首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Autophagy》2013,9(11):2006-2020
Silver nanoparticles (Ag NPs) are cytotoxic to cancer cells and possess excellent potential as an antitumor agent. A variety of nanoparticles have been shown to induce autophagy, a critical cellular degradation process, and the elevated autophagy in most of these situations promotes cell death. Whether Ag NPs can induce autophagy and how it might affect the anticancer activity of Ag NPs has not been reported. Here we show that Ag NPs induced autophagy in cancer cells by activating the PtdIns3K signaling pathway. The autophagy induced by Ag NPs was characterized by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. Consistent with these properties, the autophagy induced by Ag NPs promoted cell survival, as inhibition of autophagy by either chemical inhibitors or ATG5 siRNA enhanced Ag NPs-elicited cancer cell killing. We further demonstrated that wortmannin, a widely used inhibitor of autophagy, significantly enhanced the antitumor effect of Ag NPs in the B16 mouse melanoma cell model. Our results revealed a novel biological activity of Ag NPs in inducing cytoprotective autophagy, and inhibition of autophagy may be a useful strategy for improving the efficacy of Ag NPs in anticancer therapy.  相似文献   

2.
3.
A new isoquinoline, 1,5‐dihydroxy‐4‐methoxyisoquinoline ( 1 ), was obtained from Scolopendra subspinipes mutilans. Compound 1 showed moderate cytotoxicity on tumour cells with IC50 values ranging from 13 to 26 μm against five esophageal squamous cancer cells whereas low cytotoxicity against normal human esophageal epithelial cells. Isoquinoline ring oxidized at C(1), C(4), and C(5) can enhance its cytotoxicity. In addition, compound 1 showed potent inhibitory effect (inhibition rate > 50% at 13 μm ) on cell migration in human umbilical vein endothelial cells. This article mainly studies the structure and activity of 1 , and more modification of 1 as a potential anticancer agent.  相似文献   

4.
The small alkylating molecule, 3-bromopyruvate (3BP), is a potent and specific anticancer agent. 3BP is different in its action from most currently available chemo-drugs. Thus, 3BP targets cancer cells’ energy metabolism, both its high glycolysis (“Warburg Effect”) and mitochondrial oxidative phosphorylation. This inhibits/ blocks total energy production leading to a depletion of energy reserves. Moreover, 3BP as an “Energy Blocker”, is very rapid in killing such cells. This is in sharp contrast to most commonly used anticancer agents that usually take longer to show a noticeable effect. In addition, 3BP at its effective concentrations that kill cancer cells has little or no effect on normal cells. Therefore, 3BP can be considered a member, perhaps one of the first, of a new class of anticancer agents. Following 3BP’s discovery as a novel anticancer agent in vitro in the Year 2000 (Published in Ko et al. Can Lett 173:83–91, 2001), and also as a highly effective and rapid anticancer agent in vivo shortly thereafter (Ko et al. Biochem Biophys Res Commun 324:269–275, 2004), its efficacy as a potent anticancer agent in humans was demonstrated. Here, based on translational research, we report results of a case study in a young adult cancer patient with fibrolamellar hepatocellular carcinoma. Thus, a bench side discovery in the Department of Biological Chemistry at Johns Hopkins University, School of Medicine was taken effectively to bedside treatment at Johann Wolfgang Goethe University Frankfurt/Main Hospital, Germany. The results obtained hold promise for 3BP as a future cancer therapeutic without apparent cyto-toxicity when formulated properly.  相似文献   

5.
The statins (3‐hydroxy‐3‐methylglutaryl coenzyme A reductase inhibitors) were proven to be effective antilipid agents against cardiovascular disease. Recent reports demonstrate an anticancer effect induced by the statins through inhibition of cell proliferation, induction of apoptosis, or inhibition of angiogenesis. These effects are due to suppression of the mevalonate pathway leading to depletion of various downstream products that play an essential role in cell cycle progression, cell signaling, and membrane integrity. Recent evidence suggests a shared genomic fingerprint between embryonic stem cells, cancer cells, and cancer stem cells. Activation targets of NANOG, OCT4, SOX2, and c‐MYC are more frequently overexpressed in certain tumors. In the absence of bona fide cancer stem cell lines, human embryonic stem cells, which have similar properties to cancer and cancer stem cells, have been an excellent model throwing light on the anticancer affects of various putative anticancer agents. It was shown that key cellular functions in karyotypically abnormal colorectal and ovarian cancer cells and human embryonic stem cells are inhibited by the statins and this is mediated via a suppression of this stemness pathway. The strategy for treatment of cancers may thus be the targeting of a putative cancer stem cell within the tumor with specific agents such as the statins with or without chemotherapy. The statins may thus play a dual prophylactic role as a lipid‐lowering drug for the prevention of heart disease and as an anticancer agent to prevent certain cancers. This review examines the relationship between the statins, stem cells, and certain cancers. J. Cell. Biochem. 106: 975–983, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Numerous bacteria in and on its external parts protect the human body from harmful threats. This study aimed to investigate the potential beneficial effects of the vaginal ecosystem microbiota. A type of bacteria was isolated from vaginal secretions of adolescent and young adult women, cultured on an appropriate specific culture medium, and then molecularly identified through 16S rDNA gene sequencing. Results of 16S rDNA sequencing revealed that the isolate belongs to the Lactobacillus plantarum species. The isolated strain exhibited probiotic properties such as low pH and high bile salt concentration tolerance, antibiotic susceptibility and antimicrobial activity against some pathogenic bacteria. The anticancer effects of the strain on human cancer cell lines (cervical, HeLa; gastric, AGS; colon, HT‐29; breast, MCF‐7) and on a human normal cell line (human umbilical vein endothelial cells [HUVEC]) were investigated. Toxic side effects were assessed by studying apoptosis in the treated cells. The strain exhibited desirable probiotic properties and remarkable anticancer activity against the tested human cancer cell lines (P ≤ 0.05) with no significant cytotoxic effects on HUVEC normal cells (P ≤ 0.05). Overall, the isolated strain showed favorable potential as a bioactive therapeutic agent. Therefore, this strain should be subjected to the other required tests to prove its suitability for clinical therapeutic application.  相似文献   

7.
Several lines of evidence support the beneficial effect of tocotrienol (T3; an unsaturated vitamin E) on inhibition of tumor development. Many factors, including decrease in oxidative stress and modulation of cell signaling pathways in tumor and endothelial cells, have been implicated in such anticancer action of T3, while the in vivo potency and exact intracellular mechanisms for the anticancer properties of T3 remain not fully understood. We have hypothesized that the inhibitory effect of T3 on cancer may be attributable to the antiangiogenic activity of T3, and we found that T3 acts as a potent regulator of growth-factor-dependent signaling in endothelial cells and as an antiangiogenic agent minimizing tumor growth. In this work, we review the history and biological action (i.e., anticancer) of vitamin E and describe current research on the antiangiogenic effects of T3 and its mechanisms.  相似文献   

8.
Cytotoxic and antitumor activities of the biligand vanadyl derivative of L-malic acid, (bis-(L-malato)oxovanadium(IV) (VO(mal)2), the inorganic vanadium(IV) compound, vanadyl sulfate (VOSO4), the oxovanadium monocomplex with L-malic acid (VO(mal)), and the vanadyl biscomplex with acetylacetonate (VO(acac)2) were investigated using several tumor cell lines: mouse fibrosarcoma (L929), rat pheochromocytoma (PC12), human liver carcinoma (HepG2), mouse embryonic fibroblasts (NIH/3T3), and also normal human skin fibroblasts. The results showed that VO(mal)2 effectively inhibited growth of cancer cell cultures without any toxic effect on normal human skin fibroblasts. The cytotoxic anticancer effect of vanadium complexes depended on concentration of the compounds studied, incubation time, types of cell cultures, and nature of ligands surrounding the central group of the complex (VO2+). These studies provide evidence that VO(mal)2 may be considered as a potential anticancer agent due to its low toxicity for non-tumor cells and significant anticancer activity.  相似文献   

9.
Cerium oxide nanoparticles are associated with anticancer effects. While protecting normal cells, these nanoparticles exert their anticancer effects via oxidative stress and apoptosis in the cancer cells. In this study, the anticancer properties of nanoceria on fibrosarcoma cell line are evaluated. Cerium oxide nanoparticles were synthesized by the coprecipitation method and their anticancer effects on mouse fibrosarcoma tumor cells (WEHI164) were investigated. Viability assay was evaluated by MTT, and the DC-FDA assay performed for the detection of reactive oxygen species. For apoptosis assay, the annexin V/PI test was done as well as measuring the mRNA and protein expression levels of Bax and Bcl2 by real-time PCR and western blot method, respectively. Characterization of nanoceria reveals that synthesized nanoceria has cubic floruit structure with a size of about 30 nm. Toxicity assessment results show that nanoceria increases ROS levels and induced apoptosis in a dose-dependent manner in cancer cells (WEHI164), whereas low levels of toxicity were observed in normal cells (L929), even at the concentrations above 250 µg/ml in MTT assay. Real-time PCR and western blot assays showed that nanoceria could significantly increase the Bax expression in cancer cells. The results showed that nanoceria could act as a potential therapeutic agent for the treatment of fibrosarcoma.  相似文献   

10.
The P‐glycoprotein (p170, P‐gp) encoded by human MDR1 gene functions as a pump to extrude anticancer drugs from cancer cells. Over‐expression of p170 is closely related to primary and induced drug resistance phenotype of tumor cells. Recent studies have demonstrated that expression of cyclooxygenase‐2 (COX‐2) is positively correlated with the p170 level, suggesting a potential of COX‐2 specific inhibitors in regulation of cytotoxicity of anticancer agents. Celecoxib is one of the specific inhibitors of COX‐2 and has been widely used in clinic. However, its function in the response of cancer cells to anticancer drugs and the related mechanism are still waiting to be investigated. To explore the correlation of celecoxib and the p170‐mediated drug resistance, the role of celecoxib in drug response of cancer cells was analyzed with flow cytometry, high performance liquid chromatography (HPLC), and colony formation experiments. Celecoxib (50 µM) was found to significantly enhance the sensitivity of MCF‐7 and JAR/VP16 cells to tamoxifen and etoposide, respectively, by inhibition of p170 expression and increase in intracellular accumulation of the drugs. However, celecoxib did not affect pump function of p170. Enzyme activity and methylation analyses demonstrated that the inhibitory effect of celecoxib on p170 was independent on COX‐2 but closely related to hypermethylation of MDR1 gene promoter. Our study suggested that celecoxib was a potential agent for enhancement of the sensitivity of cancer cells to anticancer drugs. It also provided a links between epigenetic change of MDR1 and drug response of cancer cells. J. Cell. Biochem. 108: 181–194, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
The three-dimensional (3D) cell culture model has been increasingly used to study cancer biology and screen for anticancer agents due to its close mimicry to in vivo tumor biopsies. In this study, 3D calcium(Ca)-alginate scaffolds were developed for human glioblastoma cell culture and an investigation of the responses to two anticancer agents, doxorubicin and cordycepin. Compared to the 2D monolayer culture, glioblastoma cells cultured on these 3D Ca-alginate scaffolds showed reduced cell proliferation, increased tumor spheroid formation, enhanced expression of cancer stem cell genes (CD133, SOX2, Nestin, and Musashi-1), and improved expression of differentiation potential-associated genes (GFAP and β-tubulin III). Additionally, the vascularization potential of the 3D glioblastoma cells was increased, as indicated by a higher expression of tumor angiogenesis biomarker (VEGF) than in the cells in 2D culture. To highlight the application of Ca-alginate scaffolds, the 3D glioblastomas were treated with anticancer agents, including doxorubicin and cordycepin. The results demonstrated that the 3D glioblastomas presented a greater resistance to the tested anticancer agents than that of the cells in 2D culture. In summary, the 3D Ca-alginate scaffolds for glioblastoma cells that were developed in this study offer a promising platform for anticancer agent screening and the discovery of drug-resistant mechanisms of cancer.  相似文献   

12.
The production of short anticancer peptides in recombinant form is an alternative method for costly chemical manufacturing. However, the limitations of host toxicity, bioactivity and column purification have impaired production in mass quantities. In this study, short cationic peptides were produced in aggregated inclusion bodies by double fusion with a central protein that has anti-cancer activity. The anticancer peptides Tachiplicin I (TACH) and Latarcin 1 (LATA) were fused with the N- and C-terminus of the MAP30 protein, respectively. We successfully produced the recombinant TACH-MAP30-LATA protein and MAP30 alone in E. coli that represented 59% and 68% of the inclusion bodies. The purified form of the inclusion bodies was prepared by eliminating host cell proteins through multiple washing steps and semi-solubilization in alkaline buffer. The purified active protein was recovered by inclusive solubilization at pH 12.5 in the presence of 2 M urea and refolded in alkaline buffer containing oxides and reduced glutathione. The peptide-fusion protein showed lower CC50 values against cancer cells (HepG2, 0.35±0.1 μM and MCF-7, 0.58±0.1 μM) compared with normal cells (WRL68, 1.83±0.2 μM and ARPE19, 2.5±0.1 μM) with outstanding activity compared with its individual components. The presence of the short peptides facilitated the entry of the peptide fusion protein into cancer cells (1.8 to 2.2-fold) compared with MAP30 alone through direct interaction with the cell membrane. The cancer chemotherapy agent doxorubicin showed higher efficiency and selectivity against cancer cells in combination with the peptide- fusion protein. This study provides new data on the mass production of short anticancer peptides as inclusion bodies in E. coli by fusion with a central protein that has similar activity. The product was biologically active against cancer cells compared with normal cells and enhanced the activity and selective delivery of an anticancer chemotherapy agent.  相似文献   

13.
Most anticancer agents effect DNA damage which initiate the cell death pathways of necrosis and apoptosis, but cancer cells of lesser sensitivity are only sublethally injured, and recover. The two death pathways and their interelationships in the presence of endogenous inhibitors of apoptosis and genetic deletions that facilitates only sublethal damage, are reviewed.Both ATP and pyrimidine levels in the sublethally injured cancer cells are reduced but not to low levels insuffient to sustain cell viability. However, this sublethal damage by the anticancer agent creates a therapeutic opportunity for further reduction of these key metabolites to lower levels that will not support life. Data in tumor-bearing animals is reviewed demonstrating that a combination of ATP-depleting agents plus a de novo pyrimidine inhibitor (PALA) administered concomitantly with each of nine different anticancer agents markedly enhances tumor regression rates, and even produces some cures. It is necessary to deplete tumor ATP levels seveerely (>85%) by a combination of agents that block both synthesis(6-methylmercaptopurine riboside, a purine de novo synthesis inhibitor) and generation of ATP(6-aminonicotin-amide, an inhibitor of glycolysis.) Cell viability cannot be sustained if the intracellular ATP level is reduced to 15% of normal or below. In vivo data employing this novel therapeutic strategy with cisplatin is presented. The potential significance of these findings to the improvement of cancer treatment is discussed.  相似文献   

14.
It is now widely accepted that dietary phytochemicals inhibit cancer progression and enhance the effects of conventional chemotherapy. In this report, we comparatively studied the cellular and molecular aspects of apoptosis induction by the methanolic extract of Baneh fruit skin in comparison to Doxorubicin (Dox), a well-known anticancer drug, in human breast cancer T47D cells. The MTT assay was used to determine the antiproliferative effects. The flow cytometric and microscopic analyses were done to evaluate the apoptosis induction. Furthermore, western blot analyses have been done to study the role of key molecular players of apoptosis including caspase 3 and PARP. The Baneh extract showed strong antiproliferative activity against T47D cells in a dose- and time-dependent manner that was comparable to and even stronger than Dox in certain concentrations. Analysis of Baneh-treated cells by flow cytometry and fluorescence microscopy indicated strong apoptosis induction and nuclear morphological alterations similar to or greater than Dox. Finally, molecular analysis of apoptosis by western blotting proved activation of caspase 3 followed by poly ADP ribose polymerase (PARP) cleavage more efficiently in Baneh than in Dox treated cancer cells. These findings indicate that Baneh extract contains phytochemicals which act as inhibitor of cell proliferation and inducer of apoptosis in human breast cancer T47D cells that makes it a potentially good candidate for new anticancer drug development.  相似文献   

15.
Dendritic cells are dysfunctional in patients with operable breast cancer   总被引:4,自引:0,他引:4  
Background: Dendritic cells (DCs) play a crucial role in presenting antigens to T lymphocytes and inducing cytotoxic T cells. DCs have been studied in patients with breast cancer to define the factors leading to failure of an effective systemic and locoregional anticancer host response. Methods: Purified DCs were obtained from peripheral blood (PB) and lymph nodes (LNs) of women with operable breast cancer, using immunomagnetic bead selection. The stimulatory capacity of DCs in the allogeneic mixed leukocyte reaction (MLR) and autologous T cell proliferation test (purified protein derivative (PPD) as stimulator), the expression of surface markers on DCs and the production of cytokines in vitro by DCs from patients with operable breast cancer and from healthy donors (controls) were studied. Results: 70–75% purified DCs were isolated from PB and LNs. PBDCs and LNDCs from patients with operable breast cancer demonstrated a reduced capacity to stimulate in an MLR, compared with PBDCs from normal donors (p<0.01). Autologous T cell proliferation in patients had a decreased ability to respond to PPD, when compared with controls (p<0.01). However, T cells from patients responded as well as control T lymphocytes in the presence of control DCs. PBDCs and LNDCs from patients expressed low levels of HLA-DR and CD86, and induced decreased interleukin-12 (IL-12) secretion in vitro, compared with DCs from normal donors (p<0.01). Conclusion: These data suggest a defective DC function in patients with operable breast cancer. Switched-off DCs in patients with early breast cancer and decreased IL-12 production may be important factors for progressive tumour growth.  相似文献   

16.
Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes—ganoderic and lucidenic acids—the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.  相似文献   

17.
Colchicine ( COL ) shows strong anticancer activity but due to its toxicity towards normal cells its wider application is limited. To address this issue, a library of 17 novel COL derivatives, namely N‐carbamates of N‐deacetyl‐4‐(bromo/chloro/iodo)thiocolchicine, has been tested against two types of primary cancer cells. These included acute lymphoblastic leukemia (ALL) and human breast cancer (BC) derived from two different tumor subtypes, ER+ invasive ductal carcinoma grade III (IDCG3) and metastatic carcinoma (MC). Four novel COL derivatives showed higher anti‐proliferative activity than COL (IC50 = 8.6 nM) towards primary ALL cells in cell viability assays (IC50 range of 1.1‐6.4 nM), and several were more potent towards primary IDCG3 (IC50 range of 0.1 to 10.3 nM) or MC (IC50 range of 2.3‐9.1 nM) compared to COL (IC50 of 11.1 and 11.7 nM, respectively). In addition, several derivatives were selectively active toward primary breast cancer cells compared to normal breast epithelial cells. The most promising derivatives were subsequently tested against the NCI panel of 60 human cancer cell lines and seven derivatives were more potent than COL against leukemia, non–small‐cell lung, colon, CNS and prostate cancers. Finally, COL and two of the most active derivatives were shown to be effective in killing BC cells when tested ex vivo using fresh human breast tumor explants. The present findings indicate that the select COL derivatives constitute promising lead compounds targeting specific types of cancer.  相似文献   

18.
A new series of 4-(4-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole-3-thiol derivatives were synthesized as analogs for the anticancer drug combretastatin A-4 ( CA-4 ) and characterized using FT-IR, 1H-NMR, 13CNMR, and HR-MS techniques. The new CA-4 analogs were designed to meet the structural requirements of the highest expected anticancer activity of CA-4 analogs by maintaining ring A 3,4,5-trimethoxyphenyl moiety, and at the same time varying the substituents effect of the triazole moiety (ring B ). In silico analysis indicated that compound 3 has higher total energy and dipole moment than colchicine and the other analogs, and it has excellent distribution of electron density and is more stable, resulting in an increased binding affinity during tubulin inhibition. Additionally, compound 3 was found to interact with three apoptotic markers, namely p53, Bcl-2, and caspase 3. Compound 3 showed strong similarity to colchicine , and it has excellent pharmacokinetics properties and a good dynamic profile. The in vitro anti-proliferation studies showed that compound 3 is the most cytotoxic CA-4 analog against cancer cells (IC50 of 6.35 μM against Hep G2 hepatocarcinoma cells), and based on its selectivity index (4.7), compound 3 is a cancer cytotoxic-selective agent. As expected and similar to colchicine , compound 3 -treated Hep G2 hepatocarcinoma cells were arrested at the G2/M phase resulting in induction of apoptosis. Compound 3 tubulin polymerization IC50 (9.50 μM) and effect on Vmax of tubulin polymerization was comparable to that of colchicine (5.49 μM). Taken together, the findings of the current study suggest that compound 3 , through its binding to the colchicine-binding site at β-tubulin, is a promising microtubule-disrupting agent with excellent potential to be used as cancer therapeutic agent.  相似文献   

19.
Silver nanoparticles (Ag NPs) are cytotoxic to cancer cells and possess excellent potential as an antitumor agent. A variety of nanoparticles have been shown to induce autophagy, a critical cellular degradation process, and the elevated autophagy in most of these situations promotes cell death. Whether Ag NPs can induce autophagy and how it might affect the anticancer activity of Ag NPs has not been reported. Here we show that Ag NPs induced autophagy in cancer cells by activating the PtdIns3K signaling pathway. The autophagy induced by Ag NPs was characterized by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. Consistent with these properties, the autophagy induced by Ag NPs promoted cell survival, as inhibition of autophagy by either chemical inhibitors or ATG5 siRNA enhanced Ag NPs-elicited cancer cell killing. We further demonstrated that wortmannin, a widely used inhibitor of autophagy, significantly enhanced the antitumor effect of Ag NPs in the B16 mouse melanoma cell model. Our results revealed a novel biological activity of Ag NPs in inducing cytoprotective autophagy, and inhibition of autophagy may be a useful strategy for improving the efficacy of Ag NPs in anticancer therapy.  相似文献   

20.
Salinomycin is a polyether antibiotic isolated from Streptomyces albus that acts in different biological membranes as a ionophore with a preference for potassium. It is widely used as an anticoccidial drug in poultry and is fed to ruminants to improve nutrient absorption and feed efficiency. Salinomycin has recently been shown to selectively deplete human breast cancer stem cells from tumorspheres and to inhibit breast cancer growth and metastasis in mice. We show here that salinomycin induces massive apoptosis in human cancer cells of different origin, but not in normal cells such as human T lymphocytes. Moreover, salinomycin is able to induce apoptosis in cancer cells that exhibit resistance to apoptosis and anticancer agents by overexpression of Bcl-2, P-glycoprotein or 26S proteasomes with enhanced proteolytic activity. Salinomycin activates a distinct apoptotic pathway that is not accompanied by cell cycle arrest and that is independent of tumor suppressor protein p53, caspase activation, the CD95/CD95L system and the proteasome. Thus, salinomycin should be considered as a novel and effective anticancer agent that overcomes multiple mechanisms of apoptosis resistance in human cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号