首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The E6 oncoproteins from high‐risk mucosal human papillomavirus (HPV) induce cervical cancer via two major activities, the binding and the degradation of the p53 protein and PDZ domain‐containing proteins. Human MAGI‐1 is a multi‐PDZ domain protein implicated into protein complex assembly at cell–cell contacts. High‐risk mucosal HPV E6 proteins interact with the PDZ1 domain of MAGI‐1 via a C‐terminal consensus binding motif. Here, we developed a medium throughput protocol to accurately measure by surface plasmon resonance affinity constants of protein domains binding to peptidic sequences produced as recombinant fusions to the glutathione‐S‐transferase (GST). This approach was applied to measure the binding of MAGI‐1 PDZ1 to the C‐termini of viral or cellular proteins. Both high‐risk mucosal HPV E6 C‐terminal peptides and cellular partners of MAGI‐1 PDZ1 bind to MAGI‐1 PDZ1 with comparable dissociation constants in the micromolar range. MAGI‐1 PDZ1 shows a preference for C‐termini with a valine at position 0 and a negative charge at position ?3, confirming previous studies performed with HPV18 E6. A detailed combined analysis via site‐directed mutagenesis of the HPV16 C‐terminal peptide and PDZ1 indicated that interactions mediated by charged residues upstream the PDZ‐binding motif strongly contribute to binding selectivity of this interaction. In addition, our work highlighted the K499 residue of MAGI‐1 as a novel determinant of binding specificity. Finally, we showed that MAGI‐1 PDZ1 also binds to the C‐termini of LPP and Tax proteins, which were already known to bind to PDZ proteins but not to MAGI‐1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
We describe the production and characterisation of two monoclonal antibodies, zdc2 and zdd2, directed against the zebrafish Notch ligands DeltaC and DeltaD, respectively. We use our antibodies to show that these Delta proteins can bind to one another homo- and heterophilically, and to study the localisation of DeltaC and DeltaD in the zebrafish nervous system and presomitic mesoderm (PSM). Our findings in the nervous system largely confirm expectations from previous studies, but in the PSM we see an unexpected pattern in which the localisation of DeltaD varies according to the level of expression of DeltaC: in the anterior PSM, where DeltaC is plentiful, the two proteins are colocalised in intracellular puncta, but in the posterior PSM, where DeltaC is at a lower level, DeltaD is seen mainly on the cell surface. Forced overexpression of DeltaC reduces the amount of DeltaD on the cell surface in the posterior PSM; conversely, loss-of-function mutation of DeltaC increases the amount of DeltaD on the cell surface in the anterior PSM. These findings suggest an explanation for a long-standing puzzle regarding the functions of the two Delta proteins in the somite segmentation clock--an explanation that is based on the proposition that they associate heterophilically to activate Notch.  相似文献   

3.
MAGI proteins are Membrane-Associated Guanylate Kinase Inverted proteins that belong to the MAGUK family. They are scaffolding proteins that were shown to mediate the trafficking and signaling of various G protein-coupled receptors (GPCRs). They contain PDZ domains in their structure and many GPCRs interact with these proteins via the PDZ motifs on the carboxyl terminal end of a receptor. In a PDZ overlay assay performed with the carboxyl terminal tail of 5-HT2AR, we were able to detect all three members of the MAGI subfamily, MAGI-1, MAGI-2 and MAGI-3 as interacting PDZ proteins. The PDZ motif of 5-HT2AR consists of three amino acids; serine (S), cysteine (C) and valine (V). In this study, we characterize these 5-HT2AR interactions with MAGI proteins. We first confirm the interaction using co-immunopricipitation and illustrate that the interaction is PDZ motif-dependent in human embryonic kidney (HEK 293) cells. We then assess the effects of overexpression and knockdown of the MAGI proteins on the internalization, trafficking and signaling of 5-HT2AR. We find that knockdown of either MAGI-1 or MAGI-3 using siRNA results in a significant reduction in the internalization of 5-HT2AR. As for signaling, we report here that MAGI proteins can modulate the signaling via the two transduction pathways that 5-HT2AR can activate. We illustrate a significant effect of modulating MAGI proteins expression on 5-HT-stimulated IP formation. We demonstrate an enhancement in 5-HT2AR-stimulated IP formation upon MAGI proteins overexpression. In addition, we show that knockdown of MAGI proteins with siRNA leads to a significant reduction in 5-HT2AR-stimulated IP formation. Furthermore, we illustrate a significant increase in 5-HT-stimulated ERK1/2 phosphorylation upon MAGI proteins knockdown. Interestingly, this effect on ERK1/2 activation is PDZ motif-independent. We also suggest two possible mechanisms of regulation for the effect of MAGI proteins on 5-HT2AR function. One mechanism involves the regulation of cell surface expression since we show that both MAGI-2 and MAGI-3 can enhance receptor trafficking to the plasma membrane when overexpressed in HEK 293 cells. The other mechanism points to regulation of second messengers in the signaling pathways. Specifically, we show that overexpression of any of the three MAGI proteins can enhance the recruitment of PLCβ3 to 5-HT2AR. In addition, we report a negative effect for knocking down MAGI-3 on β-arrestin recruitment to the receptor and this effect is PDZ motif-independent. Taken together, our findings document distinct roles for the three MAGI proteins in regulating 5-HT2AR trafficking and signaling and emphasize the importance of studying PDZ proteins and their interactions with GPCRs to regulate their function.  相似文献   

4.
Ubiquitylation promotes endocytosis of the Notch ligands like Delta and Serrate and is essential for them to effectively activate Notch in a neighboring cell. The RING E3 ligase Mind bomb1 (Mib1) ubiquitylates DeltaD to facilitate Notch signaling in zebrafish. We have identified a domain in the intracellular part of the zebrafish Notch ligand DeltaD that is essential for effective interactions with Mib1. We show that elimination of the Mind bomb1 Interaction Domain (MID) or mutation of specific conserved motifs in this domain prevents effective Mib1-mediated ubiquitylation and internalization of DeltaD. Lateral inhibition mediated by Notch signaling regulates early neurogenesis in zebrafish. In this context, Notch activation suppresses neurogenesis, while loss of Notch-mediated lateral inhibition results in a neurogenic phenotype, where too many cells are allowed to become neurons. While Mib1-mediated endocytosis of DeltaD is essential for effective activation of Notch in a neighboring cell (in trans) it is not required for DeltaD to inhibit function of Notch receptors in the same cell (in cis). As a result, forms of DeltaD that have the MID can activate Notch in trans and suppress early neurogenesis when mRNA encoding it is ectopically expressed in zebrafish embryos. On the other hand, when the MID is eliminated/mutated in DeltaD, its ability to activate Notch in trans fails but ability to inhibit in cis is retained. As a result, ectopic expression of DeltaD lacking an effective MID results in a failure of Notch-mediated lateral inhibition and a neurogenic phenotype.  相似文献   

5.
PDZ domains are protein adapter modules present in a few hundred human proteins. They play important roles in scaffolding and signal transduction. PDZ domains usually bind to the C termini of their target proteins. To assess the binding mechanism of this interaction we have performed the first in-solution kinetic study for PDZ domains and peptides corresponding to target ligands. Both PDZ3 from postsynaptic density protein 95 and PDZ2 from protein tyrosine phosphatase L1 bind their respective target peptides through an apparent A + B --> A.B mechanism without rate-limiting conformational changes. But a mutant with a fluorescent probe (Trp) outside of the binding pocket suggests that slight changes in the structure take place upon binding in protein tyrosine phosphatase-L1 PDZ2. For PDZ3 from postsynaptic density protein 95 the pH dependence of the binding reaction is consistent with a one-step mechanism with one titratable group. The salt dependence of the interaction shows that the formation of electrostatic interactions is rate-limiting for the association reaction but not for dissociation of the complex.  相似文献   

6.
Delta family proteins are transmembrane molecules that bind Notch receptors and activate downstream signaling events in neighboring cells. In addition to serving as Notch ligands, Notch-independent roles for Delta have been suggested but are not fully understood. Here, we demonstrate a previously unrecognized role for Delta in filopodial actin formation. Delta1 and Delta4, but not Delta3, exhibit filopodial protrusive activity, and this activity is independent of Notch signaling. The filopodial activity of Delta1 does not depend on the PDZ-binding domain at the C-terminus; however, the intracellular membrane-proximal region that is anchored to the plasma membrane plays an important role in filopodial activity. We further identified a Notch-independent role of DeltaD in neuronal cell migration in zebrafish. These findings suggest a possible functional link between Notch-independent filopodial activity of Delta and the control of cell motility.  相似文献   

7.
Delta-Notch signaling plays an essential role in cell fate determination in many tissue types, including the central nervous system. Although the signaling mechanism of Notch has been extensively studied, the behaviors of its ligands are not well understood. In the present study, we found that, in the developing neural tube, Dll1(Delta-like 1) was mainly localized on the processes extending from nascent neurons toward both the pia and the ventricle and accumulated at apical termini, where adherens junctions (AJs) were formed. To understand the mechanism of Dll1 localization, we searched for binding proteins for Dll1 and identified a scaffolding molecule, MAGI1. In the developing spinal cord, MAGI1 mRNA was highly expressed in the ventricular zone, where Dll1 mRNA was expressed. MAGI1 protein accumulated at the AJs formed around the termini of apically extending processes and was partially colocalized with Dll1. MAGI1 bound not only to Dll1 but also to N-cadherin-beta-catenin complexes. In cultured AJ-forming fibroblasts, MAGI1 was localized at AJs, and Dll1 was recruited to these AJs through binding to MAGI1. In addition, Dll1 was stabilized on the cell surface by MAGI1. Taken together, these results suggest that Dll1 is presented on the surface of AJs formed at the apical termini of processes through interaction with MAGI1 to activate Notch on neighboring cells in the developing central nervous system.  相似文献   

8.
Delta1 acts as a membrane-bound ligand that interacts with the Notch receptor and plays a critical role in cell fate specification. By using peptide affinity chromatography followed by mass spectrometry, we have identified Dlg1 as a partner of the Delta1 C-terminal region. Dlg1 is a human homolog of the Drosophila Discs large tumor suppressor, a member of the membrane-associated guanylate kinase family of molecular scaffolds. We confirmed this interaction by co-immunoprecipitation experiments between endogenous Dlg1 and transduced Delta1 in a 3T3 cell line stably expressing Delta1. Moreover, we showed that deletion of a canonical C-terminal PDZ-binding motif (ATEV) in Delta1 abrogated this interaction. Delta4 also interacted with Dlg1, whereas Jagged1, another Notch ligand, did not. In HeLa cells, transfected Delta1 triggered the accumulation of endogenous Dlg1 at sites of cell-cell contact. Expression of Delta1 also reduced the motility of 3T3 cells. Finally, deletion of the ATEV motif totally abolished these effects but did not interfere with the ability of Delta1 to induce Notch signaling and T cell differentiation in co-culture experiments. These results point to a new, probably cell-autonomous function of Delta1, which is independent of its activity as a Notch ligand.  相似文献   

9.
PDZ domains are protein-protein interaction modules that generally bind to the C termini of their target proteins. The C-terminal four amino acids of a prospective binding partner of a PDZ domain are typically the determinants of binding specificity. In an effort to determine the structures of a number of PDZ domains we have included appropriate four residue extensions on the C termini of PDZ domain truncation mutants, designed for self-binding. Multiple truncations of each PDZ domain were generated. The four residue extensions, which represent known specificity sequences of the target PDZ domains and cover both class I and II motifs, form intermolecular contacts in the expected manner for the interactions of PDZ domains with protein C termini for both classes. We present the structures of eight unique PDZ domains crystallized using this approach and focus on four which provide information on selectivity (PICK1 and the third PDZ domain of DLG2), binding site flexibility (the third PDZ domain of MPDZ), and peptide-domain interactions (MPDZ 12th PDZ domain). Analysis of our results shows a clear improvement in the chances of obtaining PDZ domain crystals by using this approach compared to similar truncations of the PDZ domains without the C-terminal four residue extensions.  相似文献   

10.
Human papillomaviruses (HPVs) are the causative agent of warts. Infections with high-risk HPVs are associated with anogenital and head and neck cancers. One of the viral genes responsible for HPV's oncogenic activity is E6. Mice expressing the HPV-16 E6 protein in their epidermis (K14E6(WT)) develop epithelial hyperplasia and squamous carcinomas. Numerous cellular proteins interact with E6, some of which can be grouped based on common amino acid motifs in their E6-binding domains. One such group, the PDZ partners, including hDLG, hSCRIBBLE, MUPP1, and MAGI, bind to the carboxy-terminal four amino acids of E6 through their PDZ domains. E6's interaction with the PDZ partners leads to their degradation. Additionally, E6's binding to PDZ proteins has been correlated with its ability to transform baby rat kidney cells in tissue culture and to confer tumorigenicity onto cells in xenograft experiments. To address whether the ability of E6 to bind PDZ domain partners is necessary for E6 to confer epithelial hyperproliferation in vivo, we generated transgenic mice that express in stratified squamous epithelia a mutant of E6 lacking the last six amino acids at its carboxyl terminus, E6(Delta 146-151), from the human keratin 14 (K14) promoter. The K14E6(Delta 146-151) mice exhibit a radiation response similar to that of the K14E6(WT) mice, demonstrating that this protein, as predicted, retains an ability to inactivate p53. However, the K14E6(Delta 146-151) mice fail to display epithelial hyperplasia. These results indicate that an interaction of E6 with PDZ partners is necessary for its induction of epithelial hyperplasia.  相似文献   

11.
The broad diversity of neurons is vital to neuronal functions. During vertebrate development, the spinal cord is a site of sensory and motor tasks coordinated by interneurons and the ongoing neurogenesis. In the spinal cord, V2-interneuron (V2-IN) progenitors (p2) develop into excitatory V2a-INs and inhibitory V2b-INs. The balance of these two types of interneurons requires precise control in the number and timing of their production. Here, using zebrafish embryos with altered Notch signaling, we show that different combinations of Notch ligands and receptors regulate two functions: the maintenance of p2 progenitor cells and the V2a/V2b cell fate decision in V2-IN development. Two ligands, DeltaA and DeltaD, and three receptors, Notch1a, Notch1b, and Notch3 redundantly contribute to p2 progenitor maintenance. On the other hand, DeltaA, DeltaC, and Notch1a mainly contribute to the V2a/V2b cell fate determination. A ubiquitin ligase Mib, which activates Notch ligands, acts in both functions through its activation of DeltaA, DeltaC, and DeltaD. Moreover, p2 progenitor maintenance and V2a/V2b fate determination are not distinct temporal processes, but occur within the same time frame during development. In conclusion, V2-IN cell progenitor proliferation and V2a/V2b cell fate determination involve signaling through different sets of Notch ligand–receptor combinations that occur concurrently during development in zebrafish.  相似文献   

12.
建立一种研究PDZ结构域配体结合特点的简单方法 .利用酵母双杂交技术从随机多肽文库中寻找所有可能与ZO 1中PDZ3结构域结合的C末端序列 ,从现有蛋白质数据库中检索所有具有该C末端蛋白 .利用液体培养物 β 半乳糖苷酶检测实验 ,比较文库中筛选的C末端序列和已知的PDZ3结构域结合配体———JAM的C末端 (SFLV)与PDZ3结构域结合的强弱 .共筛选到 3个阳性克隆 ,其C末端序列分别为 LGWV、 LVWV和 DEWV .前 2者属于第二类PDZ结构域 ,后者属于第三类 .蛋白质数据库检索结果表明 ,有多个蛋白质具有 LGWV、 LVWV末端 ,没有检索到任何具有 DEWV末端的蛋白质 .结合强度实验结果表明 ,它们与PDZ3结构域结合强度依次为 DEWV > LGWV > LVWV > SFLV ,说明筛选的 3个C末端除了反映ZO 1中PDZ3结构域可能的潜在结合配体外 ,也有可能成为JAM蛋白阻断性试剂甚至药物的重要组成部分之一 .利用随机多肽文库 ,可以尽可能寻找所有可能与PDZ结构域结合的C末端序列 ,大大提高了基因文库筛选的效率  相似文献   

13.
PDZ (Post-synaptic density, 95 kDa, Discs large, Zona Occludens-1) domains are protein interaction domains that bind to the carboxy-terminal amino acids of binding partners, heterodimerize with other PDZ domains, and also bind phosphoinositides. PDZ domain containing proteins are frequently involved in the assembly of multi-protein complexes and clustering of transmembrane proteins. LNX1 (Ligand of Numb, protein X 1) is a RING (Really Interesting New Gene) domain-containing E3 ubiquitin ligase that also includes four PDZ domains suggesting it functions as a scaffold for a multi-protein complex. Here we use a human protein array to identify direct LNX1 PDZ domain binding partners. Screening of 8,000 human proteins with isolated PDZ domains identified 53 potential LNX1 binding partners. We combined this set with LNX1 interacting proteins identified by other methods to assemble a list of 220 LNX1 interacting proteins. Bioinformatic analysis of this protein list was used to select interactions of interest for future studies. Using this approach we identify and confirm six novel LNX1 binding partners: KCNA4, PAK6, PLEKHG5, PKC-alpha1, TYK2 and PBK, and suggest that LNX1 functions as a signalling scaffold.  相似文献   

14.
β-Arrestins are multifunctional adaptor proteins best know for their vital role in regulating G protein coupled receptor (GPCR) trafficking and signaling. β-arrestin2 recruitment and receptor internalization of corticotropin-releasing factor receptor 1 (CRFR1), a GPCR whose antagonists have been shown to demonstrate both anxiolytic- and antidepressant-like effects, have previously been shown to be modulated by PDZ proteins. Thus, a structural characterization of the interaction between β-arrestins and PDZ proteins can delineate potential mechanism of PDZ-dependent regulation of GPCR trafficking. Here, we find that the PDZ proteins PSD-95, MAGI1, and PDZK1 interact with β-arrestin2 in a PDZ domain-dependent manner. Further investigation of such interaction using mutational analyses revealed that mutating the alanine residue at 175 residue of β-arrestin2 to phenylalanine impairs interaction with PSD-95. Additionally, A175F mutant of β-arrestin2 shows decreased CRF-stimulated recruitment to CRFR1 and reduced receptor internalization. Thus, our findings show that the interaction between β-arrestins and PDZ proteins is key for CRFR1 trafficking and may be targeted to mitigate impaired CRFR1 signaling in mental and psychiatric disorders.  相似文献   

15.
The roles of PDZ domain-containing proteins such as Dlg and Scrib have been well described for Drosophila; however, their requirement for mammalian development is poorly understood. Here we show that Dlg, Scrib, MAGI1, MAGI3, and MPDZ are expressed in the mouse ocular lens. We demonstrate that the increase in proliferation and defects in cellular adhesion and differentiation observed in epithelia of lenses that express E6, a viral oncoprotein that can bind to several PDZ proteins, including the human homologs of Dlg and Scrib, is dependent on E6's ability to bind these proteins via their PDZ domains. Analyses of lenses from mice carrying an insertional mutation in Dlg (dlg(gt)) show increased proliferation and proliferation in spatially inappropriate regions of the lens, a phenotype similar to that of lenses expressing E6. The results from this study indicate that multiple PDZ domain-containing proteins, including Dlg and Scrib, may be required for maintaining the normal pattern of growth and differentiation in the lens. Furthermore, the phenotypic similarities among the Drosophila dlg mutant, the lenses of dlg(gt) mice, and the lenses of E6 transgenic mice suggest that Dlg may have a conserved function in regulating epithelial cell growth and differentiation across species.  相似文献   

16.
PDZ domains recognise short sequence motifs at the extreme C-termini of proteins. A model based on microarray data has been recently published for predicting the binding preferences of PDZ domains to five residue long C-terminal sequences. Here we investigated the potential of this predictor for discovering novel protein interactions that involve PDZ domains. When tested on real negative data assembled from published literature, the predictor displayed a high false positive rate (FPR). We predicted and experimentally validated interactions between four PDZ domains derived from the human proteins MAGI1 and SCRIB and 19 peptides derived from human and viral C-termini of proteins. Measured binding intensities did not correlate with prediction scores, and the high FPR of the predictor was confirmed. Results indicate that limitations of the predictor may arise from an incomplete model definition and improper training of the model. Taking into account these limitations, we identified several novel putative interactions between PDZ domains of MAGI1 and SCRIB and the C-termini of the proteins FZD4, ARHGAP6, NET1, TANC1, GLUT7, MARCH3, MAS, ABC1, DLL1, TMEM215 and CYSLTR2. These proteins are localised to the membrane or suggested to act close to it and are often involved in G protein signalling. Furthermore, we showed that, while extension of minimal interacting domains or peptides toward tandem constructs or longer peptides never suppressed their ability to interact, the measured affinities and inferred specificity patterns often changed significantly. This suggests that if protein fragments interact, the full length proteins are also likely to interact, albeit possibly with altered affinities and specificities. Therefore, predictors dealing with protein fragments are promising tools for discovering protein interaction networks but their application to predict binding preferences within networks may be limited.  相似文献   

17.
The evolutionarily conserved Notch signal transduction pathway regulates cell fate and cellular differentiation in various tissues and has essential functions in embryonic patterning and tumorigenesis. Cell-cell signaling by the Notch pathway is mediated by the interaction of the transmembrane receptor Notch with its ligands Delta or Jagged presented on adjacent cells. Whereas signal transduction to Notch expressing cells has been described, it is unclear whether Delta-dependent signaling may exist within the Delta-expressing cell. Here, we report on the identification of Acvrinp1, a MAGUK family member, interacting with the intracellular domain of Delta1 (Dll1). We confirmed the interaction between Dll1 and Acvrinp1 by pull-down experiments in vitro and in a mammalian two-hybrid system in vivo. We delimited the fourth PDZ domain of Acvrinp1 and the PDZ-binding domain of Dll1 as major interacting domains. In situ expression analyses in mouse embryos revealed that Dll1 and Acvrinp1 show partly overlapping but distinct expression patterns, for example, in the central nervous system and the vibrissae buds. Further, we found that expression of Acvrinp1 is altered in Dll1 loss-of-function mouse embryos.  相似文献   

18.
19.
We present a detailed comparative analysis of the PDZ domains of the human LAP proteins Erbin, Densin-180, and Scribble and the MAGUK ZO-1. Phage-displayed peptide libraries and in vitro affinity assays were used to define ligand binding profiles for each domain. The analysis reveals the importance of interactions with all four C-terminal residues of the ligand, which constitute a core recognition motif, and also the role of interactions with more upstream ligand residues that support and modulate the core binding interaction. In particular, the results highlight the importance of site(-1), which interacts with the penultimate residue of ligand C termini. Site(-1) was found to be monospecific in the Erbin PDZ domain (accepts tryptophan only), bispecific in the first PDZ domain of ZO-1 (accepts tryptophan or tyrosine), and promiscuous in the Scribble PDZ domains. Furthermore, it appears that the level of promiscuity within site(-1) greatly influences the range of potential biological partners and functions that can be associated with each protein. These findings show that subtle changes in binding specificity can significantly alter the range of biological partners for PDZ domains, and the insights enhance our understanding of this diverse family of peptide-binding modules.  相似文献   

20.
The Shank/proline-rich synapse-associated protein family of multidomain proteins is known to play an important role in the organization of synaptic multiprotein complexes. For instance, the Shank PDZ domain binds to the C termini of guanylate kinase-associated proteins, which in turn interact with the guanylate kinase domain of postsynaptic density-95 scaffolding proteins. Here we describe the crystal structures of Shank1 PDZ in its peptide free form and in complex with the C-terminal hexapeptide (EAQTRL) of guanylate kinase-associated protein (GKAP1a) determined at 1.8- and 2.25-A resolutions, respectively. The structure shows the typical class I PDZ interaction of PDZ-peptide complex with the consensus sequence -X-(Thr/Ser)-X-Leu. In addition, Asp-634 within the Shank1 PDZ domain recognizes the positively charged Arg at -1 position and hydrogen bonds, and salt bridges between Arg-607 and the side chains of the ligand at -3 and -5 positions contribute further to the recognition of the peptide ligand. Remarkably, whether free or complexed, Shank1 PDZ domains form dimers with a conserved beta B/beta C loop and N-terminal beta A strands, suggesting a novel model of PDZ-PDZ homodimerization. This implies that antiparallel dimerization through the N-terminal beta A strands could be a common configuration among PDZ dimers. Within the dimeric structure, the two-peptide binding sites are arranged so that the N termini of the bound peptide ligands are in close proximity and oriented toward the 2-fold axis of the dimer. This configuration may provide a means of facilitating dimeric organization of PDZ-target assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号