首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organic nitrites are nitric oxide (NO) donors that are used predominantly as inhalant drugs of abuse and have been shown to have immunomodulating effects. NO donors can modulate NOS activity and expression, thus altering the level of endogenous NO production. NO can react with superoxide (O(*)(2)(-)) to form peroxynitrite (ONOO(-)), which can nitrate tyrosine residues in proteins and alter tyrosine phosphorylation. We investigated the effects of inhaled isobutyl nitrite (ISBN) on NOS expression, tyrosine nitration, and tyrosine phosphorylation in selected organs of rats. Following exposures of 109 and 1517 ppm ISBN for 4 h, the lung, spleen, liver, and kidney were removed and assayed by SDS-PAGE for NOS III (eNOS), NOS II (iNOS), nitrotyrosine (NT)- and phosphotyrosine (PT)-immunoreactive proteins using specific antibodies. ISBN at 1517 ppm, but not 109 ppm, caused an increase in NOS III expression in the liver and kidney, but not in the lung and spleen. No apparent effect on NOS II expression was observed in these organs. The expressions of NT and PT protein bands (30-200 kDa) were increased in the liver and kidney, but not in the lung and spleen. This increase in NT persisted for 24 h post-exposure. Increased NOS III expression in the liver and kidney may promote peroxynitrite formation and contribute to the increase in NT and PT immunoreactivity. ISBN inhalation may thus cause changes in cellular signaling involving tyrosine phosphorylation. These findings may suggest a mechanistic basis for the apparent immunotoxicity associated with nitrite abuse.  相似文献   

2.
Clinically significant increases in pulmonary vascular resistance (PVR) have been noted upon acute withdrawal of inhaled nitric oxide (iNO). Previous studies in the normal pulmonary circulation demonstrate that iNO increases endothelin-1 (ET-1) levels and decreases endogenous nitric oxide synthase (NOS) activity, implicating an endothelial etiology for the increase in resistance upon iNO withdrawal. However, the effect of iNO on endogenous endothelial function in the clinically relevant pulmonary hypertensive circulation is unknown. The objective of this study was to determine the effects of iNO on endogenous NO-cGMP and ET-1 signaling in lambs with preexisting pulmonary hypertension secondary to increased pulmonary blood flow. Eight fetal lambs underwent in utero placement of an aortopulmonary vascular graft (shunt lambs). After delivery (4 wk), the shunt lambs were mechanically ventilated with iNO (40 ppm) for 24 h. After 24 h of inhaled NO, plasma ET-1 levels increased by 34.8% independently of changes in protein levels (P < 0.05). Contrary to findings in normal lambs, total NOS activity did not decrease during iNO. In fact, Western blot analysis demonstrated that tissue endothelial NOS protein levels decreased by 43% such that NOS activity relative to protein levels actually increased during iNO (P < 0.05). In addition, the beta-subunit of soluble guanylate cyclase decreased by 70%, whereas phosphodiesterase 5 levels were unchanged (P < 0.05). Withdrawal of iNO was associated with an acute increase in PVR, which exceeded baseline PVR by 45%, and a decrease in cGMP concentrations to levels that were below baseline. These data suggest that the endothelial response to iNO and the potential mechanisms of rebound pulmonary hypertension are dependent upon the underlying pulmonary vasculature.  相似文献   

3.
Nitric oxide (NO) serves multiple functions in the developing lung, and pulmonary NO production is decreased in a baboon model of chronic lung disease (CLD) after premature birth at 125 days (d) gestation (term = 185d). To determine whether postnatal NO administration alters the genesis of CLD, the effects of inhaled NO (iNO, 5 ppm) were assessed in the baboon model over 14d. iNO caused a decrease in pulmonary artery pressure in the first 2d and a greater rate of spontaneous closure of the ductus arteriosus, and lung compliance was greater and expiratory resistance was improved during the first week. With iNO, postmortem pressure-volume curves were shifted upward, lung DNA content and cell proliferation were increased, and lung growth was preserved to equal that which occurs during the same period in utero. In addition, the excessive elastin deposition characteristic of CLD was normalized by iNO, and there was evidence of stimulation of secondary crest development. Thus, in the baboon model of CLD, iNO improves early pulmonary function and alters lung growth and extracellular matrix deposition. As such, NO biosynthetic pathway dysfunction may contribute to the pathogenesis of CLD.  相似文献   

4.
Nitric oxide (NO) is produced by NO synthase (NOS) and contributes to the regulation of vascular tone in the perinatal lung. Although the neuronal or type I NOS (NOS I) isoform has been identified in the fetal lung, it is not known whether NO produced by the NOS I isoform plays a role in fetal pulmonary vasoregulation. To study the potential contribution of NOS I in the regulation of basal fetal pulmonary vascular resistance (PVR), we studied the hemodynamic effects of a selective NOS I antagonist, 7-nitroindazole (7-NINA), and a nonselective NOS antagonist, N-nitro-L-arginine (L-NNA), in chronically prepared fetal lambs (mean age 128 +/- 3 days, term 147 days). Brief intrapulmonary infusions of 7-NINA (1 mg) increased basal PVR by 37% (P < 0.05). The maximum increase in PVR occurred within 20 min after infusion, and PVR remained elevated for up to 60 min. Treatment with 7-NINA also increased the pressure gradient between the pulmonary artery and aorta, suggesting constriction of the ductus arteriosus (DA). To test whether 7-NINA treatment selectively inhibits the NOS I isoform, we studied the effects of 7-NINA and L-NNA on acetylcholine-induced pulmonary vasodilation. The vasodilator response to acetylcholine remained intact after treatment with 7-NINA but was completely inhibited after L-NNA, suggesting minimal effects on endothelial or type III NOS after 7-NINA infusion. Western blot analysis detected NOS I protein in the fetal lung and great vessels including the DA. NOS I protein was detected in intact and endothelium-denuded vessels, suggesting that NOS I is present in the medial or adventitial layer. We conclude that 7-NINA, a selective NOS I antagonist, increases basal PVR, systemic arterial pressure, and DA tone in the late-gestation fetus and that NOS I protein is present in the fetal lung and great vessels. We speculate that NOS I may contribute to NO production in the regulation of basal vascular tone in the pulmonary and systemic circulations and the DA.  相似文献   

5.
The intermittent vascular occlusion occurring in sickle cell disease (SCD) leads to ischemia-reperfusion injury and activation of inflammatory processes including enhanced production of reactive oxygen species and increased expression of inducible nitric-oxide synthase (NOS2). Appreciating that impaired nitric oxide-dependent vascular function and the concomitant formation of oxidizing and nitrating species occur in concert with increased rates of tissue reactive oxygen species production, liver and kidney NOS2 expression, tissue 3-nitrotyrosine (NO(2)Tyr) formation and apoptosis were evaluated in human SCD tissues and a murine model of SCD. Liver and kidney NOS2 expression and NO(2)Tyr immunoreactivity were significantly increased in SCD mice and humans, but not in nondiseased tissues. TdT-mediated nick end-label (TUNEL) staining showed apoptotic cells in regions expressing elevated levels of NOS2 and NO(2)Tyr in all SCD tissues. Gas chromatography mass spectrometry analysis revealed increased plasma protein NO(2)Tyr content and increased levels of hepatic and renal protein NO(2)Tyr derivatives in SCD (21.4 +/- 2.6 and 37.5 +/- 7.8 ng/mg) versus wild type mice (8.2 +/- 2.2 and 10 +/- 1.2 ng/mg), respectively. Western blot analysis and immunoprecipitation of SCD mouse liver and kidney proteins revealed one principal NO(2)Tyr-containing protein of 42 kDa, compared with controls. Enzymatic in-gel digestion and MALDI-TOF mass spectrometry identified this nitrated protein as actin. Electrospray ionization and fragment analysis by tandem mass spectrometry revealed that 3 of 15 actin tyrosine residues are nitrated (Tyr(91), Tyr(198), and Tyr(240)) at positions that significantly modify actin assembly. Confocal microscopy of SCD human and mouse tissues revealed that nitration led to morphologically distinct disorganization of filamentous actin. In aggregate, we have observed that the hemoglobin point mutation of sickle cell disease that mediates hemoglobin polymerization defects is translated, via inflammatory oxidant reactions, into defective cytoskeletal polymerization.  相似文献   

6.
Nitric oxide (NO), depending on the amount, time and source of generation may exert both, protective and deleterious actions during endotoxic acute lung injury (ALI). Evaluation of the expression and localization of NOS isoforms in the lung of lipopolysaccharide (LPS)-treated rats may contribute to understanding the role of NO in pathogenesis of ALI. Tissue samples (lung, heart, liver, kidney and spleen) as well as peripheral blood polymorphonuclear cells (PMNs) were collected from control male Wistar rats and LPS - treated animals, 15, 30, 60, 120 and 180 min after LPS injection (2 mg kg(-1) min(-1) for 10 minutes, i.v.). Levels of NOS-2 and NOS-3 mRNA and protein in tissues and PMNs were estimated by RT-PCR, Northern blotting and Western blotting. Additionally, myeloperoxidase (MPO) activity in tissue samples was assayed. NOS-3 mRNA as well as protein were detected in lungs of control animals; pulmonary NOS-3 expression was not influenced by LPS. The induction of NOS-2 mRNA in rat lungs and in PMNs isolated from peripheral blood was observed 15 minutes after LPS challenge. In contrast, increase of NOS-2 mRNA in the heart, kidneys, liver and spleen was observed 2-3 hours after LPS injection. In all tissues rise in NOS-2 mRNA was followed after 1-2 hours by increase of NOS-2 protein. Importantly, progressive leukocyte sequestration in the lung parenchyma that started as early as 15 min after LPS injection was revealed only in the lungs; in other organs no significant changes in MPO activity were detected up to 180 min after LPS injection. In conclusion, infusion of LPS caused much more rapid expression of NOS-2 in lungs as compared to the heart, kidneys, liver and spleen. Early induction of NOS-2 may depend on the LPS-stimulated rapid neutrophil sequestration within lung vasculature and fast induction of NOS-2 in sequestrated neutrophils.  相似文献   

7.
Vascular endothelial growth factor (VEGF) receptor blockade impairs lung growth and decreases nitric oxide (NO) production in neonatal rat lungs. Inhaled NO (iNO) treatment after VEGF inhibition preserves lung growth in infant rats by unknown mechanisms. We hypothesized that neonatal VEGF inhibition disrupts lung growth by causing apoptosis in endothelial cells, which is attenuated by early iNO treatment. Three-day-old rats received SU-5416, an inhibitor of VEGF receptor, or its vehicle and were raised in room air with or without iNO (10 ppm). SU-5416 reduced alveolar counts and lung vessel density by 28% (P < 0.005) and 21% (P < 0.05), respectively, as early as at 7 days of age. SU-5416 increased lung active caspase-3 protein by 60% at 5 days of age (P < 0.05), which subsided by 7 days of age, suggesting a transient increase in lung apoptosis after VEGF blockade. Apoptosis primarily colocalized to lung vascular endothelial cells, and SU-5416 increased endothelial cell apoptotic index by eightfold at 5 days of age (P <0.0001). iNO treatment after SU-5416 prevented the increases in lung active caspase-3 and in endothelial cell apoptotic index. There was no difference in alveolar type 2 cell number between control and SU-5416-treated rats. We conclude that neonatal VEGF receptor inhibition causes transient apoptosis in pulmonary endothelium, which is followed by persistently impaired lung growth. Early iNO treatment after VEGF inhibition reduces endothelial cell apoptosis in neonatal lungs. We speculate that enhancing endothelial cell survival after lung injury may preserve neonatal lung growth in bronchopulmonary dysplasia.  相似文献   

8.
9.
Zhao C  Tyndyk M  Eide I  Hemminki K 《Mutation research》1999,424(1-2):117-125
Detection of 7-alkylguanine DNA adducts is useful to assess human exposure to and the resulting DNA damage caused by simple alkylating agents. The background 7-methylguanine (7-MG) and 7-hydroxyethylguanine (7-HEG) adduct levels were determined in human and rat tissues, using thin-layer chromatography (TLC) combined with high pressure liquid chromatography (HPLC). In addition, these two adduct levels were also compared in various tissues between smokers and non-smokers. The results demonstrated that the background level of 7-alkylguanine adducts in WBC and lung tissues of non-smokers was 2.9 and 4.0 adducts/107 nucleotides, respectively. In smokers with lung cancers 7-MG adduct level in lung samples (6.3+/-1.9 adducts/107 nucleotides) and in bronchus samples (6.1+/-1.5 adducts/107 nucleotides) was significantly higher than that in WBC samples (3.3+/-0.9 adducts/107 nucleotides). 7-HEG adduct levels obtained from the same individuals were 0.8+/-0.3 in lung, 1.0+/-0.8 in bronchus and 0.6+/-0.2 adducts/107 nucleotides in WBC, respectively. Animal studies showed that background levels of 7-MG (2.1-2.5 adducts/107 nucleotides) in control rats were approximately 2-4-fold higher than 7-HEG levels (0.6-0.9 adducts/107 nucleotides). After a 3-day exposure to 300 ppm ethene, 7-HEG adducts accumulated to a similar extent in different tissues of rats, with the mean adduct level of 5.6-7.0 in liver, 7.4 in lymphocytes and 5.5 adducts/107 nucleotides in kidney.  相似文献   

10.
Inhaled nitric oxide (iNO) has been shown to have a protective effect in lung ischemia-reperfusion (I/R)-induced injuries. We studied the role of iNO (10 parts/million for 4 h) administered before I/R. In an isolated perfused lung preparation, iNO decreased the extravascular albumin accumulation from 2,059 +/- 522 to 615 +/- 105 microl and prevented the increase in lung wet-to-dry weight ratio. To study the mechanisms of this prevention, we evaluated the role of nitric oxide (NO) transport and lung exposure with matched experiments by using either lungs or blood of animals exposed to iNO and blood or lungs of naive animals. iNO-exposed blood with naive lungs did not limit the extravascular albumin accumulation (2,561 +/- 397 microl), but iNO-exposed lungs showed a leak not significantly different from the group in which both lungs and blood were iNO exposed (855 +/- 224 vs. 615 +/- 105 microl). An improvement in heart I/R left ventricular developed pressure in the animals exposed to iNO showed that blood-transported NO was, however, sufficient to trigger remote organ endothelium and reduce the consequences of a delayed injury. In conclusion, preventive iNO reduces the consequences of lung I/R injuries by a mechanism based on tissue or endothelium triggering.  相似文献   

11.
Beneficial effects of inhaled nitric oxide (iNO) on arterial oxygenation in acute lung injury (ALI) suggest the presence of vasoconstriction in ventilated lung regions and this may be influenced by endothelin-1 (ET-1). We studied a possible interaction between ET-1 and iNO in experimental ALI. Sixteen piglets were anesthetized and mechanically ventilated (inspired O2 fraction, 1.0). After induction of ALI by surfactant depletion, animals were randomly assigned to either inhale 30 ppm NO (iNO group, n = 8), or to receive no further intervention (controls, n = 8). Measurements were performed during the following 4 hrs. In all animals, induction of ALI significantly decreased arterial oxygen tension (PaO2) from 569 +/- 15 (prelavage) to 58 +/- 3 mm Hg. Inhaled NO significantly increased PaO2 when compared with controls (iNO group: 265 +/- 51 mm Hg; controls: 50 +/- 4 mm Hg, values at 4 hrs, P < 0.01). Prelavage ET-1 plasma levels were comparable between groups (iNO: 0.74 +/- 0.03, controls: 0.71 +/- 0.03 fmol/ml, NS). During the protocol, the ET-1 levels increased and were different at 3 hrs (iNO: 0.93 +/- 0.06, controls: 1.25 +/- 0.09 fmol/ml; P < 0.05). PaO2 changes induced by iNO revealed a moderate and significant correlation with ET-1 plasma levels (R = 0.548, P = 0.001). Our data suggest that endogenous ET-1 production influences the efficacy of iNO in ALI. Furthermore, iNO reduced ET-1 plasma levels, possibly indicating anti-inflammatory properties of iNO in the early phase of ALI.  相似文献   

12.
Cardiac defects associated with increased pulmonary blood flow result in pulmonary vascular dysfunction that may relate to a decrease in bioavailable nitric oxide (NO). An 8-mm graft (shunt) was placed between the aorta and pulmonary artery in 30 late gestation fetal lambs; 27 fetal lambs underwent a sham procedure. Hemodynamic responses to ACh (1 microg/kg) and inhaled NO (40 ppm) were assessed at 2, 4, and 8 wk of age. Lung tissue nitric oxide synthase (NOS) activity, endothelial NOS (eNOS), neuronal NOS (nNOS), inducible NOS (iNOS), and heat shock protein 90 (HSP90), lung tissue and plasma nitrate and nitrite (NO(x)), and lung tissue superoxide anion and nitrated eNOS levels were determined. In shunted lambs, ACh decreased pulmonary artery pressure at 2 wk (P < 0.05) but not at 4 and 8 wk. Inhaled NO decreased pulmonary artery pressure at each age (P < 0.05). In control lambs, ACh and inhaled NO decreased pulmonary artery pressure at each age (P < 0.05). Total NOS activity did not change from 2 to 8 wk in control lambs but increased in shunted lambs (ANOVA, P < 0.05). Conversely, NO(x) levels relative to NOS activity were lower in shunted lambs than controls at 4 and 8 wk (P < 0.05). eNOS protein levels were greater in shunted lambs than controls at 4 wk of age (P < 0.05). Superoxide levels increased from 2 to 8 wk in control and shunted lambs (ANOVA, P < 0.05) and were greater in shunted lambs than controls at all ages (P < 0.05). Nitrated eNOS levels were greater in shunted lambs than controls at each age (P < 0.05). We conclude that increased pulmonary blood flow results in progressive impairment of basal and agonist-induced NOS function, in part secondary to oxidative stress that decreases bioavailable NO.  相似文献   

13.
S D Buchthal  R G Bell 《Biochemistry》1983,22(5):1077-1082
Vitamin K dependent carboxylation of glutamate residues to gamma-carboxyglutamate was demonstrated in proteins of spleen and testes microsomes. The rate of carboxylation in spleen microsomes was 0.9% and testes 3% of that in liver microsomes per milligram of microsomal protein. For comparison the rates of carboxylation in lung and kidney microsomes were 17 and 8%, respectively, of the rate in liver microsomes. The high rate in liver microsomes may be due to a high carboxylase level as indicated by the high rate of peptide carboxylation in liver microsomes. Protein carboxylation in liver microsomes was linear for only 15 min while carboxylation in microsomes from extrahepatic tissue persisted much longer so that the total protein carboxylation in lung microsomes was 60%, kidney 18%, testes 12%, and spleen 9% of that occurring in liver microsomes. Protein carboxylation was higher in microsomes from extrahepatic tissues of rats fed a vitamin K deficient diet as compared to animals fed a vitamin K sufficient diet. Protein carboxylation in microsomes from extrahepatic tissues was greatly stimulated by manganese ions and was dependent upon the addition of dithioerythritol. NADH could partially replace the dithiol in spleen, testes, and lung, but NADH-dependent carboxylation was relatively low in kidney and liver microsomes. Dithiol-dependent carboxylation was completely blocked by 10 microM warfarin, but NADH-dependent carboxylation was only slightly inhibited by 100 microM warfarin. Menaquinone-3 was much more active than vitamin K1 in driving carboxylation. Solubilized microsomes catalyzed the carboxylation of glutamate residues to gamma-carboxyglutamate in a pentapeptide Phe-Leu-Glu-Glu-Leu. The rate of carboxylation in lung microsomes was 22%, testes 3.3%, kidney 1.9%, and spleen 1.6% of the rate in liver microsomes.  相似文献   

14.
VEGF plays a critical role during lung development and is decreased in human infants with bronchopulmonary dysplasia. Inhibition of VEGF receptors in the newborn rat decreases vascular growth and alveolarization and causes pulmonary hypertension (PH). Nitric oxide (NO) is a downstream mediator of VEGF, but whether the effects of impaired VEGF signaling are due to decreased NO production is unknown. Therefore, we sought to determine whether impaired VEGF signaling downregulates endothelial NO synthase (eNOS) expression in the developing lung and whether inhaled NO (iNO) decreases PH and improves lung growth after VEGF inhibition. Newborn rats received a single dose of SU-5416 (a VEGF receptor inhibitor) or vehicle by subcutaneous injection and were killed up to 3 wk of age for assessments of right ventricular hypertrophy (RVH), radial alveolar counts (RAC), lung eNOS protein, and NOx production in isolated perfused lungs (IPL). Neonatal treatment with SU-5416 increased RVH in infant rats and reduced RAC. Compared with controls, SU-5416 reduced lung eNOS protein expression by 89% at 5 days (P < 0.01). IPL studies from day 14 rats demonstrated increased baseline pulmonary artery pressure and lower perfusate NOx concentration after SU-5416 treatment. Importantly, iNO treatment prevented the increase in RVH and improved RAC after SU-5416 treatment. We conclude that treatment of neonatal rats with SU-5416 downregulates lung eNOS expression and that iNO therapy decreases PH and improves lung growth after SU-5416 treatment. We speculate that decreased NO production contributes to PH and decreases distal lung growth caused by impaired VEGF signaling.  相似文献   

15.
Nitric oxide (NO) is generated by NO synthase (NOS) of which there are three isoforms: neuronal NOS (nNOS, nos1), inducible NOS (iNOS, nos2), and endothelial NOS (eNOS, nos3). This study utilised the genome of Xenopus tropicalis to sequence a nos3 cDNA and determine if eNOS protein is expressed in blood vessels. A nos3 cDNA was sequenced that encoded a 1177 amino acid protein called XteNOS, which showed closest sequence identity to mammalian eNOS protein. The X. tropicalis nos3 gene and eNOS protein were determined to be an orthologue of mammalian nos3 and eNOS using gene synteny and phylogenetic analyses, respectively. In X. tropicalis, nos3 mRNA expression was highest in lung and skeletal muscle and lower in the liver, gut, kidney, heart and brain. Western analysis of kidney protein using an affinity-purified anti-XteNOS produced a single band at 140kDa. Immunohistochemistry showed XteNOS immunoreactivity in the proximal tubule of the kidney and endocardium of the heart, but not in the endothelium of blood vessels. Thus, X. tropicalis has a nos3 gene that appears not to be expressed in the vascular endothelium.  相似文献   

16.
17.
Diminished nitric oxide (NO) bioactivity and enhanced peroxynitrite formation have been implicated as major contributors to atherosclerotic vascular dysfunctions. Hallmark reactions of peroxynitrite include the accumulation of 3-nitrotyrosine (3-NT) in proteins and oxidation of the NO synthase (NOS) cofactor, tetrahydrobiopterin (BH(4)). The present study sought to 1) quantify the extent to which 3-NT accumulates and BH(4) becomes oxidized in organs of apolipoprotein E-deficient (ApoE(-/-)) atherosclerotic mice and 2) determine the specific contribution of inducible NOS (iNOS) to these processes. Whereas protein 3-NT and oxidized BH(4) were undetected or near the detection limit in heart, lung, and kidney of 3-wk-old ApoE(-/-) mice or ApoE(-/-) mice fed a regular chow diet for 24 wk, robust accumulation was evident after 24 wk on a Western (atherogenic) diet. Since 3-NT accumulation was diminished 3- to 20-fold in heart, lung, and liver in ApoE(-/-) mice missing iNOS, iNOS-derived species are involved in this reaction. In contrast, iNOS-derived species did not contribute to elevated protein 3-NT formation in kidney or brain. iNOS deletion also afforded marked protection against BH(4) oxidation in heart, lung, and kidney of atherogenic ApoE(-/-) mice but not in brain or liver. These findings demonstrate that iNOS-derived species are increased during atherogenesis in ApoE(-/-) mice and that these species differentially contribute to protein 3-NT accumulation and BH(4) oxidation in a tissue-selective manner. Since BH(4) oxidation can switch the predominant NOS product from NO to superoxide, we predict that progressive NOS uncoupling is likely to drive atherogenic vascular dysfunctions.  相似文献   

18.
Apoptosis signal-regulating kinase 1 (ASK1) and ASK2 are both members of mitogen-activated protein kinase kinase kinase (MAP3K) family that are implicated in apoptotic cell death, stress responses, and various diseases. We have determined that NT2RI3007443, TESTI4031745, SGK341, and human MAP3K15 are all transcribed from the same genomic locus, which we designate “ASK3 gene” based on sequence homology to ASK1 and ASK2. NT2RI3007443, TESTI4031745, and SGK341 displayed distinct expression profiles among human tissues. TESTI4031745 was expressed in relatively high levels. The expression of TESTI4031745 was increased in rectum tumor and Alzheimer’s disease hippocampus and decreased in kidney tumor and Alzheimer’s disease frontal lobe. NT2RI3007443 showed moderate levels of ubiquitous expression in normal adult tissues. They did not drastically change in diseases except for increase in cirrhosis liver. Expression of SGK341 was restricted. It was highly expressed in fetal brain, and moderately expressed in normal hippocampus, pancreas, spleen, lung, and kidney. Further, its expression was dramatically increased in hepatic cirrhosis and decreased in lung tumor. Target proteins encoded by NT2RI3007443 and TESTI4031745 were translated in cell-free protein synthesis system. They exhibited protein kinase activity indicated by ATP consumption and phosphorylation of Syntide 2 as a substrate. We demonstrated that knockdown of ASK3 protected HeLa cells against cytotoxicity induced by anti-Fas monoclonal antibody, TNF-alpha, or oxidative stress. These findings suggest that “ASK3 gene” is a novel member of apoptosis signal-regulating kinases and that it plays a pivotal role in the signal transduction pathway implicated in apoptotic cell death triggered by cellular stresses. It can be a putative therapeutic drug target for multiple human diseases.  相似文献   

19.
In a porcine model of oleic acid-induced lung injury, the effects of inhaled nitric oxide (iNO) and intravenous almitrine bismesylate (ivALM), which enhances the hypoxic pulmonary vasoconstriction on the distribution of regional pulmonary blood flow (PBF), were assessed. After injection of 0.12 ml/kg oleic acid, 20 anesthetized and mechanically ventilated piglets [weight of 25 +/- 2.6 (SD) kg] were randomly divided into four groups: supine position, prone position, and 10 ppm iNO for 40 min followed by 4 microg x kg(-1) x min(-1) ivALM for 40 min in supine position and in prone position. PBF was measured with positron emission tomography and H(2)15O. The redistribution of PBF was studied on a pixel-by-pixel basis. Positron emission tomography scans were performed before and then 120, 160, and 200 min after injury. With prone position alone, although PBF remained prevalent in the dorsal regions it was significantly redistributed toward the ventral regions (P < 0.001). A ventral redistribution of PBF was also obtained with iNO regardless of the position (P = 0.043). Adjunction of ivALM had no further effect on PBF redistribution. PP and iNO have an additive effect on ventral redistribution of PBF.  相似文献   

20.
Nitric oxide (NO), synthesized by NO synthases (NOS), plays a pivotal role in regulation of pulmonary vascular tone. To examine the role of endothelial NOS (NOS3) in hypoxic pulmonary vasoconstriction (HPV), we measured left lung pulmonary vascular resistance (LPVR), intrapulmonary shunting, and arterial PO2 (PaO2) before and during left mainstem bronchus occlusion (LMBO) in mice with and without a deletion of the gene encoding NOS3. The increase of LPVR induced by LMBO was greater in NOS3-deficient mice than in wild-type mice (151 +/- 39% vs. 109 +/- 36%, mean +/- SD; P < 0.05). NOS3-deficient mice had a lower intrapulmonary shunt fraction than wild-type mice (17.1 +/- 3.6% vs. 21.7 +/- 2.4%, P < 0.05) during LMBO. Both real-time PaO2 monitoring with an intra-arterial probe and arterial blood-gas analysis during LMBO showed higher PaO2 in NOS3-deficient mice than in wild-type mice (P < 0.05). Inhibition of all three NOS isoforms with Nomega-nitro-L-arginine methyl ester (L-NAME) augmented the increase of LPVR induced by LMBO in wild-type mice (183 +/- 67% in L-NAME treated vs. 109 +/- 36% in saline treated, P < 0.01) but not in NOS3-deficient mice. Similarly, systemic oxygenation during one-lung ventilation was augmented by L-NAME in wild-type mice but not in NOS3-deficient mice. These findings indicate that NO derived from NOS3 modulates HPV in vivo and that inhibition of NOS3 improves systemic oxygenation during acute unilateral lung hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号