首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Does the mode of self-pollination affect the evolutionarily stable allocation to male vs. female function? We distinguish the following scenarios. (1) An ‘autogamous’ species, in which selfing occurs within the flower prior to opening. The pollen used in selfing is a constant fraction of all pollen grains produced. (2) A species with ‘abiotic pollination’, in which selfing occurs when pollen dispersed in one flower lands on the stigma of a nearby flower on the same plant (geitonogamy). The selfing rate increases with male allocation but a higher selfing rate does not mean a reduced export of pollen. (3) An ‘animal-pollinated’ species with geitonogamous selfing. Here the selfing rate also increases with male allocation, but pollen export to other plants in the population is a decelerating function of the number of simultaneously open flowers. In all three models selfing selects for increased female allocation. For model 3 this contradicts the general opinion that geitonogamous selfing does not affect evolutionarily stable allocations. In all models, the parent benefits more from a female-biased allocation than any other individual in the population. In addition, in models 2 and 3, greater male allocation results in more local mate competition. In model 3 and in model 2 with low levels of inbreeding depression, hermaphroditism is evolutionarily stable. In model 2 with high inbreeding depression, the population converges to a fitness minimum for the relative allocation to male function. In this case the fitness set is bowed inwards, corresponding with accelerating fitness gain curves. If the selfing rate increases with plant size, this is a sufficient condition for size-dependent sex allocation (more allocation towards seeds in large plants) to evolve. We discuss our results in relation to size-dependent sex allocation in plants and in relation to the evolution of dioecy.  相似文献   

2.
Vegetative reproduction is a very common alternative by which plants can contribute to the next generations. There are many considerations predicting which mode of reproduction, vegetative or sexual, should be favored and numerous experimental studies to verify them. However, the results are inconsistent especially when the effect of plant density is considered. I apply here a dynamic optimization model to predict the rate of vegetative and sexual reproduction in plants as a response to changes in the local plant density. The population is assumed to occupy a heterogeneous environment consisting of patches in which growth and reproduction of plants are possible and unfavorable space between them. As the environment is globally stable, the seeds, which can disperse without restriction, exhibit a constant recruitment rate. The ramets are assumed to settle only within the patch of the mother plant. The rate of ramet production effects local density, which in turn determines ramet recruitment. The optimal strategy maximizes the expected lifetime genetic contribution, realized via both vegetative and sexual reproduction. The solutions obtained under these assumptions are dualistic. The model predicts that different approaches applied in studying the effect of ramet density should give opposite outcomes. When the comparison is between patches in natural populations, a positive relationship between relative ramet allocation and density is expected. When the density is experimentally manipulated or its effect is analyzed across different successional stages, a negative relationship should be found. The results seem to be confirmed by empirical studies.  相似文献   

3.
The loss of sex in clonal plants   总被引:6,自引:0,他引:6  
Most plants combine sexual and clonal reproduction, and the balance between the two may vary widely between and within species. There are many anecdotal reports of plants that appear to have abandoned sex for clonal reproduction, yet few studies have quantified the degree of sexual variation in clonal plants and fewer still have determined the underlying ecological and/or genetic factors. Recent empirical work has shown that some clonal plants exhibit very wide variation in sexual reproduction that translates into striking variation in genotypic diversity and differentiation of natural populations. Reduced sexual reproduction may be particularly common at the geographical margins of species' ranges. Although seed production and sexual recruitment may often be limited by biotic and abiotic aspects of the environment in marginal populations, genetic factors, including changes in ploidy and sterility mutations, may also play a significant role in causing reduced sexual fertility. Moreover, environmental suppression of sexual recruitment may facilitate the evolution of genetic sterility because natural selection no longer strongly maintains the many traits involved in sex. In addition to the accumulation of neutral sterility mutations in highly clonal populations, the evolution of genetic infertility may be facilitated if sterility is associated with enhanced vegetative growth, clonal propagation or survival through either resource reallocation or pleiotropy. However, there are almost no experimental data with which to distinguish among these possibilities. Ultimately, wide variation in genotypic diversity and gene flow associated with the loss of sex may constrain local adaptation and the evolution of the geographical range limit in clonal plants.  相似文献   

4.
5.
Size and sex allocation in monoecious woody plants   总被引:2,自引:0,他引:2  
John F. Fox 《Oecologia》1993,94(1):110-113
The female size advantage hypothesis predicts that the allocation ratio of female: male reproductive effort should increase with plant size (total reproductive effort). A male height advantage hypothesis has also been proposed, based on the supposed greater advantage of height to male reproductive success in wind-pollinated plants. These ideas were tested with data for wind-pollinated, monoecious trees and shrubs which exhibit a suitably large range of sizes. Number of male inflorescences increased faster with size than did number of female inflorescences in 2 of 9 species; in the remaining 7 species there was no significant difference. The male:female ratio of inflorescence numbers increased with height in 4 of 7 species and did not change significantly in the remaining 3 species, as shown by regression. Height and size are highly correlated and so their effects could not be distinguished. The fact that many conifers place the female cones uppermost in the crown suggests that size and not height favors increased allocation to male function, as does well-established theory connecting the existence of male versus female size advantage to pollen and seed dispersal chacteristics. Regression analysis of the relation between male and female reproductive effort should be done by reduced major axis regression; ordinary least squares regression underestimates slopes; in this study opposite conclusions could be drawn from ordinary least squares and reduced major axis regressions.  相似文献   

6.
性的进化:起源和维持   总被引:1,自引:0,他引:1  
林苑  贺林  徐晋麟 《生命科学》2002,14(4):197-200
有性繁殖是真核生物生命周期的一个普遍特征。然而,在解释有性繁殖的这种普遍存在时却遇到了许多的困难,包括雄性的双重损失和重组负荷等。那么,有性繁殖是如何起源和维持的?人们提出了许多可能解释的假说,但是到目前为止还没有一个明确的答案。作者就众多的理论做一个简明综述。  相似文献   

7.
The evolutionary forces shaping within‐ and across‐species variation in the investment in male and female sex function are still incompletely understood. Despite earlier suggestions that in plants the evolution or cosexuality vs. dioecy, as well as sex allocation among cosexuals, is affected by seed and pollen dispersal, no formal model has explicitly used dispersal distances to address this problem. Here, we present a game‐theory model as well as a simulation study that fills in this gap. Our model predicts that dioecy should evolve if seeds and pollen disperse widely and that sex allocation among cosexuals should be biased towards whichever sex function produces more widely dispersing units. Dispersal limitations stabilize cosexuality by reinforcing competition between spatially clumped dispersal units from the same source, leading to saturating fitness returns that render sexual specialization unprofitable. However, limited pollen dispersal can also increase the risk of selfing, thus potentially selecting for dioecy as an outbreeding mechanism. Finally, we refute a recent claim that cosexuals should always invest equally in both sex functions.  相似文献   

8.
Sex ratio was tested in seven rare dioecious species in Israel. This was in order to complete a previously published sex ratio survey of the other 41 dioecious species in Israel, and to examine further the hypothesis that sex ratio in natural populations is usually 1:1. One population was tested in each of five rare wild species. In addition, one rare feral population was tested in each of two non-native, naturalized tree species. Sex ratio in all seven species tested was not different from the expected 1:1. These results strengthen the suggestion that in natural populations of dioecious plants sex ratio is usually 1:1.  相似文献   

9.
Summary Spontaneous polyploidy, aneuploidy, and chromosomal rearrangements were observed in callus and suspension cultures of Hordeum vulgare, H. jubatum, and their interspecific hybrid. The extent to which each class of chromosomal variability was present in a culture depended upon differentiated state, age, and history. Cytological and isozymic analysis of subdivided callus cultures revealed spatial segregation of chromosomal variability. Cytogenetic analyses were performed to determine the expression of this in vitro chromosomal variability in corresponding regenerated plant tissues. A complete loss of polyploidy and a decrease in aneuploidy and chromosomal rearrangements were observed. Analyses of specific isozyme activities in regenerates suggested that a quantitative segregation of H. vulgare and H. jubatum genomes had occurred in tissue cultures of their interspecific hybrid. Possible uses of in vitro chromosomal variability for plant breeding and genetical studies are discussed.Work supported by a grant to Project 3195 from the Michigan Agricultural Experiment Station and by Grant E4-76-S-02-7528. A004 to P.S. Carlson from the US Department of Energy  相似文献   

10.
DNA repair in higher plants   总被引:9,自引:0,他引:9  
Numerous studies have demonstrated a requirement in plants for repair of DNA damage arising from either intrinsic or extrinsic sources. Investigations also have revealed a capacity for repair types of DNA damage, and conversely, identified mutants apparently defective in such repair. This article provides a concise overview of nuclear DNA repair mechanisms in higher plants, particularly those processes concerned with the repair of UV-induced lesions, and includes surveys of UV-sensitive mutants and genes implicated in DNA repair.  相似文献   

11.
Individuals within a population often differ considerably in size or resource status as a result of environmental variation. In these circumstances natural selection would favour organisms not with a single, genetically determined allocation, but with a genetically determined allocation rule specifying allocation in relation to size or environment. Based on a graphical analysis of a simple evolutionarily stable strategy (ESS) model for herbaceous perennial plants, we aim to determine how cosexual plants within a population should simultaneously adjust their reproductive allocation and sex allocation to their size. We find that if female fitness gain is a linear function of resource investment, then a fixed amount of resources should be allocated to male function, and to post‐breeding survival as well, for individuals above a certain size threshold. The ESS resource allocation to male function, female function, and post‐breeding survival positively correlate if both male and female fitness gains are a saturating function of resource investment. Plants smaller than the size threshold are expected to be either nonreproductive or functionally male only.  相似文献   

12.
Variability in the way organisms reproduce raises numerous, and still unsolved, questions in evolutionary biology. In this study, we emphasize that fungi deserve a much greater emphasis in efforts to address these questions because of their multiple advantages as model eukaryotes. A tremendous diversity of reproductive modes and mating systems can be found in fungi, with many evolutionary transitions among closely related species. In addition, fungi show some peculiarities in their mating systems that have received little attention so far, despite the potential for providing insights into important evolutionary questions. In particular, selfing can occur at the haploid stage in addition to the diploid stage in many fungi, which is generally not possible in animals and plants but has a dramatic influence upon the structure of genetic systems. Fungi also present several advantages that make them tractable models for studies in experimental evolution. Here, we briefly review the unsolved questions and extant hypotheses about the evolution and maintenance of asexual vs. sexual reproduction and of selfing vs. outcrossing, focusing on fungal life cycles. We then propose how fungi can be used to address these long-standing questions and advance our understanding of sexual reproduction and mating systems across all eukaryotes.  相似文献   

13.
Skewed paternity and sex allocation in hermaphroditic plants and animals   总被引:3,自引:0,他引:3  
Models predict a reduced allocation to sperm when females preferentially use one of two males' sperm and the males do not know who is favoured. An analogous discounting occurs in plants when their paternity success is skewed by random, non-heritable factors such as location in the population and pollinator behaviour. We present a model that shows that skewed paternity can affect the sex allocation of hermaphrodites, that is it leads to a female-biased investment. The model highlights the close links between local mate competition and sperm competition. We use paternity data from Ficus in order to illustrate that skews in paternity success can lead to a high degree of sibling gamete competition in an apparently open breeding system. Since skews in paternity are ubiquitous in hermaphroditic plants and animals these findings should apply broadly.  相似文献   

14.
Summary Many parasitoid wasps are known to adjust sex ratio in response to either local mate competition (LMC) or host quality. Nevertheless, few studies have investigated the combined effects of these two factors on sex allocation. The sex allocation pattern inLariophagus distinguendus, a parasitoid of granary weevil larvae, is contrasted to the expectations of Werren's (1984) model combining LMC and host quality. Several predictions of the model are confirmed, but others are not. Sex ratio on both large and small hosts declines with proportion of small hosts attacked in a manner consistent with the model. However, when only one host size is parasitized, sex ratio is not independent of that host size, as predicted by the model. Various possibilities for the deviation between expected and observed are discussed. A partial LMC/host quality model is developed which allows for some matings outside the natal patch, and predictions of this model conform more closely to the pattern observed inL. distinguendus. Finally, the application of parasitoid studies to basic questions in evolutionary ecology is briefly discussed.  相似文献   

15.
Arabinogalactan proteins in plant sexual reproduction   总被引:8,自引:0,他引:8  
A. Y. Cheung  H. -M. Wu 《Protoplasma》1999,208(1-4):87-98
Summary Arabinogalactan proteins (AGPs) are a class of plant extracellular-matrix proteins believed to participate in a broad range of processes involving the plant cell surface. They are extremely abundant in female reproductive tissues and in pollen tubes, the haploid male structures that traverse the diploid female reproductive tissues to deliver sperms to the egg cells. The prevalence of AGPs in reproductive tissues has led to speculations that they play significant functional roles ranging from serving as nutrient resources to cell-cell recognition in plant reproduction. Recent research from several laboratories demonstrated functional participation by AGPs in reproductive processes and began to examine the mechanisms underlying these functional roles. An overview of these recent studies will be discussed with a historical perspective as well as with a view towards future studies in establishing the significance of AGPs that, as a class, they have prominent roles in plant sexual reproduction in multiple and diverse ways.  相似文献   

16.
This review attempts to give a concise overview of the widespread occurrence and the significance, structure and function of pheromones in the chemical communication between individuals of the same species during sexual reproduction in algae and plants. Also included is information on the Oomyctes and the chytridiomycete Allomyces. The terminology in respect of pheromone function and pheromone-induced reactions is discussed.  相似文献   

17.
Complex sex allocation in the laughing kookaburra   总被引:3,自引:5,他引:3  
In groups of the cooperatively breeding laughing kookaburra(Dacelo novaeguineae), offspring sex varied with the type ofsocial group and with hatch rank. Groups with female helpers,especially if all helpers were female, had male-biased clutchand fledging sex ratios. Groups without female helpers (unassistedpairs or male-only helpers) had female-biased clutch and fledgingsex ratios. Breeding females responded facultatively to increasesin the number of female helpers in their group by producingmore male eggs. These biases may occur if breeding femalestry to limit the number of daughters recruited into their groupbecause unlike male helpers, female helpers depress the breedingsuccess of their parents. Across all nests, two-thirds of first-hatchedyoung were male, two-thirds of second-hatched young were female, and the sex ratio of third-hatched young was even. Hatch ranksex ratios also varied dramatically between different typesof social groups, from 16.7% for second-hatched nestlings ofunassisted pairs to 100% for first-hatched nestlings of groupswith only female helpers. A corollary of the relationship betweenhatch rank and sex was that hatching sex sequences were distributed nonrandomly: all groups avoided hatching a daughter first followedby a son (FM). Sibling competition is aggressive and sometimesfatal. Since females grow to be 15% larger than males the hatchingsequence of sexes could affect nestling growth and mortality.However, an exhaustive analysis found little evidence thatgrowth or survival of males was compromised if hatched aftera sister. The small number of FM sequences may only have occurredin nests that were able to ameliorate any negative consequences.Alternatively, when clutch size is small and fledging successunpredictable because of brood reduction, the preferred broodsex ratio may be contingent on the number of fledged young,making it advantageous to order the sexes in the brood.  相似文献   

18.
1 Using a combination of observational and experimental approaches, both allocation of resources to reproduction (often called the direct cost of reproduction) and the subsequent long-term costs (the indirect, delayed or demographic cost) associated with reproductive allocation to male and female function in Siparuna grandiflora (Siparunaceae), a tropical dioecious shrub, were examined.
2 The objectives were to determine whether females allocate more biomass or nitrogen per reproductive episode than males, and whether there is a long-term cost of reproduction in terms of subsequent growth or reproduction for either sex. If there is no long-term cost of reproduction, then reproduction may be viewed as free in an evolutionary sense.
3 As is generally the case in dioecious species, females allocated more biomass and nitrogen to reproduction than males. Females also showed delayed costs of reproduction in terms of decreased growth and subsequent reproduction, whereas males did not.
4 The lack of measurable delayed costs in males suggests that with the evolution of dioecy, selection has reduced delayed costs of reproduction in S. grandiflora males. In contrast, females that were prevented from reproducing were able to re-allocate resources to growth, and produced more stem length on average than males. This re-allocation response may have evolved to reduce delayed costs of reproduction in females over time frames longer than that considered in the present study.  相似文献   

19.
Actin and actin-binding proteins in higher plants   总被引:18,自引:0,他引:18  
Summary The actin cytoskeleton is a complex and dynamic structure that participates in diverse cellular events which contribute to plant morphogenesis and development. Plant actins and associated actin-binding proteins are encoded by large, differentially expressed gene families. The complexity of these gene families is thought to have been conserved to maintain a pool of protein isovariants with unique properties, thus providing a mechanistic basis for the observed diversity of plant actin functions. Plants contain actin-binding proteins which regulate the supramolecular organization and function of the actin cytoskeleton, including monomer-binding proteins (profilin), severing and dynamizing proteins (ADF/cofilin), and side-binding proteins (fimbrin, 135-ABP/villin, 115-ABP). Although significant progress in documenting the biochemical activities of many of these classes of proteins has been made, the precise roles of actin-binding proteins in vivo awaits clarification by detailed mutational analyses.Dedicated to Professor Brian E. S. Gunning on the occasion of his 65th birthday  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号