共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in abscisic acid and proline levels in maize varieties of different drought resistance 总被引:2,自引:0,他引:2
Four varieties of maize differing in drought resistance and geographical origin (Swabi White and Shaheen from Pakistan, Garbo and Goldprinz from Germany) were analyzed for their proline and abscisic acid (ABA) accumulation during a prolonged water stress period. Proline levels increased continuously during the stress period in all the four varieties, but to different amounts. The drought-susceptible varieties Shaheen and Goldprinz produced higher levels of proline than the drought-resistant varieties Swabi White and Garbo. A negative correlation was also found between maximal ABA contents and degree of drought resistance during prolonged stress of younger plants. ABA levels did not increase steadily, but reached a maximum long before the end of the stress phase, and then declined. The results are discussed in relation to the possibility of using proline and ABA levels as biochemical indicators of resistance against drought. 相似文献
2.
Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars
Yongchao Liang Jia Zhu Zhaojun Li Guixin Chu Yanfang Ding Jie Zhang Wanchun Sun 《Environmental and Experimental Botany》2008,64(3):286-294
The main objective of this study was to elucidate the roles of silicon (Si) in enhancing tolerance to freezing stress (?5 °C) in two contrasting wheat (Triticum aestivum L.) cultivars: i.e. cv. Yangmai No. 5, a freezing-susceptible cultivar and cv. Linmai No. 2, a freezing-tolerant cultivar. Shoot dry weight of the freezing-susceptible wheat was significantly lower under freezing stress than in controls, but increased significantly with Si amendment. The freezing treatment did not affect shoot dry weight of the freezing-tolerant cultivar. The leaf water content was considerably decreased by freezing stress in the freezing-susceptible cultivar, but was significantly increased by Si amendment. In contrast, freezing treatment did not significantly reduce leaf water content in the freezing-tolerant cultivar and Si played no role in water retention in this cultivar. The concentrations of H2O2 and free proline along with malondialdehyde (MDA) were progressively enhanced by freezing stress in the two wheat cultivars used, but were significantly suppressed by amendment with Si. The major antioxidant enzyme activities and non-enzymatic antioxidants (i.e. glutathione and ascorbic acid) in the leaves of freezing-stressed plants were decreased, but were stimulated significantly by the exogenous Si. The possible mechanisms for Si-enhanced freezing stress may be attributed to the higher antioxidant defense activity and lower lipid peroxidation through water retention in leaf tissues. 相似文献
3.
An almost twofold increase in abscisic acid (ABA) content was observed in the leaves of winter oilseed rape plants (Brassica napus L., var. oleifera L., cv. Jantar) grown in the cold (>0°C). This ABA increase took place during the first three days of cold treatment. After 6 days of plant growth in the cold, the level of ABA started to decline or remained constant, depending on the calculation basis: dry weight or disc area units, respectively. The exposure of cold-acclimated plants to night frost (–5°C for 18 h) induced a further increase (65%) in the ABA level, which begun during the first few hours after thawing. The comparison of time courses of frost resistance increments and ABA content changes showed that modifications of ABA level in the cold-treated leaves preceded those of frost resistance, whereas in the frost-pretreated tissues the ABA increase occurred later than that of frost tolerance. Possible interrelations between ABA content, frost tolerance and tissue water potential modifications in the low temperature-affected tissues are discussed. 相似文献
4.
Time courses of formation of inositol 1,4,5-trisphosphate (IP3 ) were followed in the leaves of non-acclimated and cold (2°C)-acclimated winter oilseed rape ( Brassica napus L. var. oleifera ) plants, subjected to different freezing temperatures or to polyethylene glycol 8000 (PEG) and abscisic acid (ABA) treatments. Changes in water potential (Ψw ) and in ABA level in the frost- and PEG-treated tissues were also determined. Results obtained indicate that temperatures sligthly higher than LT50 induced a transient and substantial increase in IP3 level, both in non-acclimated and cold-acclimated tissues. At comparable freezing temperature (–5°C) the response of cold-acclimated leaves was lower than that of non-acclimated ones. The PEG-depedent decrease in Ψw to –0.9 MPa or ABA (0.1 m M ) treatment gave rise to a transient increase in IP3 content in non-acclimated tissues only. Collectively, the data indicate that cold acclimation of plants may lead to lower cell responsiveness to the factors studied in terms of induction of IP3 formation. Changes in the IP3 content, observed in the present experiments, support our previous suggestion that non-killing freezing temperatures may induce the phosphoinositide pathway, both in non-acclimated and cold-acclimated tissues. Lowering of tissue water potential to some threshold value or a high exogenous ABA supply may mimic the freezing-dependent reaction in the non-acclimated leaves. 相似文献
5.
6.
The effects of salicylic acid (SA) (0.01, 0.1 and 1 mM) and cold on freezing tolerance (freezing injury and ice nucleation activity) were investigated in winter wheat (Triticum aestivum cv. Dogu-88) grown under control (20/18 °C for 15, 30 and 45-day) and cold (15/10 °C for 15-day, 10/5 °C for 30-day and 5/3 °C for 45-day) conditions. Cold acclimatisation caused a decrease of injury to leaf segments removed from the plants and subjected to freezing conditions. Exogenous SA also decreased freezing injury in the leaves grown under cold (15/10 °C) and control (15 and 30-day) conditions. Cold conditions (10/5 and 5/3 °C) caused an increase in ice nucleation activity by apoplastic proteins, which were isolated from the leaves. For the first time, it was shown that exogenous SA caused an increase in ice nucleation activity under cold (15/10 and 10/5 °C) and control conditions. These results show that salicylic acid can increase freezing tolerance in winter wheat leaves by affecting apoplastic proteins. 相似文献
7.
Carbohydrate levels among winter wheat cultivars varying in freezing tolerance and snow mold resistance during autumn and winter 总被引:3,自引:0,他引:3
The LT50 values and soluble carbohydrate levels in wheat ( Triticum aestivum L.) crowns and leaves were monitored throughout autumn and winter in cultivars varying in freezing tolerance and snow mold resistance during 1993/1994 and 1994/1995 in the field at Sapporo, Japan. During the first stage of hardening, from sowing to mid‐November, the pattern of accumulation of mono‐ and disaccharides was similar for all cultivars. During the second stage of cold hardening, from mid‐November to mid‐December, the greatest accumulation of mono‐ and disaccharides, without a corresponding increase in fructan, was observed among the freezing‐tolerant cultivars; and levels of simple saccharides rapidly decreased under snow cover. Conversely, levels of mono‐ and disaccharides in snow mold‐resistant cultivars were less than 70% of those in freezing‐tolerant cultivars before snow cover and maintained low levels throughout winter, while polysaccharide levels in snow mold‐resistant cultivars were about 120% of those in freezing‐tolerant cultivars in December. Sugar metabolism during the winter was examined using 18 cultivars in 1994/1995. LT50 values were correlated to the greatest extent with total mono‐ and disaccharide and fructan content among wheat cultivars excluding snow mold‐resistant cultivars in December. Snow mold‐resistant cultivars tended to metabolize carbohydrates more slowly until the end of the snow cover period. This result suggested that the enzymatic metabolism of the synthesis of sugars and the conversion of fructan to cryoprotective sugars in response to low temperatures, especially subzero ones, might be different between the two contrasting types in resistance to winter stress. 相似文献
8.
Grant C. Churchill Martin J.T. Reaney Suzanne R. Abrams Lawrence V. Gusta 《Plant Growth Regulation》1998,25(1):35-45
The ability of abscisic acid (ABA) and abscisic acid analogs to induce freezing tolerance in fall rye (Secale cereale cv Puma) seedlings grown at nonhardening temperatures was investigated. Analogs were constructed with systematic alterations at C-1 (acid replaced with methyl ester, aldehyde or alcohol), at C-4, C-5 (trans double bond replaced with a triple bond), and at C-2, C-3 (double bond replaced with a single bond so that the side chain and C-2 methyl groups were cis). Freezing tolerance (LT50) was determined 3, 4 and 6 days after the first of two consecutive applications of chemical (100 µM) to either the leaves or roots. All analogs were more effective when applied to the plant roots than when applied to the leaves. ABA, acetylenic ABA and 2,3-dihydroacetylenic ABA decreased the LT50 from –3 °C (control) to –9 °C. Consistent structure-activity relationships were only detected following root application. No single functional group altered was absolutely required for activity. The effect of any given change to the molecule was modified by the presence of other functional groups. For example, substituting the double bond in the ring with a single bond decreased activity, but concomitant substitution of the trans double bond in the side chain with a triple bond restored activity. In general, analogs with a cis, trans side chain were more active initially but rapidly lost activity, whereas acetylenic analogs maintained or gained activity over the three sampling times. The application of gibberellin biosynthesis inhibitors (100 µM; tetcyclacis or mefluidide) did not increase freezing tolerance beyond that induced by ABA, either alone or in combination with ABA. It can be concluded that ABA and certain ABA analogs can induce limited freezing tolerance in whole rye seedlings, and partially substitute for low temperature acclimation. 相似文献
9.
Purpose of this study was to investigate different responses of two wheat genotypes (Triticum aestivum L.) from the wet and dry climate regions to exogenous abscisic acid (ABA) application under well-watered and water-stressed conditions. Exogenous ABA was applied to the leaves by spraying and changes in dry matter accumulation and allocation, endogenous ABA content and carbon isotope ratio (δ13C) were monitored. The ABA application significantly decreased stem height, total biomass, total leaf area, total grain mass and leaf area/mass ratio, and significantly increased root/aboveground biomass ratio, endogenous ABA content and δ13C under well-watered and water-stressed conditions. Compared with the wet climate genotype, the dry climate genotype was more responsive to exogenous ABA application, resulting in lower stem height, total biomass, total leaf area, total grain mass and leaf area/mass ratio, and higher root/aboveground biomass ratio, endogenous ABA content and δ13C under all experimental treatments.The research was supported by the Program of “100 Distinguished Young Scientists” and “ Knowledge Innovation Engineering” of the Chinese Academy of Sciences (No. KSCX2-SW-115). 相似文献
10.
Levels of ethylene, ACC, MACC, ABA and proline as indicators of cold hardening and frost resistance in winter wheat 总被引:2,自引:0,他引:2
Changes in ethylene production and in the contents of 1-aminocydopropane-1-carboxylic acid (ACC), 1-(malonylamin6)-cyclopropane-1-carboxylic acid (MACC), abscisic acid (ABA) and L-proline were determined after 40 days of cold hardening at 4°C in three wheat cultivars differing in frost resistance. Proline and especially ABA accumulated with hardening in all varieties in parallel with the degree of frost resistance, e.g. proline and ABA increases in the non-resistant cv. Slávia were 2x and 5x, whilst in the resistant cv. Mironovská 808 increases were 4X and 20X. Ethylene production and MACC level showed no significant changes with hardening in any of the cultivars after 40 d, but ACC levels did increase with hardening. The production of ethylene, ACC and MACC was studied during hardening. Ethylene production decreased sharply at low temperature and rose rapidly (within 1 day) on return to normal temperature, while ACC production reacted in the opposite direction. MACC levels rose rapidly during the first 4 days of cold, then more slowly for about 2 weeks, thereafter decreasing again steadily. The only varietal differences occurring at maximum levels were correlated with the degree of frost resistance. 相似文献
11.
P. RUCKENBAUER 《The Annals of applied biology》1975,79(3):351-359
The rates of photosynthesis and patterns of translocation of 14C from the flag leaves of tall and semi-dwarf wheat varieties, with and without awns, were compared in a field experiment. The rates of photosynthesis of the awnless varieties fell during the 14 days after anthesis but those of the awned varieties did not change. Wide differences in translocation pattern of 14C supplied at anthesis were also found between varieties, but the differences in distribution pattern of 14C supplied 14 days later were less. At anthesis, the high yielding semi-dwarf selection translocated most carbohydrate to the ears and awned selections least. It is suggested that varietal differences in translocation pattern are determined by differences in the capacity of the grain to store carbohydrate. 相似文献
12.
This work was carried out to determine what factors in the developing wheat (Triticum aestivum L.) grain are involved in regulating the metabolism of the triacylglycerol (TAG) storage reserves. When embryos are isolated from the grain and incubated in media for 4 d the TAG content is affected in three ways. In the basal medium (dilute buffer) the content falls; in 30 mM sucrose the content remains unchanged; in sucrose supplemented with an osmoticum (400 mM mannitol) or abscisic acid (1 M ABA) the TAG content increases. Effective osmotic potentials and ABA concentrations fit well with their respective values in planta. The fatty-acid composition of TAG accumulated in vitro is close to that in planta but in the absence of ABA or osmoticum there is a fall in the C18C16 ratio. Experiments with [14C] acetate show that the in-planta rate of incorporation into TAG can only occur in isolated embryos treated osmotically or with ABA, while there seems to be no effect of these two factors on TAG breakdown. An osmotic shock (dilute buffer) for only 2 h causes a rapid fall in TAG synthesis which continues for ca. 24 h after which it recovers. Abscisic acid protects against osmotic shock. It is concluded that TAG synthesis in developing wheat embryos is regulated by the osmotic potential and-or ABA, and that the embryos are very sensitive to short-term perturbations of these two factors.Abbreviations ABA
abscisic acid
- dpa
days post anthesis
- TAG
triacylglycerol
We are grateful to the European Economic Community for a Fellowship to R.R.S. which provided financial support for this work. 相似文献
13.
Wilfried Dathe Andrew D. Parry James K. Heald Ian M. Scott Otto Miersch Roger Horgan 《Journal of Plant Growth Regulation》1994,13(2):59-62
The endogenous levels of abscisic acid (ABA) and jasmonic acid (JA) were analyzed in wheat seedlings grown in water, a system which in the past has been used to test the effects of these plant growth inhibitors. The levels in different plant parts and in the medium were measured by gas chromatography-mass spectrometry-selected ion monitoring, using [2H3]ABA and [2H6]JA as internal standards. In every plant part, JA levels were about 2 orders of magnitude greater than those of ABA. The exudation of JA from roots per seedling was about 14,000-fold greater than that of ABA, although the roots contained only about 170 times more JA than ABA. It is suggested that JA is a possible allelopathic compound. 相似文献
14.
A. Rascio M. C. Cedola G. Sorrentino D. Pastore G. Wittmer 《Physiologia plantarum》1988,73(1):122-127
The water relations of two durum wheat cultivars ( Triticum durum Desf.) were studied throughout the growing season. Irrigated and unirrigated plants were compared from booting to milk stage; a period where water stress occurred naturally in the field. Modulus of elasticity (ε), turgid weight/dry weight ratio (TW/DW), relative water content at zero turgor (RWCo ) and osmotic potential at full turgor (ε) declined throughout the season while average turgor (ψp ) increased. Water stress induced a further decrease in ψπ 100 and the TW/DW ratio. The elastic modulus varied greatly. During the first stages of growth, cv. Appulo (the more resistant cultivar) showed lower ε values than cv. Valforte. At the milk stage, ε was lower for the unirrigated than the irrigated plants. Correlation coefficients between the TW/DW ratio and the osmotic potential were significant for both cultivars. In cv. Valforte, TW/DW was also correlated with the average turgor and the bulk modulus of elasticity. Structural changes that affect the TW/DW ratio seem to be important factors influencing water relations and drought tolerance in durum wheat. 相似文献
15.
Cytoskeleton-induced alterations of the lectin activity in winter wheat under cold hardening and abscisic acid (ABA) 总被引:1,自引:0,他引:1
Timofeeva O Khokhlova L Belyaeva N Chulkova Y Garaeva L 《Cell biology international》2000,24(6):375-381
The roots and leaves of 7-day seedlings of three winter wheat cultivars differing in frost resistant were used to study changes in lectin activity under cytoskeleton modifiers (DMSO-7%; colchicine-1 m m; oryzalin-15 microm; cytochalasin B-15 microm) of non-hardened (23 degrees C) and hardened (2-3 degrees C, 3-7 day) plants. Plants were grown with ABA (30 microm) or without ABA. Pretreatment with colchicine, oryzalin [inhibitors of microtubules (MT) polymerization], cytochalasin B [inhibitor of microfilament (MF) polymerization] increased the activity of cell wall lectins, although pretreatment with DMSO (stabilizer of microtubules) decreased the activity. Both hardening and ABA decreased the effect of the cytoskeletal modifiers. These results could be explained by the appearance of tolerant MTs with less affinity. It is probable that increase in the activity of cell wall lectins may be the compensatory mechanism which stabilizes the cytoskeleton structure in conditions tending to disrupt it. The genotype with low resistance had higher sensitivity of lectin activity to cytoskeleton modifiers than the frost resistant genotype. The results suggest that leaves have more stable MTs and MFs and stronger MT-MF binding than roots. 相似文献
16.
17.
Thomas Miedaner Peter Risser Sophie Paillard Thorsten Schnurbusch Beat Keller Lorenz Hartl Josef Holzapfel Viktor Korzun Erhard Ebmeyer H. Friedrich Utz 《Molecular breeding : new strategies in plant improvement》2012,29(3):731-742
Septoria tritici blotch (STB), caused by S. tritici, Stagonospora glume blotch (SGB), caused by S. nodorum, and Fusarium head blight (FHB), caused by F. graminearum and F. culmorum, are the most important diseases of wheat (Triticum aestivum L.) in temperate growing areas. The main goals of this study were to detect (1) new quantitative trait loci (QTL) for STB
resistance in two adapted European biparental populations (Arina/Forno, History/Rubens) and (2) QTL regions for broad-spectrum
resistance (BSR) to the above-mentioned diseases during the adult-plant stage in the field. The three resistances were phenotyped
across 4–7 field environments and phenotypic data revealed significant (P < 0.01) genotypic differentiation in all cases. Entry-mean heritabilities (h2) ranged from 0.73 to 0.93. For STB resistance, correlations between disease ratings and heading date were significant (P < 0.01), but moderate (r = −0.23 to −0.30) in both populations. Correlations between STB and plant height were higher in Arina/Forno (r = −0.45) and History/Rubens (r = −0.55), the latter population segregating at the Rht-D1 locus. During the initial QTL analysis, 5 QTL were detected for STB resistance in each of the populations, amounting to an
explained genotypic variance of 45–63%, thus, showing the same ranges as FHB and SGB resistances in Arina/Forno and FHB resistance
in History/Rubens. In total, 7 BSR QTL were found in the meta-analysis with the raw data, including the QTL on chromosome
4D at the Rht-D1 locus. A BSR QTL for all three diseases was not found but several BSR QTL for combinations with two diseases were detected.
Combining the BSR QTL detected in the present breeding material by applying marker-assisted selection seems a promising approach. 相似文献
18.
P. B. KAVI KISHOR 《Plant, cell & environment》1989,12(6):629-633
Abstract. The presence of 1 and 10 mol m−3 proline in media containing 100 and 200 mol m−3 of NaCl, had little effect on the growth of salt-adapted callus of rice. However, in such callus proline accumulation was stimulated by 10 mol m−3 proline in the presence of 100 mol m−3 NaCl. On the other hand, with 100 mol m−3 NaCl, both 1 and 10 mol m−3 proline significantly increased both the growth and proline content of salt-unadapted callus. On replacing NaCl with KCl (100 and 200 mol m−3 ), growth of saltadapted as well as unadapted callus was inhibited, but the presence of 10 mol m−3 proline had an ameliorating effect. Abscisic acid (ABA) supressed the growth of both salt-adapted and unadapted callus of rice in the absence of salt stress. ABA inhibited the growth of callus adapted to and grown in 100 and 200 mol m−3 of NaCl or when it was replaced by equimolar concentrations of KCl. Growth of 100 mol m−3 NaCl adapted cells was inhibited when they were transferred to a medium containing 200 mol m−3 of NaCl, but in the presence of ABA it was stimulated. ABA increased the growth of unadapted cells when subjected to different salts. Also, ABA accelerated the adaptation of cells exposed to salt but not to water deficits imposed by nonionic solutes. 相似文献
19.
Endogenous abscisic acid and wheat germ agglutinin content in wheat grains during development 总被引:1,自引:0,他引:1
Peter-Christian Morris 《Physiologia plantarum》1989,77(4):507-511
Abscisic acid (ABA) and wheat germ agglutinin content of immature wheat grains and embryos was determined by immunoassay throughout the development of a field-grown wheat crop ( Triticum aestivum cv. Timmo). Wheat germ agglutinin accumulation in the embryo was not preceded by an increase in endogenous abscisic acid amount or concentration in either embryos or grains. At a later stage in development the endogenous concentration of abscisic acid in both embryos and grains was found to be two orders of magnitude lower than the endogenous levels required to inhibit precocious germination and promote wheat germ agglutinin accumulation in excised embryos cultured in vitro. These findings are discussed in the context of the control of embryo development in vivo by both ABA and the water status of the grain and embryo. 相似文献
20.
Abscisic acid (ABA) was shown to influence turgor pressure and growth in wheat (Triticum aestivum L.) roots. At a concentrations of 25 mmol·m-3, ABA increased the turgor pressure of cells located within 1 cm of the tip by up to 450 kPa. At 4 to 5 cm from the root tip this concentration of ABA reduced the turgor pressure of peripheral cells (epidermis and the first few cortical cell layers) to zero or close to zero while that of the inner cells was increased. Increases in sap osmolality were dependent on the concentration of ABA and the effect saturated at 5 mmol·m-3 ABA. The increase in osmolality took about 4 h and was partly the result of reducing-sugar accumulation. Levels of inorganic cations were not affected by ABA. Root growth was inhibited at ABA concentrations that caused a turgor-pressure increase. The results show that while ABA can affect root cell turgor pressures, this effect does not result in increased root growth.Abbreviation ABA
abscisic acid 相似文献