary reversal in Tetrahymena, we isolated a Tetrahymena calcium-binding protein of 10 kDa (TCBP-10) which was not calmodulin and reported its properties (Ohnishi, K., and Watanabe, Y. (1983) J. Biol. Chem. 258, 13978-13985). However, immunoblotting with an antiserum against TCBP-10 and sequencing of the cDNAs and partial genomic DNAs for this calcium-binding protein prove that this previously reported TCBP-10 is the degraded product of a 25-kDa calcium-binding protein. Thus, we correct the name of the protein from TCBP-10 to TCBP-25. From the analysis of the cDNA for TCBP-25, it is shown to be composed of 218 amino acid residues and its molecular weight is estimated to be 24,702. This protein is predicted to contain four EF-hand-type calcium binding domains and to be a member of the calmodulin family. Little sequence homology with other proteins was shown by a computer search, except in the EF-hand regions. The special feature of TCBP-25 is that the distance between calcium-binding domains II and III is extraordinarily long for a calmodulin family protein having four calcium-binding domains. The genomic DNA for TCBP-25 contains two introns situated at short distances before calcium-binding domains I and III, implying gene duplication in genealogy.  相似文献   

2.
The Tetrahymena Ca2+-binding protein of 25 kDa (TCBP-25) is a calmodulin family protein containing four EF-hand type calcium-binding domains. TCBP-25 is localized in the whole cell cortex and around both the migratory and stationary pronuclei at the pronuclear exchange stage during conjugation. TCBP-25 is expected to play an important role in conjugation, though its function during sexual reproduction has not been elucidated. According to the localization of this protein and its timing, three possible roles of TCBP-25 are proposed. TCBP-25 may play a role in 1) differentiating the two functional pronuclei from the degenerative post-meiotic nuclei, 2) the process of pronuclear exchange and 3) pronuclear fusion. To test these hypotheses, the localization of TCBP-25 in conjugation mutants (cnj10, cnj7 and bcd2) was examined. The results ruled out the first and the third hypotheses and suggested that TCBP-25 may play a role in pronuclear exchange. In the next step we succeeded in reducing expression of the TCBP-25 gene using the antisense ribosome system, and we analyzed the phenotype of the transformants. The knock down of TCBP-25 function also suggests that TCBP-25 plays a role in the pronuclear exchange and in the maintenance of cell shape.  相似文献   

3.
The amino acid sequence of a calcium-binding protein obtained from the cilium and cell body of Tetrahymena, designated as TCBP-10 (Tetrahymena calcium-binding protein; molecular mass = 10 kDa [Ohnishi, K. and Watanabe, Y. (1983) J. Biol. Chem. 258, 13978-13985] was determined. It is composed of 102 amino acid residues. The exact molecular mass is calculated to be 11563 Da. From the amino acid sequence analysis, it has two EF-hand-type calcium-binding sites.  相似文献   

4.
5.
A new Ca2+-binding protein, different from calmodulin, has been detected in the cilium and cell body of Tetrahymena. This protein, designated as TCBP-10, has been purified from the cells to homogeneity. TCBP-10 is an acidic protein (pI = 4.5) which shows a Ca2+-dependent mobility shift in alkali-glycerol-polyacrylamide gel electrophoresis. The protein is resistant to heat and trichloroacetic acid. The molecular weight of the protein is 10,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 22,000 by Sephadex G-50 gel filtration, suggesting that the native form of the protein is a dimer. The protein has a molar extinction coefficient of 6,500 at 282 nm. Equilibrium dialysis experiments revealed that the protein binds 1 mol of Ca2+/mol of protein with a dissociation constant of 27 microM. The protein contains a relatively large quantity of acidic amino acids, single residues of cysteine, histidine, and tryptophan, and no methionine. These properties are similar to those of some low molecular weight Ca2+-binding proteins belonging to the calmodulin family. Thus, the cilium of Tetrahymena contains a second Ca2+-binding protein in addition to calmodulin. We consider that TCBP-10 and calmodulin may play important cooperative roles in the Ca2+-regulation of ciliary movement in Tetrahymena.  相似文献   

6.
Change in actin mRNA level was investigated in the course of synchronous division in Tetrahymena induced by intermittent heat treatment. The level of actin mRNA decreased from just after the end of the heat treatment (EHT) to 45 min after EHT, and then promptly increased before synchronous division at 75 min after EHT. In contrast, levels of the total RNA and mRNAs of Tetrahymena calmodulin and calcium-binding protein of 25 kDa (TCBP-25) increased gradually from EHT to synchronous division. Drastic change in mRNA level before synchronous division seems to be unique to actin mRNA. From the effects of actinomycin D (50 micrograms/ml) on both synchronous division and actin mRNA level, the increase in actin mRNA level starting from 45 min after EHT is speculated to be prerequisite for the oncoming synchronous division. The results of a nuclear run-off experiment supported the above speculation.  相似文献   

7.
We have isolated a cDNA clone encoding a novel calcium-binding protein of the recoverin family from rat brain cDNA library. This clone (PCB11) has 588 nucleotides in the open reading frame including the termination codon, 174 nucleotides of the 5' leader and 800 nucleotides of the 3' noncoding region. The complete amino acid sequence deduced from the cDNA is composed of 195 residues, has a calculated molecular mass of 22,574 Daltons, and contains three putative calcium-binding domains of the EF-hand structure. The deduced amino acid sequence has a striking sequence homology to those of the retinal recoverin family (recoverin, visinin, P26, 23kD protein, S-modulin) and the brain-derived recoverin family (P23k, 21-kDa CaBP and neurocalcin). Northern blot, in situ hybridization, immunoblot and immunohistochemical analyses revealed that the protein is exclusively expressed in pyramidal layer of the hippocampus. The protein was therefore designated hippocalcin.  相似文献   

8.
We have purified a novel GTP-binding protein (G protein) with a Mr of about 24,000 to homogeneity from bovine brain membranes (Kikuchi, A., Yamashita, T., Kawata, M., Yamamoto, K., Ikeda, K., Tanimoto, T., and Takai, Y. (1988) J. Biol. Chem. 263, 2897-2904). In the present studies, we have isolated and sequenced the cDNA of this G protein from a bovine brain cDNA library using oligonucleotide probes designed from the partial amino acid sequences. The cDNA of the G protein has an open reading frame encoding a protein of 220 amino acids with a calculated Mr of 24,954. This G protein is designated as the smg-25A protein (smg p25A). The amino acid sequence deduced from the smg-25A cDNA contains the consensus sequences of GTP-binding and GTPase domains. smg p25A shares about 28 and 44% amino acid homology with the ras and ypt1 proteins, respectively. In addition to this cDNA, we have isolated two other homologous cDNAs encoding G proteins of 219 and 227 amino acids with calculated Mr values of 24,766 and 25,975, respectively. These G proteins are designated as the smg-25B and smg-25C proteins (smg p25B and smg p25C), respectively. The amino acid sequences deduced from the three smg-25 cDNAs are highly homologous with one another in the overall sequences except for C-terminal 32 amino acids. Moreover, three smg p25s have a consensus C-terminal sequence, Cys-X-Cys, which is different from the known C-terminal consensus sequences of the ras and ypt1 proteins, Cys-X-X-X and Cys-Cys, respectively. These results together with the biochemical properties of smg p25A described previously indicate that three smg p25s constitute a novel G protein family.  相似文献   

9.
Mollusk shell formation is a complicated and highly controlled calcium metabolism process. Previous studies revealed that several EF-hand calcium-binding proteins actively participate in the regulation of shell mineralization. In this study, we cloned a full-length cDNA encoding a novel extracellular EF-hand calcium-binding protein (named EFCBP) from the pearl oyster, Pinctada fucata, according to the EF-hand motifs of calmodulin. Although it shares high similarity with the calmodulin family in its EF-hand signatures, EFCBP just has two EF-hand motifs and belongs to a new separate group from the other EF-hand proteins according to a phylogenetic analysis. EFCBP is specifically expressed in shell mineralization-related tissues, viz. the mantle, the gill, and the hemocytes. Moreover, its expression responds quickly only to the shell damage, but not to the damage of other tissues and the infection of the lipopolysaccharides from Escherichia coli. These results suggest that EFCBP might be an important regulator of shell formation. This finding may help better understand the functions of EF-hand proteins on the regulation of mollusk shell formation.  相似文献   

10.
Calmodulin is one of the calcium-binding proteins and is distributed widely in eukaryotes. The amino acid sequences were studied of calmodulin taken from bovine brain, scallop (Patinopecten), sea anemone (Metridium senile) and tetrahymena (Tetrahymena pyriformis). One notable feature of the primary structure of calmodulin is its internal homology. It can be subdivided into four domains with similar amino acid sequences. This homology implies that the primary structure of calmodulin has been elongated twice by intragenic duplication. Using this intragenic duplication model, the amino acid sequences of calmodulin from those four species were analyzed in detail. This kind of approach has proved very useful for investigation of the origin and evolution of this protein.  相似文献   

11.
12.
The superfamily of EF-hand proteins is comprised of a large and diverse group of proteins that contain one or more characteristic EF-hand calcium-binding domains. This study describes and characterizes a novel EF-hand cDNA, CnidEF, from the sea anemone Anthopleura elegantissima (Phylum Cnidaria, Class Anthozoa). CnidEF was found to contain two EF-hand motifs near the C-terminus of the deduced amino acid sequence and two regions near the N-terminus that could represent degenerate EF-hand motifs. CnidEF homologues were also identified from two other sea anemone species. A combination of bioinformatic and molecular phylogenetic analyses was used to compare CnidEF to EF-hand proteins in other organisms. The closest homologues identified from these analyses were a luciferin binding protein (LBP) involved in the bioluminescence of the anthozoan Renilla reniformis, and a sarcoplasmic calcium-binding protein (SARC) involved in fluorescence of the annelid worm Nereis diversicolor. Predicted structure and folding analysis revealed a close association with bioluminescent aequorin (AEQ) proteins from the hydrozoan cnidarian Aequorea aequorea. Neighbor-joining analyses grouped CnidEF within the SARC lineage along with AEQ and other cnidarian bioluminescent proteins rather than in the lineage containing calmodulin (CAM) and troponin-C (TNC).  相似文献   

13.
Centrin, an EF hand Ca(2+) binding protein, has been cloned in Tetrahymena thermophila. It is a 167 amino acid protein of 19.4 kDa with a unique N-terminal region, coded by a single gene containing an 85-base pair intron. It has > 80% homology to other centrins and high homology to Tetrahymena EF hand proteins calmodulin, TCBP23, and TCBP25. Specific cellular localizations of the closely related Tetrahymena EF hand proteins are different from centrin. Centrin is localized to basal bodies, cortical fibers in oral apparatus and ciliary rootlets, the apical filament ring and to inner arm (14S) dynein (IAD) along the ciliary axoneme. The function of centrin in Ca(2+) control of IAD activity was explored using in vitro microtubule (MT) motility assays. Ca(2+) or the Ca(2+)-mimicking peptide CALP1, which binds EF hand proteins in the absence of Ca(2+), increased MT sliding velocity. Antibodies to centrin abrogated this increase. This is the first demonstration of a specific centrin function associated with axonemal dynein. It suggests that centrin is a key regulatory protein for Tetrahymena axonemal Ca(2+) responses, including ciliary reversal or chemotaxis.  相似文献   

14.
A mouse monoclonal antibody 12B1 was raised against Golgi fractions from Sf21 insect cells and selected as Golgi-specific by immunostaining of the cells. The antigen was purified from the cells by immunoaffinity chromatography with the monoclonal antibody, and its N-terminal and internal amino acid sequences were determined. Based on the partial amino acid sequences, cDNA encoding the antigen protein was cloned and sequenced. The amino acid sequence deduced from the cDNA nucleotide sequence showed a homology to those of CALNUC family proteins, CALNUC (or nucleobindin, a calcium-binding Golgi protein with DNA-binding activity) and protein NEFA (a cell surface protein with DNA-binding, EF-hand, and acidic domains). The insect protein had two EF-hand loops at the same sites as the mammalian CALNUC family proteins, but had no leucine zipper which the mammalian homologues commonly have. An electron microscopic immunoperoxidase study demonstrated that the insect protein was localized in the cis-Golgi cisternae and cis-Golgi networks. Since this localization is identical to that of mammalian CALNUC, the insect protein was considered to be a homologue of CALNUC rather than that of NEFA. Assays involving proteinase K digestion, sodium carbonate extraction and Triton X-114 extraction revealed that the insect CALNUC-like protein was a soluble protein tightly associated with the luminal surface of Golgi membranes as reported for mammalian CALNUC. The insect protein was also shown to have calcium-binding activity as does mammalian CALNUC. These data verify that the insect protein is CALNUC. The existence of CALNUC in insect cells suggests that CALNUC is an essential calcium-binding Golgi protein in a wide range of the animal kingdom. A phylogenetic tree analysis, however, suggested that NEFA was derived from CALNUC long after the segregation of a mammalian ancestor from an insect ancestor.  相似文献   

15.
16.
Tetrahymena calcium-binding protein is indeed a calmodulin   总被引:1,自引:0,他引:1  
We previously isolated a Ca2+-binding protein from a ciliate, Tetrahymena, and designated it as TCBP (Tetrahymena Ca2+-binding protein). The present paper reports that TCBP, which has two high affinity Ca2+-binding sites (Kd=4.6 X 10(-6) M), could activate porcine brain cyclic nucleotide phosphodiesterase at a concentration of over 10(-6) M free Ca2+, with the same mode of activation as that of authentic (porcine brain) calmodulin. In addition, the amino acid composition of TCBP was essentially the same as that of brain calmodulin. Therefore, we conclude that TCBP as an activator of Tetrahymena guanylate cyclase is indeed a calmodulin.  相似文献   

17.
The 23 kDa protein was localized by immunocytochemistry to photoreceptor cells of the mouse retina, and bovine and mouse cDNA clones were isolated and sequenced. The deduced amino acid sequences showed that the mouse 23 kDa protein is 91% identical to the bovine protein, and is the same as S-modulin, the CAR (cancer-associated retinopathy) protein and recoverin, the Ca(2+)-dependent activator of photoreceptor guanylate cyclase. The amino acid sequence reveals two Ca2+ binding sites, no internal repeats, 59% homology to the chicken visinin protein and 40% homology to calmodulin while Northern analysis demonstrated a single 1.0 kb mRNA species in bovine and mouse retina.  相似文献   

18.
We isolated a new calcium-binding protein from porcine cardiac muscle by calcium-dependent hydrophobic and dye-affinity chromatography. It showed an apparent molecular weight of 11,000 on SDS-PAGE. Amino acid sequence determination revealed that the protein contained two calcium-binding domains of the EF-hand motif. The cDNA gene coding for this protein was cloned from the porcine lung cDNA library. Sequence analysis of the cloned cDNA showed that the protein was composed of 99 amino acid residues and its molecular weight was estimated to be 11,179. Immunological and functional characterization showed that the recombinant S100C protein expressed in Escherichia coli was identical to the natural protein. Homologies to calpactin light chain, S100 alpha and beta protein were 41.1%, 40.9% and 37.5%, respectively. The protein was expressed at high levels in lung and kidney, and low levels in liver and brain. The tissue distribution was apparently different from those of the other S100 protein family. These results indicate that this protein represents a new member of the S100 protein family, and thus we refer to it as S100C protein.  相似文献   

19.
Tetrahymena 14-nm filament-forming protein has citrate synthase activity   总被引:6,自引:0,他引:6  
The Tetrahymena 14-nm filament-forming protein (49K protein) is a structural protein involved in oral morphogenesis and in pronuclear behavior during conjugation. Cloning the 49K protein gene from a Tetrahymena thermophila cDNA library, we found that its primary structure exhibits a high sequence identity (51.5%) with porcine heart citrate synthase and retains functional domains. The 49K protein actually possesses citrate synthase activity, and is detected in mitochondria. These results suggest that the 49K protein has dual functions as both a respiratory enzyme and a structural protein in the cytoskeleton.  相似文献   

20.
Calerythrin is a 20 kDa calcium-binding protein isolated from gram-positive bacterium Saccharopolyspora erythraea. Based on amino acid sequence homology, it has been suggested that calerythrin belongs to the family of invertebrate sarcoplasmic EF-hand calcium-binding proteins (SCPs), and therefore it is expected to function as a calcium buffer. NMR spectroscopy was used to obtain structural information on the protein in solution. Backbone and side chain 1H, 13C, and 15N assignments were obtained from triple resonance experiments HNCACB, HN(CO)CACB, HNCO, CC(CO)NH, and [15N]-edited TOCSY, and HCCH-TOCSY. Secondary structure was determined by using secondary chemical shifts and characteristic NOEs. In addition, backbone N-H residual dipolar couplings were measured from a spin-state selective [1H, 15N] correlation spectrum acquired from a sample dissolved in a dilute liquid crystal. Four EF-hand motifs with characteristic helix-loop-helix patterns were observed. Three of these are typical calcium-binding EF-hands, whereas site 2 is an atypical nonbinding site. The global fold of calerythrin was assessed by dipolar couplings. Measured dipolar couplings were compared with values calculated from four crystal structures of proteins with sequence homology to calerythrin. These data allowed us to recognize an overall similarity between the folds of calerythrin and sarcoplasmic calcium-binding proteins from the sandworm Nereis diversicolor and the amphioxus Branchiostoma lanceolatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号