首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to their physicochemical and toxicological properties, polychlorinated dibenzofurans are regarded as a class of compounds providing reason for serious environmental concern. While the nonhalogenated basic structure dibenzofuran is effectively mineralized by appropriate bacterial strains, its polychlorinated derivatives are not. To elucidate the ability of the strain Sphingomonas sp RW1 to metabolize some of these chlorinated derivatives, we performed turnover experiments using 2,7-dichloro- and 2,4,8-trichlorodibenzofuran. As indicated by the oxygen-uptake rates determined for these two chlorinated dibenzofurans, Sphingomonassp RW1 can catabolize these chlorinated dibenzofurans yielding small quantities of oxidation products, which we isolated and subsequently characterized employing GC/MS and 1H- as well as 13C-NMR spectroscopy. In the case of 2,7-dichlorodibenzofuran, two metabolites accumulated, which we identified as 6-chloro- and 7-chloro-2-methyl-4H-chromen-4-one. The single metabolite isolated from the turnover experiments performed with 2,4,8-trichlorodibenzofuran was unequivocally identified as 6,8-dichloro-2-methyl-4H-chromen-4-one. Received 26 April 1999/ Accepted in revised form 23 July 1999  相似文献   

2.
Four pentachlorophenol (PCP)-degrading bacteria isolated from geographically diverse areas have been examined in detail as regards their physiology and phylogeny. According to traditional biochemical methods, these strains had been classified as members of the genera Arthrobacter, Flavobacterium, Pseudomonas, and Sphingomonas. The PCP degradation pathway has been studied extensively in Sphingomonas (Flavobacterium) sp strain ATCC 39723 and the first three degradation steps catalyzed by a PCP-4-monooxygenase (PcpB) and a reductive dehalogenase (PcpC) that functions twice are well established. A fourth step appears to involve ring-fission of the aromatic nucleus (PcpA). Molecular analyses revealed that the PCP degradation pathway in these four strains was rather conserved, leading to a phylogenetic analysis using 16S rDNA. The results revealed a much closer phylogenetic relationship between these organisms than traditional classification indicated, placing them into the more recently established genus Sphingomonas where they may even represent a single species. With 16S rDNA analysis, many bacterial isolates involved in degradation of xenobiotic compounds that were previously classified into diverse genera have been reclassified into the genus Sphingomonas. Received 14 April 1999/ Accepted in revised form 20 July 1999  相似文献   

3.
A total of 43 groundwater samples were collected from 9 multimonitoring wells at a petrochemical site, Baoding City, North China, from June 2008 to December 2009 to investigate the biogeochemical processes and/or bacterial conmmunity using both culture-dependent and -independent methods. The results showed that aromatic hydrocarbons and chlorinated hydrocarbons were the major pollutants in the groundwater. Denitrification and iron reduction might be the main biogeochemical processes in the aquifers at this site, which seemed to transform from denitrification-dominated to iron reduction-dominated in some sections. Denaturing gradient gel electrophoresis (DGGE) revealed that the dominant bacterial groups of the groundwater were related to some oil-degrading bacteria, which can grow under denitrifying, iron-reducing and sulfate-reducing anaerobic conditions. In some serious contaminated groundwater niches, there might be sulfur cycles, as sulfur oxidizer was also abundant, which was further confirmed by 16S rRNA gene cloning analysis. The operational taxonomic units (OTUs) that highly related to Pseudomonas sp., Hydrogenophaga sp., Sphingomonas sp., Ferribacterium sp. and Sulfuricurvum Kujiense etc. were predominant in the groundwater contaminated by chlorinated hydrocarbons (CHCs), benzene, toluene, ethylbenzene, and xylenes (BTEX) and/or polycyclic aromatic hydrocarbons (PAHs), respectively. Biodiversity seemed to be undermined by oil contamination, and varied with seasons. The bacterial community in the contaminated groundwater was largely determined by the groundwater geochemistry.  相似文献   

4.
Abietane terpenoid-degrading organisms include Sphingomonas spp which inhabit natural environments and biological treatment systems. An isolate from the high Arctic indicates that these organisms occur far from trees which synthesize abietanes and suggests that some of these organisms can occupy a niche in hydrocarbon-degrading soil communities. Abietane-degrading Sphingomonas spp provide additional evidence that the phylogeny of this genus is independent of the catabolic capabilities of its members. Studies of Sphingomonas sp DhA-33 demonstrate that biological treatment systems for pulp mill effluents have the potential to mineralize abietane resin acids. On the other hand, these studies indicate that some chlorinated dehydroabietic acids are quite recalcitrant. Strain DhA-33 grows relatively well on some chlorinated dehydroabietic acids but transforms others to stable metabolites. Using strain DhA-33, a novel method was developed to measure the metabolic activity of an individual population within a complex microbial community. Oligonucleotide hybridization probes were used to assay the 16S rRNA:rDNA ratio of DhA-33 as it grew in an activated sludge community. However, this method proved not to be sufficiently sensitive to measure naturally occurring resin acid-degrading populations. We propose that the same approach can be modified to use more sensitive assays. Received 01 May 1999/ Accepted in revised form 19 July 1999  相似文献   

5.
This study investigated the impacts of an organochlorine (OC, γ-hexachlorocyclohexane and chlorobenzenes) mixture on microbial communities associated to Phragmites australis rhizosphere. Seventy-eight distinct colony morphotypes were isolated, cultivated and analysed by 16S rDNA sequence analysis. Toxicity tests confirmed sensitivity (e.g. Hevizibacter, Acidovorax) or tolerance (e.g. Bacillus, Aeromonas, Pseudomonas, Sphingomonas) of isolates. Rhizosphere analysis by pyrosequencing showed the microbial adaptation induced by OC exposure. Among the most abundant molecular operational taxonomic units, 80 % appeared to be tolerant (55 % opportunist, 25 % unaffected) and 20 % sensitive. P. australis rhizosphere exposed to OCs was dominated by phylotypes related to α-, β- and γ-Proteobacteria. Specific genera were identified which were previously described as chlorinated organic pollutant degraders: Sphingomonas sp., Pseudomonas sp., Devosia sp. and Sphingobium sp. P. australis could be suitable plants to maintain their rhizosphere active microbial population which can tolerate OCs and potentially improve the OC remediation process in part by biodegradation.  相似文献   

6.
The Sphingomonas genus hosts many interesting pollutant-degrading strains. Sphingomonas sp. EPA505 is the best studied polycyclic aromatic hydrocarbon (PAH)-degrading Sphingomonas strain. Based on 16S rRNA gene sequence analysis, Sphingomonas sp. strain EPA505 forms a separate branch in the Sphingomonas phylogenetic tree grouping exclusively PAH-degrading isolates. For specific PCR detection and monitoring of Sphingomonas sp. EPA505 and related strains in PAH-contaminated soils, a new 16S rRNA gene-based primer set was designed. The new primer set was shown to be highly selective for Sphingomonas sp. strain EPA505 as it only amplified DNA from strain EPA505 and not from other tested Sphingomonas strains or soil bacteria not belonging to the Sphingomonas genus. Using DNA extracts of a variety of inoculated PAH-contaminated soils, the primer pair was able to detect EPA505 in concentrations as low as 102 cells per gram of soil. Applying the new primer set, 16S rRNA gene fragments which were 99–100% similar to the corresponding gene of strain EPA505 were amplified from four of five PAH-contaminated soils. On the other hand, no PCR products were obtained from any of five tested uncontaminated soils. The preferential presence of EPA505 related Sphingomonas strains in PAH-contaminated soils with very different contamination profiles and different origin suggests an important role of this type of Sphingomonas in the natural Sphingomonas community colonizing PAH-contaminated sites.  相似文献   

7.
The phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was found to be rapidly mineralized in an agricultural soil in France that had been periodically exposed to IPU. Enrichment cultures from samples of this soil isolated a bacterial strain able to mineralize IPU. 16S rRNA sequence analysis showed that this strain belonged to the phylogeny of the genus Sphingomonas (96% similarity with Sphingomonas sp. JEM-14, AB219361) and was designated Sphingomonas sp. strain SH. From this strain, a partial sequence of a 1,2-dioxygenase (catA) gene coding for an enzyme degrading catechol putatively formed during IPU mineralization was amplified. Phylogenetic analysis revealed that the catA sequence was related to Sphingomonas spp. and showed a lack of congruence between the catA and 16S rRNA based phylogenies, implying horizontal gene transfer of the catA gene cluster between soil microbiota. The IPU degrading ability of strain SH was strongly influenced by pH with maximum degradation taking place at pH 7.5. SH was only able to mineralize IPU and its known metabolites including 4-isopropylaniline and it could not degrade other structurally related phenylurea herbicides such as diuron, linuron, monolinuron and chlorotoluron or their aniline derivatives. These observations suggest that the catabolic abilities of the strain SH are highly specific to the metabolism of IPU.  相似文献   

8.
The white-rot fungusBjerkandera adusta produces volatile chlorinated phenyl compounds. The main compounds identified were 3-chloro-4-methoxybenzaldehyde (3-chloro-p-anisaldehyde), 3-chloro-4-methoxybenzyl alcohol (3-chloro-p-anisyl alcohol), 3,5-dichloro-4-methoxybenzaldehyde (3,5-dichloro-p-anisaldehyde), and 3,5-dichloro, 4-methoxybenzyl alcohol (3,5-dichloro-p-anisyl alcohol).p-Anisaldehyde, veratraldehyde and the corresponding alcohols,p-anisyl alcohol and veratryl alcohol were produced simultaneously. Even with a very low concentration of chloride in the medium (< 10–5 m), chlorinated aromatic compounds were still observed. Addition of bromide to the culture medium led to the production of brominated compounds: 3-bromo-4-methoxybenzaldehyde, 3-bromo-4-methoxybenzyl alcohol, 3,5-dibromo-4-methoxybenzaldehyde and 3-bromo-5-chloro-4-methoxybenzaldehyde. These brominated compounds have not previously been reported as natural products. Although iodo-aromatic compounds were not produced by supplementation of the medium with iodide, isovanillin was found in the culture broth under these conditions. This compound may be formed by substitution of the iodine intermediate by a hydroxyl group on the third carbon of the ring. Diiodomethane or chloroiodomethane were also found. It is the first time that the production of halomethane has been related to the production of halogenated aromatic compounds. All the strains tested have these capabilities.  相似文献   

9.
The biphenyl-mineralizing bacterium Burkholderia sp. strain LB400 also utilized 3-chloro-, 4-chloro-, 2,3-dichloro- and 2,4′-dichlorobiphenyl for growth. By the attack of the initial enzyme a chlorine was eliminated dioxygenolytically from position 2 of one of the aromatic rings when hydrogens of both were substituted by chlorine. The strain mineralized 3-chloro- and 2,3′-dichlorobiphenyl via the central intermediate 3-chlorobenzoate through its chlorocatechol pathway enzymes, but excreted stoichiometric amounts of 4-chlorobenzoate from 4-chloro- and 2,4-dichlorobiphenyl. These two compounds were mineralized by a co-culture of strain LB400 and a derivative of the (methyl-) benzoate-degrading strain Pseudomonas putida mt-2 (TOL). The complete degradation was achieved upon transfer of a cluster of at least five genes, encoding the regulated chlorocatechol pathway operon, from strain LB400 to strain mt-2. This transfer was demonstrated by the polymerase chain reaction. Received: 15 April 1998 / Received revision: 12 June 1998 / Accepted: 19 June 1998  相似文献   

10.
This study aimed to develop technology enhancing the biodegradation efficacy against organophosphorus fungicide with biofilm-forming bacteria in situ. Using the crystal violet staining method, two bacterial strains having biofilm formation capability were isolated and identified as Pseudomonas sp. C7 and Bacillus sp. E5. Compared with the culture of tolclofos-methyl degrader Sphingomonas sp. 224, biofilm formation was improved by co-inoculation with biofilm-forming bacterium Bacillus sp. E5. Evaluated in liquid culture conditions, this two-species mixed consortium was observed to degrade tolclofos-methyl more effectively than Sphingomonas sp. 224 alone, with an approximately 90% degradation efficiency within 48 h of dosing. The improved effectiveness of the consortium biofilm was reflected using soil in situ with an approximately 7% increased degradation ratio over Sphingomonas sp. 224 alone. This is the first report demonstrating improved bioremediation degradation efficacy against tolclofos-methyl exhibited by a consortium biofilm. This work presents a possible effective bioremediation strategy using a specific biofilm composition against pollutants containing organophosphorus compounds in situ.  相似文献   

11.
Hydrocarbons persist in Antarctic soils when fuel oils such as JP8 jet fuel are spilled. For clean-up of hydrocarbon-contaminated soils in Antarctica, bioremediation has been proposed using hydrocarbon-degrading microbes indigenous to Antarctic soils. A number of alkane-degrading bacteria have been isolated previously from Antarctic soils. In this paper we describe the direct isolation of aromatic hydrocarbon-degrading bacteria from oil-contaminated Antarctic soil. Isolates that grew on JP8 jet fuel were characterised for their ability to degrade aromatic and aliphatic hydrocarbons and for growth at a range of temperatures. All isolates were gram-negative, oxidase-positive, rod-shaped bacteria. Representative strains were identified using 16S rDNA sequence analysis as either Sphingomonas spp. or Pseudomonas spp. Aromatic-degrading bacteria from Antarctic soils were psychrotolerant and appear similar to those found worldwide. Accepted: 27 September 1999  相似文献   

12.
The formation of biofilms by diverse bacteria isolated from contaminated soil and groundwater on model substrata with different surface properties was assessed in a multifactorial screen. Diverse attachment phenotypes were observed as measured by crystal violet dye retention and confocal laser scanning microscopy (CLSM). Bulk measurements of cell hydrophobicity had little predictive ability in determining whether biofilms would develop on hydrophobic or hydrophilic substrata. Therefore selected pairs of bacteria from the genera Rhodococcus, Pseudomonas and Sphingomonas that exhibited different attachment phenotypes were examined in more detail using CLSM and the lipophilic dye, Nile Red. The association of Rhodococcus sp. cell membranes with lipids was shown to influence the attachment properties of these cells, but this approach was not informative for Pseudomonas and Sphingomonas sp. Confocal Raman Microspectroscopy of Rhodococcus biofilms confirmed the importance of lipids in their formation and indicated that in Pseudomonas and Sphingomonas biofilms, nucleic acids and proteins, respectively, were important in identifying the differences in attachment phenotypes of the selected strains. Treatment of biofilms with DNase I confirmed a determining role for nucleic acids as predicted for Pseudomonas. This work demonstrates that the attachment phenotypes of microbes from environmental samples to different substrata varies markedly, a diverse range of macromolecules may be involved and that these differ significantly between genera. A combination of CLSM and Raman spectroscopy distinguished between phenotypes and could be used to identify the key macromolecules involved in cell attachment to surfaces for the specific cases studied.  相似文献   

13.
Two Pseudomonas sp. strains, capable of growth on chlorinated benzenes as the sole source of carbon and energy, were isolated by selective enrichment from soil samples of an industrial waste deposit. Strain PS12 grew on monochlorobenzene, all three isomeric dichlorobenzenes, and 1,2,4-trichlorobenzene (1,2,4-TCB). Strain PS14 additionally used 1,2,4,5-tetrachlorobenzene (1,2,4,5-TeCB). During growth on these compounds both strains released stoichiometric amounts of chloride ions. The first steps of the catabolism of 1,2,4-TCB and 1,2,4,5-TeCB proceeded via dioxygenation of the aromatic nuclei and furnished 3,4,6-trichlorocatechol. The intermediary cis-3,4,6-trichloro-1,2-dihydroxycyclohexa-3,5-diene (TCB dihydrodiol) formed from 1,2,4-TCB was rearomatized by an NAD+-dependent dihydrodiol dehydrogenase activity, while in the case of 1,2,4,5-TeCB oxidation the catechol was obviously produced by spontaneous elimination of hydrogen chloride from the initially formed 1,3,4,6-tetrachloro-1,2-dihydroxycyclohexa-3,5-diene. Subsequent ortho cleavage was catalyzed by a type II catechol 1,2-dioxygenase producing the corresponding 2,3,5-trichloromuconate which was channeled into the tricarboxylic acid pathway via an ordinary degradation sequence, which in the present case included 2-chloro-3-oxoadipate. From the structure-related compound 2,4,5-trichloronitrobenzene the nitro group was released as nitrite, leaving the above metabolite as 3,4,6-trichlorocatechol. Enzyme activities for the oxidation of chlorobenzenes and halogenated metabolites were induced by both strains during growth on these haloaromatics and, to a considerable extent, during growth of strain PS12 on acetate.  相似文献   

14.
Pseudomonas sp. OX1, an aromatic compound-degrading bacterium that was tentatively identified by conventional biochemical methods as P. stutzeri, has now been investigated at the molecular level to clarify its taxonomic position. Amplified ribosomal DNA restriction analysis and multiple enzyme restriction fragment length polymorphism (MERFLP) analysis suggested that Pseudomonas sp. OX1 could not be classified as P. stutzeri. Phylogenetic analyses based on 16S rRNA and gyrB genes further confirmed that this strain belongs to the Pseudomonas (sensu stricto) genus, but not to the stutzeri species. The data obtained demonstrated that Pseudomonas sp. OX1 belongs to intrageneric cluster II and is related to the P. fluorescensP. syringae complex.  相似文献   

15.
The inability of many organisms to degrade pollutants at low concentrations is a problem when selecting inocula for bioremediation of sites with these low concentrations. Thus, a study was conducted to determine the effect of low concentrations of p-nitrophenol (PNP) on growth of four PNP-degrading bacteria and their abilities to metabolize low concentrations of the compound in culture and samples from an oligotrophic lake. PNP did not increase the growth rates of Flavobacterium sp. M4, Pseudomonas sp. K, Flavobacterium sp. M1, and Pseudomonas sp. SP3 at concentrations of less than 2, 4, 10, and 100 ng/ml, respectively, when it was the sole added carbon source in culture, but it stimulated multiplication at higher concentrations. In liquid culture with the nitro compound as sole added carbon source, the four bacteria extensively mineralized PNP at 50 and 100 ng/ml, and three of the four degraded much of the substrate at 25 ng/ml. Pseudomonas sp. SP3 mineralized more than 20% but the two Flavobacterium strains converted less than 10% of the substrate to C02 at 10 ng/ml, and none of the three mineralized more than 5% at 1 and 5 ng PNP/ml. Under conditions where more than 99% of the radioactivity from 14C-PNP added at 1 ng/ml remained in solution, two of the isolates formed organic products. Pseudomonas sp. K had no activity at 1, 5, and 10 ng/ml. In contrast, when each of the bacteria was separately inoculated into samples of water from an oligotrophic lake and from a well in which PNP was not biodegraded, the bacteria were able to mineralize as little as 1 ng PNP/ml. The addition to a salts solution of 10 ng of glucose per ml resulted in mineralization of PNP at concentrations too low to be mineralized when the nitro compound was the sole source of added carbon. Bacteria may thus be able to mineralize substrates in natural waters at concentrations below those suggested by tests conducted in culture media, possibly because of the availability of other carbon sources for the bacteria.Offprint requests to: M. Alexander.  相似文献   

16.
The degradation of 3,5-dichlorocatechol by enzymes of 3-chlorobenzoate-grown cells of Pseudomonas sp. strain B13 was studied. The following compounds were formed from 3,5-dichlorocatechol: trans-2-chloro-4-carboxymethylenebut-2-en-4-olide, cis-2-chloro-4-carboxymethylenebut-2-en-4-olide, and chloroacetylacrylate as the decarboxylation product of 2-chloromaleylacetate. They were identified by chromatographic and spectroscopic methods (UV, MS, PMR). An enzyme activity converting trans-2-chloro-4-carboxymethylenebut-2-en-4-olide into the cis-isomer was observed.Abbreviations 3CB 3-chlorobenzoate - 4CB 4-chlorobenzoate - 3,5DCB 3,5-dichlorobenzoate - 2,4D 2,4-dichlorophenoxyacetate - NOE Nuclear-Overhauser-Effect  相似文献   

17.
A bacterium that assimilates 2,3-dichloro-1-propanol was isolated from soil by enrichment culture. The strain was identified as Pseudomonas sp. by the taxonomic studies. The strain converted 2,3-dichloro-1-propanol to 3-chloro-1,2-propanediol, releasing chloride ion. The conversion was stereospecific because the residual 2,3-dichloro-1-propanol and formed 3-chloro-1,2-propanediol gave optical rotation. The resting cells converted various halohydrins to the dehalogenated alcohols, and cell-free extracts had strong epoxyhydrolase activity. These results indicated that the strain assimilated 2,3-dichloro-1-propanol via 3-chloro-1,2-propanediol, glycidol, and glycerol. The possibility to manufacture optically active 2,3-dichloro-1-propanol is discussed.  相似文献   

18.
Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteria cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP. Received 12 May 1999/ Accepted in revised form 25 July 1999  相似文献   

19.
Sphingomonas sp UG30 is a pentachlorophenol (PCP)-degrading bacterial strain capable of degrading several nitrophenolic compounds, including p-nitrophenol (PNP), 2,4-dinitrophenol (2,4-DNP), p-nitrocatechol and 4,6-dinitro-o-cresol (DNOC). The ability to degrade both chlorophenolic and nitrophenolic compounds is probably not restricted to UG30, but may also be possessed by other pentachlorophenol-degrading Sphingomonas spp. The interesting question arises as to whether there is any point of convergence between the initial pathways of PCP and nitrophenol degradation in these microorganisms. There is some experimental evidence that PCP-4-monooxygenase is involved in metabolism of both p-nitrophenol and 2,4-dinitrophenol. Further studies are needed to confirm this and to examine the role(s) of other PCP-degrading enzymes in nitrophenol metabolism by this microorganism. In this paper, we review some of the taxonomic, biochemical, physiological and ecological properties of Sphingomonas sp UG30 with respect to biodegradation of PCP and nitrophenolic compounds. Received 19 April 1999/ Accepted in revised form 21 August 1999  相似文献   

20.
Microorganisms play important roles in the tobacco aging process. However, microbial communities on flue-cured tobacco leaves (FCTL) remain largely unknown. In this study, the total microbial genomic DNA of unaged and aging FCTL from Zimbabwe were isolated using a culture-independent method, and the bacterial communities were investigated through analyzing two 16S rRNA gene libraries. Eighty-four and 65 operational taxonomic units were obtained from the libraries of the unaged and aging FCTL, respectively. The following genera were represented more than 4% in both libraries (aging and unaged library): Sphingomonas (4.84%, 4.18%), Stenotrophomonas (4.84%, 5.23%), Erwinia (5.81%, 4.88%), Pantoea (19.35%, 18.47%), and Pseudomonas (21.29%, 24.04%). The dominant species varied between the two libraries. Specifically, several dominant species in unaged FCTL including Pseudomonas fulva, Pseudomonas sp. (AM909658), Klebsiella sp. (HM584796), and Pantoea sp. (AY501386) were not identified in aging FCTL, while several dominant species in aging FCTL such as Pantoea sp. (GU566350), Pseudomonas sp. (EF157292), and Buttiauxella izardii were not found in unaged FCTL. The phylogenetic analysis showed that bacteria from unaged and aging FCTL were divided into two clades, and two unique subclades were identified in aging FCTL. Our results revealed for the first time the bacterial diversities on Zimbabwe tobacco, and provided a basis for clarifying the roles of bacteria in aging process of FCTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号