共查询到20条相似文献,搜索用时 0 毫秒
1.
Alteration of P-type calcium channel gating by the spider toxin omega-Aga-IVA. 总被引:3,自引:0,他引:3 下载免费PDF全文
We studied the mechanism of inhibition of P-type calcium channels in rat cerebellar Purkinje neurons by the peptide toxin omega-Aga-IVA. Saturating concentrations of omega-Aga-IVA (> 50 nM) inhibited inward current carried by 2-5 mM Ba almost completely. However, outward current at depolarizations of > +60 mV, carried by internal Cs, was inhibited much less, as was the tail current after such depolarizations. omega-Aga-IVA shifted the midpoint of the tail current activation curve by about +50 mV and made the curve less steep. The inactivation curve was also shifted in the depolarized direction and was made less steep. With omega-Aga-IVA, channels activated more slowly and deactivated more quickly than in control. Trains of repeated large depolarizations relieved the inhibition of current (as tested with moderate depolarizations), probably reflecting the unbinding of toxin. The relief of inhibition was faster with increasing depolarization, but did not require internal permeant ions. We conclude that omega-Aga-IVA alters voltage-dependent gating by stabilizing closed states of the channel and that omega-Aga-IVA dissociates much more rapidly from open channels than from closed. 相似文献
2.
3.
4.
Numerical simulation of local calcium movements during L-type calcium channel gating in the cardiac diad. 总被引:10,自引:2,他引:10 下载免费PDF全文
Computer simulation was used to investigate the calcium levels after sarcolemmal calcium influx through L-type calcium channels (DHPRs) into the narrow diadic space of cardiac muscle. The effect of various cytosolic and membranebound buffers, diad geometry, DHPR properties (open time and current), and surface charge were examined. The simulations showed that phospholipid binding sites on the sarcolemmal membrane are the major buffer affecting free calcium ([Ca2+]) levels in the diad. The inclusion of surface charge effects calculated from Gouy-Chapman theory resulted in a marked decrease in [Ca2+] levels at all times and a faster decay of [Ca2+] after termination of DHPR influx. For a DHPR current of 200 fA, [Ca2+] at the center of the diad reached peak levels of approximately 73 microM. In larger diads (> or = 400 nm diameter), [Ca2+] decayed more slowly than in smaller diads (100-200 nm diameter), although peak [Ca2+] levels reached during typical DHPR open times were similar. For a wide range of DHPR single-channel current magnitudes (Ica = 25-200 fA), [Ca2+] levels in the diad were approximately proportional to ICa. The decrease in calculated [Ca2+] levels due to the effects of surface charge can be interpreted as resulting from an effective "volume expansion" of the diad space. Furthermore, the layer of increased [Ca2+] close to the sarcolemmal membrane can act as a fast buffer. 相似文献
5.
6.
《The Journal of general physiology》1993,101(5):767-797
Ba2+ currents through L-type Ca2+ channels were recorded from cell- attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single- channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single- channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to record single L-type Ca2+ channel activity produce a positive shift in the voltage dependence of activation (approximately 32 mV in 100 mM Ba2+). 相似文献
7.
Properties of L-type calcium channel gating current in isolated guinea pig ventricular myocytes. 下载免费PDF全文
Nonlinear capacitative current (charge movement) was compared to the Ca current (ICa) in single guinea pig ventricular myocytes. It was concluded that the charge movement seen with depolarizing test steps from -50 mV is dominated by L-type Ca channel gating current, because of the following observations. (a) Ca channel inactivation and the immobilization of the gating current had similar voltage and time dependencies. The degree of channel inactivation was directly proportional to the amount of charge immobilization, unlike what has been reported for Na channels. (b) The degree of Ca channel activation was closely correlated with the amount of charge moved at all test potentials between -40 and +60 mV. (c) D600 was found to reduce the gating current in a voltage- and use-dependent manner. D600 was also found to induce "extra" charge movement at negative potentials. (d) Nitrendipine reduced the gating current in a voltage-dependent manner (KD = 200 nM at -40 mV). However, nitrendipine did not increase charge movement at negative test potentials. Although contamination of the Ca channel gating current from other sources cannot be fully excluded, it was not evident in the data and would appear to be small. However, it was noted that the amount of Ca channel gating charge was quite large compared with the magnitude of the Ca current. Indeed, the gating current was found to be a significant contaminant (19 +/- 7%) of the Ca tail currents in these cells. In addition, it was found that Ca channel rundown did not diminish the gating current. These results suggest that Ca channels can be "inactivated" by means that do not affect the voltage sensor. 相似文献
8.
Tyrosine nitration results in altered function of selective proteins, including human smooth muscle L-type calcium channel, hCa(v)1.2b. We report here that Ca(v)1.2 is also subject to "denitration". Cell lysates from activated macrophage-like cell line, RAW264.7 cells, reversed peroxynitrite-induced nitration of the carboxy terminus of Ca(v)1.2 in a 1D gel assay. Tyrosine phosphorylation of the calcium channel by c-src kinase was blocked by nitration but reversed by pretreatment with RAW264.7 cell lysates. These findings indicate that denitration may be a physiological mechanism to restore cellular excitability during inflammation. 相似文献
9.
10.
Bradykinin (BK) excites dorsal root ganglion cells, leading to the sensation of pain. The actions of BK are thought to be mediated by heterotrimeric G protein-regulated pathways. Indeed there is strong evidence that in different cell types BK is involved in phosphoinositide breakdown following activation of Gq/11. In the present study we show that the Ca2+ current flowing through L-type voltage-gated Ca2+ channels in NG108-15 cells (differentiated in vitro to acquire a neuronal phenotype), measured using the whole-cell patch clamp configuration, is reversibly inhibited by BK in a voltage-independent fashion, suggesting a cascade process where a second messenger system is involved. This inhibitory action of BK is mimicked by the application of 1,2-oleoyl-acetyl glycerol (OAG), an analog of diacylglycerol that activates PKC. Interestingly, OAG occluded the effects of BK and both effects were blocked by selective PKC inhibitors. The down modulation of single L-type Ca2+ channels by BK and OAG was also investigated in cell-attached patches. Our results indicate that the inhibitory action of BK involves activation of PKC and mainly shows up in a significant reduction of the probability of channel opening, caused by an increase and clustering of null sweeps in response to BK. 相似文献
11.
This review describes recent findings on voltage-gated Ca channel (Cav channel) cloned from ascidians, the most primitive chordates. Ascidian L-type like Cav channel has several unusual features: (1). it is closely related to the prototype of chordate L-type Cav channels by sequence alignment; (2). it is resistant to dihydropyridine due to single amino acid change in the pore region, and (3). maternally provided RNA putatively encodes a truncated protein which has remarkable suppressive effect on Cav channel expression during development. Ascidian Cav channel will provide a useful molecular clue in the future to understand Ca(2+)-regulated cell differentiation and physiology with the background of recently defined ascidian genome and molecular biological tools. 相似文献
12.
《The Journal of general physiology》1983,82(5):679-701
Charge movements similar to those attributed to the sodium channel gating mechanism in nerve have been measured in frog skeletal muscle using the vaseline-gap voltage-clamp technique. The time course of gating currents elicited by moderate to strong depolarizations could be well fitted by the sum of two exponentials. The gating charge exhibits immobilization: at a holding potential of -90 mV the proportion of charge that returns after a depolarizing prepulse (OFF charge) decreases with the duration of the prepulse with a time course similar to inactivation of sodium currents measured in the same fiber at the same potential. OFF charge movements elicited by a return to more negative holding potentials of -120 or -150 mV show distinct fast and slow phases. At these holding potentials the total charge moved during both phases of the gating current is equal to the ON charge moved during the preceding prepulse. It is suggested that the slow component of OFF charge movement represents the slower return of charge "immobilized" during the prepulse. A slow mechanism of charge immobilization is also evident: the maximum charge moved for a strong depolarization is approximately doubled by changing the holding potential from -90 to -150 mV. Although they are larger in magnitude for a -150-mV holding potential, the gating currents elicited by steps to a given potential have similar kinetics whether the holding potential is -90 or -150 mV. 相似文献
13.
Distinctive modulatory effects of five human auxiliary beta2 subunit splice variants on L-type calcium channel gating 下载免费PDF全文
Sequence analysis of the human genome permitted cloning of five Ca(2+)-channel beta(2) splice variants (beta(2a)-beta(2e)) that differed only in their proximal amino-termini. The functional consequences of such beta(2)-subunit diversity were explored in recombinant L-type channels reconstituted in HEK 293 cells. Beta(2a) and beta(2e) targeted autonomously to the plasma membrane, whereas beta(2b)-beta(2d) localized to the cytosol when expressed in HEK 293 cells. The pattern of modulation of L-type channel voltage-dependent inactivation gating correlated with the subcellular localization of the component beta(2) variant-membrane-bound beta(2a) and beta(2e) subunits conferred slow(er) channel inactivation kinetics and displayed a smaller fraction of channels recovering from inactivation with fast kinetics, compared to beta(2b)-beta(2d) channels. The varying effects of beta(2) subunits on inactivation gating were accounted for by a quantitative model in which L-type channels reversibly distributed between fast and slow forms of voltage-dependent inactivation-membrane-bound beta(2) subunits substantially decreased the steady-state fraction of fast inactivating channels. Finally, the beta(2) variants also had distinctive effects on L-type channel steady-state activation gating, as revealed by differences in the waveforms of tail-activation (G-V) curves, and conferred differing degrees of prepulse facilitation to the channel. Our results predict important physiological consequences arising from subtle changes in Ca(2+)-channel beta(2)-subunit structure due to alternative splicing and emphasize the utility of splice variants in probing structure-function mechanisms. 相似文献
14.
There has been some uncertainty in the past as to the origin of the rising phase of the gating current. We present evidence here that proves that the gating current does not have a rising phase and that the observed rising phase is due to an uncompensated series resistance in the Frankenhaeuser-Hodgkin (F-H) space. When a squid giant axon is bathed in a solution that is 10-20% hyperosmotic with respect to the internal solution, the rising phase of the gating current is eliminated. In parallel with this, a component of the capacity transient (time constant, 20 microseconds) is reduced so that the capacity transient now appears to be closer to a single fast (5-10 microseconds) component. These changes in the capacity transient and gating current occur without altering the amount of charge moved in either. This indicates that the charge is simply redistributed in time. The gating current without a rising phase can still be immobilized by inactivation. Supporting evidence is provided by measuring the accumulation and washout of K+ from the F-H space. It was found that K+ washes out 35% faster when the axon is bathed in hyperosmotic solution. It was estimated that the F-H space thickness (theta) increased 2.5 +/- 0.4-fold (mean +/- SEM) in hyperosmotic solution. Similarly, K+ accumulation in the F-H space was decreased, leading to an estimate of a 5 +/- 1.4-fold increase in theta in hyperosmotic solution. These results are consistent with the simple structural model presented. 相似文献
15.
Koschak A 《Channels (Austin, Tex.)》2010,4(6):523-525
CaV1.3 L-type channels control inner hair cell (IHC) sensory and sinoatrial node (SAN) function, and excitability in central neurons by means of their low-voltage activation and inactivation properties. In SAN cells CaV1.3 inward calcium current (ICa) inactivates rapidly whereas in IHCs inactivation is slow. A candidate suggested in slowing CaV1.3 channel inactivation is the presynaptically located ribbon-synapse protein RIM that is expressed in immature IHCs in presynaptic compartments also expressing CaV1.3 channels. CaV1.3 channel gating is also modulated by an intramolecular C-terminal mechanism. This mechanism was elicited during analysis of human C-terminal splice variants that differ in the length of their C-terminus and that modulates the channel's negative activation range and slows calcium-dependent inactivation. 相似文献
16.
We have measured gating currents from the squid giant axon using solutions that preserve functional K channels and with experimental conditions that minimize Na channel contributions to these currents. Two pharmacological agents were used to identify a component of gating current that is associated with K channels. Low concentrations of internal Zn2+ that considerably slow K channel ionic currents with no effect on Na channel currents altered the component of gating current associated with K channels. At low concentrations (10-50 microM) the small, organic, dipolar molecule phloretin has several reported specific effects on K channels: it reduces K channel conductance, shifts the relationship between channel conductance and membrane voltage (Vm) to more positive potentials, and reduces the voltage dependence of the conductance-Vm relation. The K channel gating charge movements were altered in an analogous manner by 10 microM phloretin. We also measured the dominant time constants of the K channel ionic and gating currents. These time constants were similar over part of the accessible voltage range, but at potentials between -40 and 0 mV the gating current time constants were two to three times faster than the corresponding ionic current values. These features of K channel function can be reproduced by a simple kinetic model in which the channel is considered to consist of two, two-state, nonidentical subunits. 相似文献
17.
Serikov V Bodi I Koch SE Muth JN Mikala G Martinov SG Haase H Schwartz A 《Biochemical and biophysical research communications》2002,293(5):1405-1411
The beta subunit of the L-type voltage-dependent calcium channel modifies the properties of the channel complex by both allosteric modulation of the alpha1 subunit function and by chaperoning the translocation of the alpha1 subunit to the plasma membrane. The goal of this study was to investigate the functional effect of changing the in vivo stoichiometry between the alpha1 and beta subunits by creating a dominant negative expression system in a transgenic mouse model. The high affinity beta subunit-binding domain of the alpha1 subunit was overexpressed in a cardiac-specific manner to act as a beta subunit trap. We found that the predominant beta isoform was located primarily in the membrane bound fraction of heart protein, whereas the beta1 and beta3 were mostly cytosolic. There was a significant diminution of the amount of beta2 in the membrane fraction of the transgenic animals, resulting in a decrease in contractility of the heart and a decrease in L-type calcium current density in the myocyte. However, there were no distinguishable differences in beta1 and beta3 protein expression levels in the membrane bound fraction between transgenic and non-transgenic animals. Since the beta1 and beta3 isoforms only make up a small portion of the total beta subunit in the heart, slight changes in this fraction are not detectable using Western analysis. In contrast, beta1 and beta3 in skeletal muscle and brain, the predominant isoforms in these tissues, respectively, are membrane bound. 相似文献
18.
《生物化学与生物物理学报:疾病的分子基础》2014,1842(9):1518-1526
In polycystic kidney disease (PKD), abnormal proliferation and genomic instability of renal epithelia have been associated with cyst formation and kidney enlargement. We recently showed that L-type calcium channel (CaV1.2) is localized to primary cilia of epithelial cells. Previous studies have also shown that low intracellular calcium level was associated with the hyperproliferation phenotype in the epithelial cells. However, the relationship between calcium channel and cystic kidney phenotype is largely unknown. In this study, we generated cells with somatic deficient Pkd1 or Pkd2 to examine ciliary CaV1.2 function via lentiviral knockdown or pharmacological verapamil inhibition. Although inhibition of CaV1.2 expression or function did not change division and growth patterns in wild-type epithelium, it led to hyperproliferation and polyploidy in mutant cells. Lack of CaV1.2 in Pkd mutant cells also decreased the intracellular calcium level. This contributed to a decrease in CaM kinase activity, which played a significant role in regulating Akt and Erk signaling pathways. Consistent with our in vitro results, CaV1.2 knockdown in zebrafish and Pkd1 heterozygous mice facilitated the formation of kidney cysts. Larger cysts were developed faster in Pkd1 heterozygous mice with CaV1.2 knockdown. Overall, our findings emphasized the importance of CaV1.2 expression in kidneys with somatic Pkd mutation. We further suggest that CaV1.2 could serve as a modifier gene to cystic kidney phenotype. 相似文献
19.
Mechanosensitivity in voltage-gated calcium channels could be an asset to calcium signaling in healthy cells or a liability during trauma. Recombinant N-type channels expressed in HEK cells revealed a spectrum of mechano-responses. When hydrostatic pressure inflated cells under whole-cell clamp, capacitance was unchanged, but peak current reversibly increased ~1.5-fold, correlating with inflation, not applied pressure. Additionally, stretch transiently increased the open-state inactivation rate, irreversibly increased the closed-state inactivation rate, and left-shifted inactivation without affecting the activation curve or rate. Irreversible mechano-responses proved to be mechanically accelerated components of run-down; they were not evident in cell-attached recordings where, however, reversible stretch-induced increases in peak current persisted. T-type channels (alpha(1I) subunit only) were mechano-insensitive when expressed alone or when coexpressed with N-type channels (alpha(1B) and two auxiliary subunits) and costimulated with stretch that augmented N-type current. Along with the cell-attached results, this differential effect indicates that N-type mechanosensitivity did not depend on the recording situation. The insensitivity of T-type currents to stretch suggested that N-type mechano-responses might arise from primary/auxiliary subunit interactions. However, in single-channel recordings, N-type currents exhibited reversible stretch-induced increases in NP(o) whether the alpha(1B) subunit was expressed alone or with auxiliary subunits. These findings set the stage for the molecular dissection of calcium current mechanosensitivity. 相似文献
20.
Leopoldo AS Lima-Leopoldo AP Sugizaki MM do Nascimento AF de Campos DH Luvizotto Rde A Castardeli E Alves CA Brum PC Cicogna AC 《Journal of cellular physiology》2011,226(11):2934-2942
Obesity has been shown to impair myocardial performance. Nevertheless, the mechanisms underlying the participation of calcium (Ca(2+) ) handling on cardiac dysfunction in obesity models remain unknown. L-type Ca(2+) channels and sarcoplasmic reticulum (SR) Ca(2+) -ATPase (SERCA2a), may contribute to the cardiac dysfunction induced by obesity. The purpose of this study was to investigate whether myocardial dysfunction in obese rats is related to decreased activity and/or expression of L-type Ca(2+) channels and SERCA2a. Male 30-day-old Wistar rats were fed standard (C) and alternately four palatable high-fat diets (Ob) for 15 weeks. Obesity was determined by adiposity index and comorbidities were evaluated. Myocardial function was evaluated in isolated left ventricle papillary muscles under basal conditions and after inotropic and lusitropic maneuvers. L-type Ca(2+) channels and SERCA2a activity were determined using specific blockers, while changes in the amount of channels were evaluated by Western blot analysis. Phospholamban (PLB) protein expression and the SERCA2a/PLB ratio were also determined. Compared with C rats, the Ob rats had increased body fat, adiposity index and several comorbidities. The Ob muscles developed similar baseline data, but myocardial responsiveness to post-rest contraction stimulus and increased extracellular Ca(2+) was compromised. The diltiazem promoted higher inhibition on developed tension in obese rats. In addition, there were no changes in the L-type Ca(2+) channel protein content and SERCA2a behavior (activity and expression). In conclusion, the myocardial dysfunction caused by obesity is related to L-type Ca(2+) channel activity impairment without significant changes in SERCA2a expression and function as well as L-type Ca(2+) protein levels. 相似文献