首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence is presented to show that acid extracts of avian erythrocytes prelabelled for 24-48 h with myo-[3H]inositol contain the following myo-[3H]inositol trisphosphates (expressed as a percentage of total myo-[3H]inositol trisphosphates extracted): 36% myo-[3H]inositol 1,4,5-trisphosphate; 33.7% myo-[3H]inositol 1,3,4-trisphosphate; 13% myo-[3H]inositol 3,4,5-trisphosphate; 9.7% myo-[3H]inositol 3,4,6-trisphosphate; 4.4% myo-[3H]inositol 1,4,6-trisphosphate and 3.3% myo-[3H]inositol 1,3,6-trisphosphate. The only phosphatidyl-myo-[3H]inositol bisphosphate that could be detected in [3H]Ins-prelabelled avian erythrocytes was phosphatidyl-myo-[3H]inositol 4,5-bisphosphate. Cellular myo-[3H]inositol 3,4,5-trisphosphate may be synthesized by dephosphorylation of myo-[3H]inositol 3,4,5,6-tetrakisphosphate. D- and L-myo-[3H]inositol 1,4,6-trisphosphate and D- and L-myo-[3H]inositol 1,3,6-trisphosphate may be dephosphorylation products of myo-[3H]inositol 1,3,4,6-tetrakisphosphate.  相似文献   

2.
The 'phospholipid effect' involves agonist induced breakdown of phosphatidyl inositol (PI) or its phosphorylated derivates with increased incorporation of 32P or [myo-2-3H] inositol during resynthesis. In rat pancreas pancreozymin and bethanecol resulted in the standard dose dependent increased incorporation of 32P into PI which was paralleled by increased amylase secretion. By contrast the incorporation of [myo-2-3H] inositol into PI was significantly decreased by pancreozymin whereas bethanecol had no effect. However, pancreozymin caused a 30% decrease in labelled PI irrespective of whether it was prelabelled with 32P or [myo-2-3H] inositol. Thus in rat pancreas, pancreozymin resulted in the standard agonist induced breakdown of pre-labelled PI but inhibited the incorporation [2-3H-myo] inositol during the resynthetic phase.  相似文献   

3.
L-myo-inositol 1,4,5,6-tetrakisphosphate (3-hydroxy)kinase.   总被引:1,自引:5,他引:1       下载免费PDF全文
Homogenates of primary-cultured murine bone macrophages contain an enzyme capable of synthesizing myo-[3H]inositol pentakisphosphate from myo-[3H]inositol tetrakisphosphate fractions derived from myo-[3H]inositol-labelled mouse macrophages and chick erythrocytes. D-myo-inositol 1,3,4,5-tetrakis[32P]-phosphate present in the same incubations was not phosphorylated. Since the myo-[3H]inositol-labelled tetrakisphosphate fractions used as substrates consist of a mixture of L-myo-inositol 1,4,5,6-tetrakisphosphate (60-85%) and a periodate-resistant tetrakisphosphate(s) whose characteristics are consistent with those of D-myo-inositol 1,3,4,5-tetrakisphosphate (the preceding paper [Stephens, Hawkins, Carter, Chahwala, Morris, Whetton & Downes (1988) Biochem. J. 249, 271-282] ), these data suggest the existence of a kinase that phosphorylates L-myo-inositol 1,4,5,6-tetrakisphosphate to give a myo-inositol pentakisphosphate. A similar activity was identified in homogenates of rat cerebrum, liver, heart and parotid gland. D-myo-Inositol 1,3,4,5-tetrakis[32P]phosphate in the same incubations was not a substrate. The activity was almost entirely soluble in all the tissues investigated and was found at its greatest specific activity in brain cytosol. The activity was purified 120-fold from a rat brain homogenate by (NH4)2SO4 fractionation and anion-exchange chromatography. The activity was clearly distinct from D-myo-inositol 1,4,5-trisphosphate (3-hydroxy)kinase. Incubation of this partially purified preparation with L-myo-[3H]inositol 1,4,5,6-tetrakisphosphate from chick erythrocytes and [gamma-32P]ATP resulted in the formation of L-myo-[3H]-inositol [1-32P]1,3,4,5,6-pentakisphosphate. The enzyme is therefore identified as an L-myo-inositol 1,4,5,6-tetrakisphosphate (3-hydroxy)kinase.  相似文献   

4.
Injection of myo-[2-(3)H]inositol or scyllo-[R-(3)H]inositol into the peduncular cavity of wheat stalks about 2 to 4 weeks postanthesis led to rapid translocation into the spike and accumulation of label in developing kernels, especially the bran fraction. With myo-[2-(3)H]inositol, about 50 to 60% of the label was incorporated into high molecular weight cell wall substance in the region of the injection. That portion translocated to the kernels was utilized primarily for cell wall polysaccharide formation and phytate biosynthesis. A small amount was recovered as free myo-inositol and galactinol. When scyllo-[R-(3)H]inositol was supplied, most of the label was translocated into the developing kernels where it accumulated as free scyllo-inositol and O-alpha-d-galactopyranosyl-scyllo-inositol in approximately equal amount. None of the label from scyllo-[R-(3)H]inositol was utilized for either phytate biosynthesis or cell wall polysaccharide formation.  相似文献   

5.
Phosphatidyl[2-3H]inositol was prepared from Saccharomyces cerevisiae (YSC-2), grown in synthetic medium containing myo[2-3H]inositol. Over 44 microCi (or 81%) of the radiolabeled inositol was taken up by the organism, with 34 microCi incorporated into phosphatidylinositol. Upon purification by silicic acid pressure liquid chromatography (MPLC), a final yield of 24 to 26 microCi of phosphatidyl[2-3H]inositol with a specific radioactivity of 40 X 10(3) dpm/nmole was obtained. The purified phosphatidyl[2-3H]inositol was found to be a suitable for phospholipase C from human platelets.  相似文献   

6.
Abnormal myo-[2-3H]inositol incorporation into phosphatidylinositol has been found in phentolamine-treated synaptosomes that were isolated from the cerebral hemispheres of galactose toxic rats and incubated with [33P]Pi and myo-[2-3H] inositol. In galactose toxic rats phentolamine-stimulated myo-[2-3H]inositol labeling of phosphatidylinositol was 70% greater than in normal animals. This enhanced labeling of synaptosomal phosphatidylinositol in galactose toxic rats during stimulation with phentolamine is in marked contrast to the depressed myo-inositol labeling of phosphatidylinositol reported with acetylcholine stimulation.  相似文献   

7.
Rat brain minces were used to investigate the effects of nucleotides on the metabolism of arachidonic acid in nerve tissue. Brain free fatty acids, neutral lipids and phospholipids, were radiolabeled in vivo following intracerebral injection of [3H]arachidonic acid. Minces were prepared from the radiolabeled cerebra and were incubated in a modified Krebs-Ringer buffer with and without various nucleotides. The incubation-induced accumulation of unesterified [3H]arachidonate was reduced in the presence of CDPcholine, ATP, CTP, GTP, and UTP. These nucleotides inhibited choline and inositol glycerophospholipid hydrolysis. They also reduced the amount of labeled diglycerides. However, CDPethanolamine had no effect on arachidonic acid metabolism in the mince preparation and CMP appeared to stimulate further hydrolysis of choline glycerophospholipids, resulting in increased accumulation of [3H]arachidonic acid and labeled diglycerides. We suggest that the production of unesterified [3H]arachidonate and labeled diglycerides is due to the involvement of more than one catabolic reaction, since the high energy nucleotides had similar effects on fatty acid accumulation, but different effects on phospholipid labeling.  相似文献   

8.
The effects of dibutyryl cyclic adenosine 3':5'-monophosphate and ATP on isotope incorporation into phospholipids and the release of beta-glucuronidase into the extracellular medium were studied in polymorphonuclear leukocytes from guinea pig peritoneal exudates. Exogenous dibutyryl cyclic adenosine 3':5'-monophosphate (0.1--1.0 mM) reduced beta-glucoronidase release induced by cytochalasin B in the absence of inert particles. It selectively inhibited 32Pi incorporation into phosphatidic acid and the phosphoinositides and the incorporation of myo-[2-3H]inositol into the phosphoinositides. Added ATP (0.1--1.0 MM), but not other nucleotides, was found to potentiate beta-glucuronidase release provoked by cytochasin B, but it impaired the labeling of the phosphoinositides by myo-[2-3H]inositol. The mechanism of the inhibition the isotope incarparation into these acidic phospholipids by the two mucleotides has not been defined. Dibutyryl cyclic adenosine 3':5'-monophosphate at 2--4 mM concentration was not found to appreciably alter the incorporation of [gamma-32P]ATP into phosphatidic acid, phosphatidylinositol, diphosphoinositide, and triphosphoinositide.  相似文献   

9.
In rat uterine mince incubated in vitro [3H]inositol was found to be incorporated into phosphatidylinositol (PI) predominantly via a pathway which could be markedly and dose dependently activated with Mn2+ (0.1-10 mM) and inhibited by Ca2+ (1-10 mM). These ions had no effect on the incorporation of [32P]phosphate (32P) into PI indicating a distinct inositol-exchange mechanism for the labeling of PI with [3H]inositol. Treatment of ovariectomized rats for 5 days with 2 micrograms estradiol dipropionate (EDP) increased about 3-fold (when measured in the presence of 1 mM Mn2+) and 4-5-fold (when measured in the presence of 1 mM Ca2+) the inositol-exchange activity in the rat uterus, and these effects were suppressed by 40 and 30% respectively by the concomitant administration of 2 mg progesterone (P). EDP alone or in combination with P increased to the same extent (by a factor of 2-3) the rate of labeling with 32P of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and plasmenylethanolamine (PmE). The labeling rate of PI was increased 1.5-1.7-fold by treatment with EDP and this increase was selectively augmented further to about 2.5-fold by the simultaneous administration of P. Treatment with P alone had no significant effect on the incorporation of either labeled precursor. Steroid hormone treatments had no effect on the amount of these phospholipids in 100 mg uterine tissue, but they increased about 1.7-fold the rate of labeling of ATP with 32P. We conclude that P, when administered together with estradiol, regulates differentially the turnover of the inositol and phosphate moieties of PI with possible physiological consequences.  相似文献   

10.
myo-Inositol-linked glucogenesis in germinated lily (Lilium longiflorum Thunb., cv. Ace) pollen was investigated by studying the effects of added l-arabinose or d-xylose on metabolism of myo-[2-(3)H]inositol and by determining the distribution of radioisotope in pentosyl and hexosyl residues of polysaccharides from pollen labeled with myo-[2-(14)C]inositol, myo-[2-(3)H]inositol, l-[5-(14)C]arabinose, and d-[5R,5S-(3)H]xylose.myo-[2-(14)C]Inositol and l-[5-(14)C]arabinose produced labeled glucose with similar patterns of distribution of (14)C, 35% in C1, and 55% in C6. Arabinosyl units were labeled exclusively in C5. Incorporation of (3)H into arabinosyl and xylosyl units in pollen labeled with myo-[2-(3)H]inositol was repressed when unlabeled l-arabinose was included in the germination medium and a related (3)H exchange with water was stimulated. Results are consistent with a process of glucogenesis in which the myo-inositol oxidation pathway furnishes UDP-d-xylose as a key intermediate for conversion to hexose via free d-xylose and the pentose phosphate pathway.Additional evidence for this process was obtained from pollen labeled with d-[5R,5S-(3)H]xylose or myo-[2-(3)H]inositol which produces d-[5R-(3)H]xylose. Glucosyl units from polysaccharides in the former had 11% of the (3)H in C1 and 78% in C6 while glucosyl units in the latter had only 4% in C1 and 78% in C6. Stereochemical considerations involving selective exchange with water of prochiral-R (3)H in C1 of fructose-6-P during conversion to glucose provide explanation for observed differences in the metabolism of these 5-labeled xyloses.Incorporation of (3)H from myo-[2-(3)H]inositol into arabinosyl and xylosyl units of pollen polysaccharides was unaffected by the presence of unlabeled d-xylose in the medium. Exchange of (3)H with water was greatly affected, decreasing from a value of 21% exchange in the absence of unlabeled d-xylose to 5% in the presence of 6.7 mmd-xylose.d-Xylose was rapidly utilized for glucogenesis by germinated pollen tubes. This observation supports the view that free d-xylose is an important intermediate following breakdown of UDP-d-xylose during myo-inositol-linked glucogenesis.  相似文献   

11.
The adenine nucleotide stores of cultured adrenal medullary cells were radiolabeled by incubating the cells with 32Pi and [3H]adenosine and the turnover, subcellular distribution, and secretion of the nucleotides were examined. ATP represented 84-88% of the labeled adenine nucleotides, ADP 11-13%, and AMP 1-3%. The turnover of 32P-adenine nucleotides and 3H-nucleotides was biphasic and virtually identical; there was an initial fast phase with a t1/2 of 3.5-4.5 h and a slow phase with a half-life varying from 7 to 17 days, depending upon the particular cell preparation. The t1/2 of the slow phase for labeled adenine nucleotides was the same as that for the turnover of labeled catecholamines. The subcellular distribution of labeled adenine nucleotides provides evidence that there are at least two pools of adenine nucleotides which make up the component with the long half-life. One pool, which contains the bulk of endogenous nucleotides (75% of the total), is present within the chromaffin vesicles; the subcellular localization of the second pool has not been identified. The studies also show that [3H]ATP and [32P]ATP are distributed differently within the cell; 3 days after labeling 75% of the [32P]ATP was present in chromaffin vesicles while only 35% of the [3H]ATP was present in chromaffin vesicles. Evidence for two pools of ATP with long half-lives and for the differential distribution of [32P]ATP and [3H]ATP was also obtained from secretion studies. Stimulation of cell cultures with nicotine or scorpion venom 24 h after labeling with [3H]adenosine and 32Pi released relatively twice as much catecholamine as 32P-labeled compounds and relatively three times as much catecholamine as 3H-labeled compounds.  相似文献   

12.
myo-[3H]Inositol 1,3,4,5,6-pentakisphosphate can be made from myo-[3H]inositol 1,4,5-trisphosphate in a rat brain homogenate or soluble fraction. Although D-myo-inositol 3,4,5,6-tetrakisphosphate can be phosphorylated by a soluble rat brain enzyme to give myo-inositol 1,3,4,5,6-pentakisphosphate, it is not an intermediate in the pathway from myo-inositol 1,4,5-trisphosphate. The intermediates in the above pathway are myo-inositol 1,3,4,5-tetrakisphosphate, myo-inositol 1,3,4-trisphosphate and myo-inositol 1,3,4,6-tetrakisphosphate [Shears, Parry, Tang, Irvine, Michell & Kirk (1987) Biochem. J. 246, 139-147; Balla, Guillemette, Baukal & Catt (1987) J. Biol. Chem. 262, 9952-9955], and it is catalysed by soluble kinase activities of similar anion-exchange mobility and Mr value. Compounds with chromatographic and chemical properties consistent with the structures myo-inositol 1,3,4,5-tetrakisphosphate, myo-inositol 1,3,4,6-tetrakisphosphate and myo-inositol 3,4,5,6-tetrakisphosphate are present in avian erythrocytes, human 1321 N1 astrocytoma cells and primary-cultured murine bone-marrow-derived macrophages. The amounts of these inositol tetrakisphosphates rise upon muscarinic cholinergic stimulation of the astrocytoma cells or stimulation of macrophages with platelet-activating factor.  相似文献   

13.
The effects of the muscarinic agonist carbachol, histamine and bradykinin on incorporation of [3H]inositol into the phosphoinositides and the formation of [3H]InsPs were examined in bovine tracheal smooth-muscle (BTSM) slices labelled with [3H]inositol. These agonists result in substantial and dose-related increases in the incorporation of [3H]inositol into the phospholipids. Carbachol and histamine stimulated the incorporation of [3H]inositol into the phospholipids to the same degree, despite histamine being only 35% as effective as carbachol on [3H]InsP accumulation. Histamine and carbachol, at maximal concentrations, were non-additive with respect to both the stimulated incorporation of [3H]inositol and [3H]InsP formation. For carbachol this effect on incorporation was found to occur to a similar extent in PtdInsP and PtdInsP2 as well as PtdIns. The initial effect of carbachol on [3H]inositol incorporation was rapid (maximal by 10 min); however, with prolonged stimulation large secondary declines in PtdInsP and PtdInsP2 labelling were observed, with depletion of the much larger PtdIns pool only evident in the presence of Li+. Lowering buffer [Ca2+] increased the incorporation of [3H]inositol under basal conditions, but did not attenuate the subsequent agonist-stimulated incorporation effect. The large changes in specific radioactivity of the phosphoinositides, and consequently the [3H]InsP products, after carbachol stimulation resulted in the apparent failure of atropine to reverse the [3H]InsP response completely. Labelling muscle slices with [3H]inositol in the presence of carbachol or labelling for longer periods (greater than 6 h) prevented subsequent carbachol-stimulated effects on incorporation without significantly altering the dose-response relationship for carbachol-stimulated [3H]InsP formation and resulted in steady-state labelling conditions confirmed by the ability of atropine to reverse fully the [3H]InsP response to carbachol. This study demonstrates the profound effects of a number of agonists on [3H]inositol incorporation into the phospho- and polyphosphoinositides in BTSM with important consequent changes in the specific radioactivity of these lipids and the resulting [3H]InsP products. In addition, a selective depletion of PtdInsP and PtdInsP2 over PtdIns has been demonstrated with prolonged muscarinic-receptor stimulation.  相似文献   

14.
The effects of in vivo electrical stimulation of the sympathetic nerve of the eye on phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis in rabbit iris and release of arachidonate and prostaglandin (PG) E2 into aqueous humor were investigated. myo-[3H]Inositol or [1-14C]arachidonate was injected intracamerally into each eye 3 h before electrical stimulation of one of the sympathetic trunks. Tissue phosphoinositides were determined by TLC, and 3H-labeled inositol phosphates were analyzed by either ion-exchange chromatography or HPLC. The aqueous humor was analyzed for 14C-labeled arachidonate and PGE2 by radiochromatography and for unlabeled PGE2 by radioimmunoassay. The results obtained from this study can be summarized as follows: (a) The rates of in vivo incorporation of myo-[3H]inositol into phosphoinositides and accumulation of 3H-labeled inositol phosphates in the iris muscle increased with time and then leveled off between 3 and 5 h. (b) Distribution of 3H radioactivity in inositol phosphates, as determined by HPLC, showed that of the total radioactivity in inositol phosphates, 53.6% was recovered in myo-inositol 1-phosphate, 36% in myo-inositol bisphosphate, 0.95% in myo-inositol 1,3,4-trisphosphate (1,3,4-IP3), and 2.6% in 1,4,5-IP3. (c) Electrical stimulation of the sympathetic nerve resulted in a significant loss of 3H radioactivity from PIP2 and a concomitant increase of that in IP3, an observation indicating that PIP2 is the physiological substrate for alpha 1-adrenergic receptors in this tissue. (d) Release of IP3 and liberation of arachidonate for PGE2 synthesis are dependent on the duration of stimulation and the intensity (voltage) of stimulus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
[3H]Inositol ([3H]Ins) labeling of phosphoinositides was studied in rat brain cortical membranes. [3H]Ins was incorporated into a common lipid pool through both CMP-dependent and independent mechanisms. These are as follows: (1) a reverse reaction catalyzed by phosphatidyl-inositol (PtdIns) synthase, and (2) the reaction performed by the PtdIns headgroup exchange enzyme, respectively. Membrane phosphoinositides prelabeled in either CMP-dependent or independent fashions were hydrolyzed by guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)- and carbachol-stimulated phospholipase C. Unlike CMP-dependent labeling, however, CMP-independent incorporation of [3H]Ins into lipids was inhibited by 1 mM (0.04%) sodium deoxycholate. Thus, when PtdIns labeling and phospholipase C stimulation were studied in a concerted fashion, [3H]Ins was incorporated into lipids primarily through the PtdIns synthase-catalyzed reaction because of the presence of deoxycholate required to observe carbachol-stimulation of phospholipase C. Little direct breakdown of [3H]PtdIns was detected because production of myo-[3H]inositol 1-monophosphate was minimal and myo-[3H]inositol 1,4-bisphosphate was the predominant product. Although PtdIns labeling and 3H-polyphosphoinositide formation were unaffected by GTP gamma S and carbachol and had no or little lag period, GTP gamma S- and carbachol-stimulated appearance of 3H-Ins phosphates exhibited an appreciable lag (10 min). Also, flux of label from [3H]Ins to 3H-Ins phosphates was restricted to a narrow range of free calcium concentrations (10-300 nM). These results show the concerted activities of PtdIns synthase, PtdIns 4-kinase, and phospholipase C, and constitute a simple assay for guanine nucleotide-dependent agonist stimulation of phospholipase C in a brain membrane system using [3H]Ins as labeled precursor.  相似文献   

16.
Although it is evident that the chemotactic peptide FMLP activates O2-formation in neutrophils via the phosphoinositidase-mediated second messenger system, it is less clear how endogenous priming agents such as ATP and platelet activating factor potentiate FMLP action. In our study, we have examined the possible effects of the stable ATP analog adenosine 5'-O-[3-thiotriphosphate] (ATP gamma S) on cellular levels of inositol 1,4,5-trisphosphate, [Ca2+]i and diglyceride (DG), in resting and in FMLP-stimulated neutrophils. Although all three measures were increased in the presence of FMLP, only the increase in DG was enhanced by pretreatment (priming) with ATP gamma S. We also measured the accumulation of the phosphoinositide cycle intermediate cytidine 5'-diphosphate (CDP)-DG to assess possible effects of priming on phosphoinositide resynthesis. The addition of FMLP to [3H]cytidine-prelabeled neutrophils elicited an increase in the accumulation of [3H]CDP-DG that was maximally enhanced in cells that were pretreated with cytochalasin B. The stimulated accumulation of [3H]CDP-DG was completely reversed by the addition of myo-inositol. Treatment of [3H]cytidine-prelabeled neutrophils with ATP gamma S (10-100 microM) resulted in a dose-dependent synergistic increase in FMLP-stimulated [3H]CDP-DG accumulation, whereas ATP gamma S alone had no effect. The observed increases in DG and in [3H]CDP-DG, in contrast to inositol 1,4,5-trisphosphate and [Ca2+]i responses, correlates well with the ATP gamma S-priming of FMLP-induced O2-formation. A similar potentiation of FMLP-induced stimulation of CDP-DG formation was also observed with platelet-activating factor. It is proposed that the priming of FMLP responses in neutrophils proceeds via a mechanism that selectively enhances DG production through a mechanism that is independent of FMLP-induced breakdown of phosphatidylinositol bisphosphate.  相似文献   

17.
Mn2+ greatly increases the incorporation of myo-[3H]inositol into phosphatidylinositol (PI) of brain and other tissues by stimulating the activity of a PI-myo-inositol exchange enzyme. This study examined the ability of norepinephrine (NE) and carbachol to stimulate the hydrolysis of [3H]PI formed in the absence and presence of Mn2+-stimulated [3H]inositol exchange. Rat cerebral cortical slices were incubated with myo-[3H]inositol for 60 min in an N-2-hydroxyethyl piperazine-N'-2-ethanesulfonic acid (HEPES) buffer without or with MnCl2 (1 mM). The tissue was washed and further incubated with unlabeled myo-inositol and LiCl (10 mM). Prelabeled slices were then incubated with NE (0.1 mM) or carbachol (1 mM) to induce agonist-stimulated [3H]PI hydrolysis. Mn2+ treatment resulted in eight- and sixfold increases in control levels of [3H]PI and [3H]inositol monophosphate [( 3H]IP), respectively. Both NE and carbachol stimulated [3H]IP formation in tissue prelabeled without or with manganese. However, the degree of stimulation (percentage of control values) was greatly attenuated in the presence of Mn2+. In the absence of Mn2+ treatment, NE decreased [3H]PI radioactivity in the tissue to 80% of control values. However, NE did not decrease [3H]PI radioactivity in the Mn2+-treated tissue. These data demonstrate that Mn2+ stimulates incorporation of myo-[3H]inositol into a pool of PI in brain that has a rapid turnover but is not coupled to agonist-induced hydrolysis.  相似文献   

18.
The capacity to modify the incorporation of [2-3H]myo-inositol into inositides and inositol phosphates was different for three psychotropic cationic amphiphilic drugs. Chlorpromazine, desmethylimipramine and propranolol were able to increase the labeling of inositol-containing lipids, but only chlorpromazine dramatically increased the incorporation into inositol phosphate, -bisphosphate and -trisphosphate. The increase was 10- to 50-fold in 60 min as compared with controls. This effect is not due to stimulation of lipid labeling, because in chase experiments radioactivity in inositol phosphates increased to a greater extent than in their parent lipids. It is possible that the alteration of phosphoinositide catabolism is related to the neuroleptic activity of the drug.  相似文献   

19.
[3H]Scyllo-inositol was taken up by Tetrahymena cells through a sodium-dependent pathway wherein unlabeled scyllo- and myo-inositol competed for uptake. d-Glucose was a competitor of [3H]myo-inositol uptake, but did not appear to compete for [3H]scyllo-inositol uptake. Transport of [3H]scyllo- and [3H]myo-inositol was inhibited when sodium was removed from the labeling buffer and by phlorizin, an inhibitor of sodium-dependent transporters. Cytochalasin B, an inhibitor of facilitated glucose transporters, had no significant effect on inositol transport. Internalized [3H]scyllo-inositol was readily incorporated intact into phosphatidylinositol, phosphatidylinositol-linked glycans, and polyphosphoinositols. Distribution of [3H]scyllo- and [3H]myo-inositol radioactivity into individual polyphosphoinositols was found to differ.  相似文献   

20.
When myo-[3H]inositol-prelabelled primary-cultured murine bone-marrow-derived macrophages were challenged with platelet-activating factor (PAF; 200 ng/ml), there was a rapid (2.5-fold at 10 s) rise in the intracellular concentration of D-myo-[3H]inositol 1,4,5-trisphosphate, followed by a rise in myo-[3H]inositol tetrakisphosphate. myo-[3H]Inositol tetrakisphosphate fractions were isolated by high-performance anion-exchange chromatography from myo-[3H]inositol-prelabelled chick erythrocytes and primary-cultured macrophages. In both cases [3H]iditol and [3H]inositol were the only significant products (greater than 90% of recovered radioactivity) after oxidation to completion with periodic acid, reduction with NaBH4 and dephosphorylation with alkaline phosphatase. The presence of [3H]inositol after this procedure is consistent with the occurrence of [3H]inositol 1,3,4,5-tetrakisphosphate in the cell extracts, whereas [3H]iditol could only be derived from D- or L-inositol 1,4,5,6-tetrakisphosphate. When [3H]inositol tetrakisphosphate fractions obtained from (A) unstimulated macrophages, (B) macrophages that had been stimulated with PAF for 40s or (C) chick erythrocytes were subjected to the above procedure, radioactivity was recovered in these polyols in the following proportions: A, 60-90% in iditol, with 10-40% in inositol; B, total radioactivity increased by a factor of 9.8, 94% being recovered in inositol and 8% in iditol; C, 70-80% in iditol and 20-30% in inositol. [3H]Iditol derived from myo-[3H]inositol tetrakisphosphate fractions from macrophages and chick erythrocytes was oxidized to sorbose by L-iditol dehydrogenase (L-iditol:NAD+2-oxidoreductase, 1.1.1.14) at the same rate as authentic L-iditol. D-[14C]Iditol, derived from D-myo-inositol 1,4,5-trisphosphate, was not oxidized by L-iditol dehydrogenase. This result indicates that the [3H]iditol was derived from L-myo-inositol inositol 1,4,5,6-tetrakisphosphate. The data are consistent with rapid PAF-sensitive synthesis of D-myo-[3H]inositol 1,3,4,5-tetrakisphosphate in macrophages, and demonstrate that L-myo-inositol 1,4,5,6-tetrakisphosphate is synthesized in both mammalian and avian cells. The levels of L-myo-[3H]inositol 1,4,5,6-tetrakisphosphate in primary-cultured macrophages are not acutely sensitive to PAF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号