首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We hypothesized that the phosphodiesterase 5 inhibitor, sildenafil, and the guanosine cyclase stimulator, atrial natriuretic peptide (ANP), would act synergistically to increase cGMP levels and blunt hypoxic pulmonary hypertension in rats, because these compounds act via different mechanisms to increase the intracellular second messenger. Acute hypoxia: Adult Sprague-Dawley rats were gavaged with sildenafil (1 mg/ kg) or vehicle and exposed to acute hypoxia with and without ANP (10(-8)-10(-5) M ). Sildenafil decreased systemic blood pressure (103 +/- 10 vs. 87 +/- 6 mm Hg, P < 0.001) and blunted the hypoxia-induced increase in right ventricular systolic pressure (RVSP; percent increase 73.7% +/- 9.4% in sildenafil-treated rats vs. 117.2% +/- 21.1% in vehicle-treated rats, P = 0.03). Also, ANP and sildenafil had synergistic effects on blunting the hypoxia-induced increase in RVSP (P < 0.001) and on rising plasma cGMP levels (P < 0.05). Chronic hypoxia: Other rats were exposed to prolonged hypoxia (3 weeks, 0.5 atm) after subcutaneous implantation of a sustained-release pellet containing lower (2.5 mg), or higher (25 mg) doses of sildenafil, or placebo. Higher-dose, but not lower-dose sildenafil blunted the chronic hypoxia-induced increase in RVSP (P = 0.006). RVSP and plasma sildenafil levels were inversely correlated in hypoxic rats (r(2) = 0.68, P = 0.044). Lung cGMP levels were increased by both chronic hypoxia and sildenafil, with the greatest increase achieved by the combination. Plasma and right ventricular (RV) cGMP levels were increased by hypoxia, but sildenafil had no effect. RV hypertrophy and pulmonary artery muscularization were also unaffected by sildenafil. In conclusion, sildenafil and ANP have synergistic effects on the blunting of hypoxia-induced pulmonary vasoconstriction. During chronic hypoxia, sildenafil normalizes RVSP, but in the doses used, sildenafil has no effect on RV hypertrophy or pulmonary vascular remodeling.  相似文献   

2.
We investigatedthe atrial (ANP) and brain natriuretic peptides (BNP), catecholamines,heart rate, and blood pressure responses to graded upright maximalcycling exercise of eight matched healthy subjects andcardiac-denervated heart transplant recipients (HTR). Baseline heart rate and diastolic blood pressure, together with ANP(15.2 ± 3.7 vs. 4.4 ± 0.8 pmol/l;P < 0.01) and BNP (14.3 ± 2.6 vs. 7.4 ± 0.6 pmol/l; P < 0.01), were elevated in HTR, but catecholamine levels were similarin both groups. Peak exercise O2uptake and heart rate were lower in HTR. Exercise-inducedmaximal ANP increase was similar in both groups (167 ± 34 vs. 216 ± 47%). Enhanced BNP increase was significant only in HTR (37 ± 8 vs. 16 ± 8%; P < 0.05).Similar norepinephrine but lower peak epinephrine levels were observedin HTR. ANP and heart rate changes from rest to 75% peak exercise werenegatively correlated (r = 0.76, P < 0.05),and BNP increase was correlated with left ventricular mass index(r = 0.83, P < 0.01) after hearttransplantation. Although ANP increase was notexaggerated, these data support the idea that the chronotropiclimitation secondary to sinus node denervation might stimulate ANPrelease during early exercise in HTR. Furthermore, the BNPresponse to maximal exercise, which is related to the left ventricularmass index of HTR, is enhanced after heart transplantation.

  相似文献   

3.
We tested the hypotheses that hypoxic exposure is associated with exacerbated pulmonary hypertension and right ventricular (RV) enlargement, reduced atrial natriuretic peptide (ANP) clearance receptor (NPR-C) expression, and enhanced B-type natriuretic peptide (BNP) expression in the absence of ANP. Male wild-type [ANP(+/+)], heterozygous [ANP(+/-)], and homozygous [ANP(-/-)] mice were studied after a 5-wk hypoxic exposure (10% O(2)). Hypoxia increased RV ANP mRNA and plasma ANP levels only in ANP(+/+) and ANP(+/-) mice. Hypoxia-induced increases in RV pressure were significantly greater in ANP(-/-) than in ANP(+/+) or ANP(+/-) mice (104 +/- 17 vs. 45 +/- 10 and 63 +/- 7%, respectively) as were increases in RV mass (38 +/- 4 vs. 26 +/- 5 and 29 +/- 4%, respectively). NPR-C mRNA levels were greatly reduced in the kidney, lung, and brain by hypoxia in all three genotypes. RV BNP mRNA and lung and kidney cGMP levels were increased in hypoxic mice. These findings indicate that disrupted ANP expression worsens hypoxic pulmonary hypertension and RV enlargement but does not alter hypoxia-induced decreases in NPR-C and suggest that compensatory increases in BNP expression occur in the absence of ANP.  相似文献   

4.
Mathew, Rajamma, Elizabeth S. Gloster, T. Sundararajan, Carl I. Thompson, Guillermo A. Zeballos, andMichael H. Gewitz. Role of inhibition of nitric oxide productionin monocrotaline-induced pulmonary hypertension. J. Appl. Physiol. 82(5): 1493-1498, 1997.Monocrotaline (MCT)-induced pulmonary hypertension (PH) isassociated with impaired endothelium-dependent nitric oxide(NO)-mediated relaxation. To examine the role of NO in PH,Sprague-Dawley rats were given a single subcutaneous injection ofnormal saline [control (C)], 80 mg/kg MCT, or the same doseof MCT and a continuous subcutaneous infusion of 2 mg · kg1 · day1of molsidomine, a NO prodrug (MCT+MD). Two weeks later, plasma NO3 levels, pulmonary arterialpressure (Ppa), ratio of right-to-left ventricular weights (RV/LV) toassess right ventricular hypertrophy, and pulmonary histology wereevaluated. The plasma NO3 level inthe MCT group was reduced to 9.2 ± 1.5 µM(n = 12) vs. C level of 17.7 ± 1.8 µM (n = 8; P < 0.02). In the MCT+MD group,plasma NO3 level was 12.3 ± 2.0 µM (n = 8). Ppa and RV/LV in theMCT group were increased compared with C [Ppa, 34 ± 3.4 mmHg(n = 6) vs. 19 ± 0.8 mmHg(n = 8) and 0.41 ± 0.01 (n = 9) vs. 0.25 ± 0.008 (n = 8), respectively;P < 0.001]. In the MCT+MDgroup, Ppa and RV/LV were not different when compared with C [19 ± 0.5 mmHg (n = 5) and 0.27 ± 0.01 (n = 9), respectively;P < 0.001 vs. MCT]. Medial wall thickness of lung vessels in the MCT group was increased comparedwith C [31 ± 1.5% (n = 9)vs. 13 ± 0.66% (n = 9);P < 0.001], and MDpartially prevented MCT-induced pulmonary vascular remodeling [22 ± 1.2% (n = 11);P < 0.001 vs. MCT and C].These results indicate that a defect in the availability of bioactive NO may play an important role in the pathogenesis of MCT-induced PH.

  相似文献   

5.
Albert, T. S. E., V. L. Tucker, and E. M. Renkin.Atrial natriuretic peptide levels and plasma volume contraction in acute alveolar hypoxia. J. Appl.Physiol. 82(1): 102-110, 1997.Arterial oxygentensions (PaO2), atrial natriureticpeptide (ANP) concentrations, and circulating plasma volumes (PV) weremeasured in anesthetized rats ventilated with room air or 15, 10, or8% O2(n = 5-7). After 10 min ofventilation, PaO2 values were 80 ± 3, 46 ± 1, 32 ± 1, and 35 ± 1 Torrand plasma immunoreactive ANP (irANP) levels were 211 ± 29, 229 ± 28, 911 ± 205, and 4,374 ± 961 pg/ml, respectively. AtPaO2 40 Torr, irANP responses weremore closely related to inspiredO2(P = 0.014) than toPaO2 (P = 0.168). PV was 36.3 ± 0.5 µl/g in controls but 8.5 and9.9% lower (P  0.05) for10 and 8% O2, respectively.Proportional increases in hematocrit were observed in animals withreduced PV; however, plasma protein concentrations were not differentfrom control. Between 10 and 50 min of hypoxia, small increases (+40%)in irANP occurred in 15% O2;however, there was no further change in PV, hematocrit, plasma protein,or irANP levels in the lower O2groups. Urine output tended to fall during hypoxia but was notsignificantly different among groups. These findings are compatiblewith a role for ANP in mediating PV contraction during acute alveolarhypoxia.

  相似文献   

6.
Potassium depletion (KD) is a very common clinical entity often associated with adverse cardiac effects. KD is generally considered to reduce muscular Na-K-ATPase density and secondarily reduce K uptake capacity. In KD rats we evaluated myocardial Na-K-ATPase density, ion content, and myocardial K reuptake. KD for 2 wk reduced plasma K to 1.8 ± 0.1 vs. 3.5 ± 0.2 mM in controls (P < 0.01, n = 7), myocardial K to 80 ± 1 vs. 86 ± 1 µmol/g wet wt (P < 0.05, n = 7), increased Mg, and induced a tendency to increased Na. Myocardial Na-K-ATPase 2-subunit abundance was reduced by 30%, whereas increases in 1- and K-dependent pNPPase activity of 24% (n = 6) and 13% (n = 6), respectively, were seen. This indicates an overall upregulation of the myocardial Na-K pump pool. KD rats tolerated a higher intravenous KCl dose. KCl infusion until animals died increased myocardial K by 34% in KD rats and 18% in controls (P < 0.05, n = 6 for both) but did not induce different net K uptake rates between groups. However, clamping plasma K at 5.5 mM by KCl infusion caused a higher net K uptake rate in KD rats (0.22 ± 0.04 vs. 0.10 ± 0.03 µmol·g wet wt–1·min–1; P < 0.05, n = 8). In conclusion, a minor KD-induced decrease in myocardial K increased Na-K pump density and in vivo increased K tolerance and net myocardial K uptake rate during K repletion. Thus the heart is protected from major K losses and accumulates considerable amounts of K during exposure to high plasma K. This is of clinical interest, because a therapeutically induced rise in myocardial K may affect contractility and impulse generation-propagation and may attenuate increased myocardial Na, the hallmark of heart failure. Na-K-ATPase; ion homeostasis; heart failure; iatrogenic potassium depletion  相似文献   

7.
Bundgaard, Henning, Thomas A. Schmidt, Jim S. Larsen, andKeld Kjeldsen. K+supplementation increases muscle[Na+-K+-ATPase]and improves extrarenal K+homeostasis in rats. J. Appl. Physiol.82(4): 1136-1144, 1997.Effects ofK+ supplementation (~200 mmolKCl/100 g chow) on plasma K+,K+ content, andNa+-K+-adeonsinetriphosphatase(ATPase) concentration([Na+-K+-ATPase])in skeletal muscles as well as on extrarenalK+ clearance were evaluated inrats. After 2 days of K+supplementation, hyperkalemia prevailed(K+-supplemented vs.weight-matched control animals) [5.1 ± 0.2 (SE) vs. 3.2 ± 0.1 mmol/l, P < 0.05, n = 5-6], and after 4 daysa significant increase in K+content was observed in gastrocnemius muscle (104 ± 2 vs. 97 ± 1 µmol/g wet wt, P < 0.05, n = 5-6). After 7 days ofK+ supplementation, a significantincrease in[3H]ouabain bindingsite concentration (344 ± 5 vs. 239 ± 8 pmol/g wet wt,P < 0.05, n = 4) was observed in gastrocnemiusmuscle. After 2 wk, increases in plasmaK+,K+ content, and[3H]ouabain bindingsite concentration in gastrocnemius muscle amounted to 40, 8, and 68%(P < 0.05) above values observed inweight-matched control animals, respectively. The latter change wasconfirmed by K+-dependentp-nitrophenyl phosphatase activitymeasurements. Fasting for 1 day reduced plasmaK+ andK+ content in gastrocnemius musclein rats that had been K+supplemented for 2 wk by 3.1 ± 0.3 mmol/l(P < 0.05, n = 5) and 15 ± 2 µmol/g wet wt(P < 0.05, n = 5), respectively. After induction of anesthesia, arterial plasma K+was measured during intravenous KCl infusion (0.75 mmolKCl · 100 g bodywt1 · h1).The K+-supplemented fasted groupdemonstrated a 42% (P < 0.05) lower plasma K+ rise, associated with asignificantly higher increase inK+ content in gastrocnemius muscleof 7 µmol/g wet wt (P < 0.05, n = 5) compared with their controlanimals. In conclusion, K+supplementation increases plasmaK+,K+ content, and[Na+-K+-ATPase]in skeletal muscles and improves extrarenalK+ clearance capacity.

  相似文献   

8.
Peták, Ferenc, Zoltán Hantos, ÁgnesAdamicza, Tibor Asztalos, and Peter D. Sly. Methacholine-inducedbronchoconstriction in rats: effects of intravenous vs. aerosoldelivery. J. Appl. Physiol. 82(5):1479-1487, 1997.To determine the predominant site of action ofmethacholine (MCh) on lung mechanics, two groups of open-chestSprague-Dawley rats were studied. Five rats were measured duringintravenous infusion of MCh (iv group), with doubling of concentrationsfrom 1 to 16 µg · kg1 · min1.Seven rats were measured after aerosol administration of MCh with dosesdoubled from 1 to 16 mg/ml (ae group). Pulmonary input impedance(ZL) between 0.5 and 21 Hz wasdetermined by using a wave-tube technique. A model containing airwayresistance (Raw) and inertance (Iaw) and parenchymal damping (G) andelastance (H) was fitted to theZL spectra. In the iv group, MChinduced dose-dependent increases in Raw [peak response 270 ± 9 (SE) % of the control level; P < 0.05] and in G (340 ± 150%;P < 0.05), with no increase inIaw (30 ± 59%) orH (111 ± 9%). In the ae group, thedose-dependent increases in Raw (191 ± 14%;P < 0.05) andG (385 ± 35%; P < 0.05) were associated with a significant increase in H (202 ± 8%; P < 0.05).Measurements with different resident gases [air vs. neon-oxygenmixture, as suggested (K. R. Lutchen, Z. Hantos, F. Peták,Á. Adamicza, and B. Suki. J. Appl.Physiol. 80: 1841-1849, 1996)] in thecontrol and constricted states in another group of rats suggested thatthe entire increase seen in G during the ivchallenge was due to ventilation inhomogeneity, whereas the aechallenge might also have involved real tissue contractions viaselective stimulation of the muscarinic receptors.

  相似文献   

9.
The hemodynamic response to reductions insystemic oxygen availability serves to redistribute blood flow andmaintain vital organ function. The efficacy of this response depends onthe degree to which hypoxia alters the function of the vascular tissuesthemselves. In this study we have evaluated these effects in ratsexposed to 10% oxygen for 0 (control), 12, and 48 h and for 48 hfollowed by 12 h of normoxic recovery. In aortic segments from eachgroup, the cumulative concentration response relationships wereconstructed for phenylephrine and KCl. Maximum tension generated duringactivation by these agents was reduced after both 12 and 48 h ofhypoxic exposure. After 48 h of hypoxia, the maximum tension duringactivation by phenylephrine was 0.46 ± 0.04 vs. 1.31 ± 0.09 g/mg dry wt for the control group (P < 0.05 for difference). The maximum tension during activation by KClwas similarly affected (0.32 ± 0.02 vs. 0.98 ± 0.06 g/mg dry wt, 48 h of hypoxia vs. control,respectively; P < 0.05 fordifference). Exposure to hypoxia did not alter the EC50 for either agent. Twelvehours of normoxic recovery did not fully restore contractility after 48 h of hypoxia. In aortic rings from control rats, endothelial removalenhanced contraction, whereas, in rings from rats exposed to hypoxia,removal of the endothelium was associated with a decrease in maximumtension. Prolonged exposure to hypoxia results in impairment ofsystemic arterial smooth muscle contractility. This is partlycompensated by the release of vasoconstricting substances from theendothelium.

  相似文献   

10.
Hill, Nicholas S., Rod R. Warburton, Linda Pietras, andJames R. Klinger. Nonspecific endothelin-receptor antagonist blunts monocrotaline-induced pulmonary hypertension in rats.J. Appl. Physiol. 83(4):1209-1215, 1997.Endothelin-1 (ET-1), a potent vasoactive andmitogenic peptide, has been implicated in the pathogenesis ofseveral forms of pulmonary hypertension. We hypothesized thatnonspecific blockade of ET receptors would blunt the development ofmonocrotaline (MCT)-induced pulmonary hypertension in rats. Asingle dose of the nonspecific ET blocker bosentan (100 mg/kg) given tointact rats by gavage completely blocked the pulmonary vasoconstrictoractions of Big ET-1 and partially blunted hypoxic pulmonaryvasoconstriction. After 3 wk, MCT-injected (105 mg/kg sc) rats gavagedonce daily with bosentan (200 mg/kg) had lower right ventricular (RV)systolic pressure (RVSP), RV-to-body weight (RV/BW) andRV-to-left ventricular (LV) plus septal (S) weight [RV/(LV+S)] ratiosand less percent medial thickness of small pulmonary arteries thancontrol MCT-injected rats. Lower dose bosentan (100 mg/kg) had noeffect on these parameters after MCT or saline injection. Bosentanraised plasma ET-1 levels but had no effect on lung ET-1 levels.Bosentan (200 mg/kg) also had no effect on wet-to-dry lung weightratios 6 days after MCT injection. When given during the last 10 days,but not the first 11 days of a 3-wk period after MCT injection,bosentan reduced RV/(LV+S) compared with MCT-injected controls. Weconclude that ET-1 contributes to the pathogenesis of MCT-inducedpulmonary hypertension and acts mainly during the later inflammatoryrather than the acute injury phase after injection.

  相似文献   

11.
Turnage, Richard H., John L. LaNoue, Kevin M. Kadesky, YanMeng, and Stuart I. Myers. ThromboxaneA2 mediates increased pulmonarymicrovascular permeability after intestinal reperfusion. J. Appl. Physiol. 82(2): 592-598, 1997.This study examines the hypothesis that intestinal reperfusion(IR)-induced pulmonary thromboxane A2(TxA2) release increases localmicrovascular permeability and induces pulmonary vasoconstriction.Sprague-Dawley rats underwent 120 min of intestinal ischemia and 60 minof IR. Sham-operated animals (Sham) served as controls. After IR orSham, the pulmonary vessels were cannulated, and the lungs wereperfused in vitro with Krebs buffer. Microvascular permeability wasquantitated by determining the filtration coefficient(Kf),and pulmonary arterial (Ppa), venous (Ppv), and capillary (Ppc)pressures were measured to calculate vascular resistance (Rt). Afterbaseline measurements, imidazole(TxA2 synthase inhibitor) orSQ-29,548 (TxA2-receptorantagonist) was added to the perfusate; thenKf, Ppa, Ppv, and Ppc were again measured. TheKfof lungs from IR animals was four times greater than that of Sham(P = 0.001), and Rt was 63% greaterin the injured group (P = 0.01). Pc of IR lungs was twice that of controls (5.4 ± 1.0 vs. 2.83 ± 0.3 mmHg, IR vs. Sham, respectively; P < 0.05). Imidazole or SQ-29,548 returnedKfto baseline measurements (P < 0.05)and reduced Rt by 23 and 17%, respectively(P < 0.05). IR-induced increases in Pc were only slightly reduced by 500 µg/ml imidazole (14%;P = 0.05) but unaffected by lowerdoses of imidazole (5 or 50 µg/ml) or SQ-29,548. These data suggestthat IR-induced pulmonary edema is caused by both increasedmicrovascular permeability and increased hydrostatic pressure and thatthese changes are due, at least in part, to the ongoing release ofTxA2.

  相似文献   

12.
Hybertson, Brooks M., Roger P. Kitlowski, Eric K. Jepson,and John E. Repine. Supercritical fluid-aerosolized vitamin Epretreatment decreases leak in isolated oxidant-perfused rat lungs.J. Appl. Physiol. 84(1): 263-268, 1998.We hypothesized that direct pulmonary administration ofsupercritical fluid-aerosolized (SFA) vitamin E would decrease acuteoxidative lung injury. We previously reported that rapid expansion ofsupercritical CO2 formedrespirable particles of vitamin E and that administering SFA vitamin Eto rats increased lung vitamin E levels and decreased neutrophil-mediated lung leak. In the present investigation, we foundthat pretreatment with SFA vitamin E protected isolated rat lungsagainst the oxidant-induced lung leak caused by perfusion with xanthineoxidase (XO) and purine, an enzyme system that generates superoxideanion () and hydrogenperoxide. SFA vitamin E droplets were 0.7-3 µm in diameter, andinhalation of the airborne droplets for 30 min deposited ~55 µg ofvitamin E in rat lungs. Isolated rat lungs perfused with XO (0.02 U/ml) and purine (10 mM) gained more weight (1.75 ± 0.12 g,n = 8), retained more Ficoll(11.5 ± 1.2 mg/left lung,n = 7), and accumulated more Ficoll intheir lung lavages (700 ± 146 µg/ml,n = 8) than control lungs [0.25 ± 0.06 g (n = 10), 6.2 ± 1.2 mg/left lung (n = 9), and 141 ± 31 µg/ml (n = 8), respectively,P < 0.05]. In contrast,isolated lungs from rats that were pretreated with SFA vitamin E haddecreased (P < 0.05) weight gains(0.32 ± 0.06 g, n = 7), Ficollretentions (3.3 ± 1.1 mg/left lung,n = 7), and lung lavage Ficollconcentrations (91 ± 26 µg/ml,n = 6) after perfusion with XO andpurine compared with isolated lungs from control rats perfused with XOand purine. This protective effect was not observed in rat lungs givensham treatments (CO2 alone orvitamin E acetate aerosolized with supercriticalCO2). Our results suggest thatdirect pulmonary supplementation of vitamin E decreases susceptibilityto vascular leakage caused by XO-derived oxidants.

  相似文献   

13.
Methods are described for isolating smooth muscle cells from thetracheae of adult and neonatal sheep and measuring the single-cell shortening velocity. Isolated cells were elongated,Ca2+ tolerant, and contractedrapidly and substantially when exposed to cholinergic agonists, KCl,serotonin, or caffeine. Adult cells were longer and widerthan preterm cells. Mean cell length in 1.6 mMCaCl2 was 194 ± 57 (SD) µm(n = 66) for adult cells and 93 ± 32 µm (n = 20) for preterm cells(P < 0.05). Mean cell width at thewidest point of the adult cells was 8.2 ± 1.8 µm(n = 66) and 5.2 ± 1.5 µm(n = 20) for preterm cells(P < 0.05). Cells were loaded into aperfusion dish maintained at 35°C and exposed to agonists, andcontractions were videotaped. Cell lengths were measured from 30 videoframes and plotted as a function of time. Nonlinear fitting of celllength to an exponential model gave shortening velocities faster thanmost of those reported for airway smooth muscle tissues. For a sampleof 10 adult and 10 preterm cells stimulated with 100 µM carbachol,mean (± SD) shortening velocity of the preterm cells was notdifferent from that of the adult cells (0.64 ± 0.30 vs. 0.54 ± 0.27 s1, respectively), butpreterm cells shortened more than adult cells (68 ± 12 vs. 55 ± 11% of starting length, respectively;P < 0.05). The preparative andanalytic methods described here are widely applicable to other smoothmuscles and will allow contraction to be studied quantitatively at thesingle-cell level.

  相似文献   

14.
Endogenous vasopressin does not mediate hypoxia-induced anapyrexia in rats   总被引:1,自引:0,他引:1  
The present study was designed to test the hypothesis thatarginine vasopressin (AVP) mediates hypoxia-induced anapyrexia. Therectal temperature of awake, unrestrained rats was measured before andafter hypoxic hypoxia, AVP-blocker injection, or a combination of thetwo. Control animals received saline injections of the same volume.Basal body temperature was 36.52 ± 0.29°C. We observed asignificant (P < 0.05) reduction inbody temperature of 1.45 ± 0.33°C after hypoxia (7% inspiredO2), whereas systemic andcentral injections of AVP V1- andAVP V2-receptor blockers caused nochange in body temperature. When intravenous injection of AVP blockerswas combined with hypoxia, we observed a reduction in body temperatureof 1.49 ± 0.41°C(V1-receptor blocker) and of 1.30 ± 0.13°C (V2-receptorblocker), similar to that obtained by application of hypoxia only.Similar results were observed when the blockers were injectedintracerebroventricularly. The data indicate that endogenous AVP doesnot mediate hypoxia-induced anapyrexia in rats.  相似文献   

15.
To evaluatewhether changes in extracellular glutamate (Glu) levels in the centralnervous system could explain the depressed hypoxic ventilatory responsein hypothermic neonates, 12 anesthetized, paralyzed, and mechanicallyventilated piglets <7 days old were studied. The Glu levels in thenucleus tractus solitarius obtained by microdialysis, minute phrenicoutput (MPO), O2 consumption, arterial blood pressure, heart rate, and arterial blood gases weremeasured in room air and during 15 min of isocapnic hypoxia (inspiredO2 fraction = 0.10) at braintemperatures of 39.0 ± 0.5°C [normothermia (NT)]and 35.0 ± 0.5°C [hypothermia (HT)]. During NT, MPO increased significantly during hypoxia and remained above baseline. However, during HT, there was a marked decrease in MPOduring hypoxia (NT vs. HT, P < 0.03). Glu levels increased significantly in hypoxia during NT;however, this increase was eliminated during HT(P < 0.02). A significant linearcorrelation was observed between the changes in MPO and Glu levelsduring hypoxia (r = 0.61, P < 0.0001). Changes in pH, arterialPO2, O2 consumption, arterial bloodpressure, and heart rate during hypoxia were not different between theNT and HT groups. These results suggest that the depressed ventilatoryresponse to hypoxia observed during HT is centrally mediated and inpart related to a decrease in Glu concentration in the nucleus tractussolitarius.

  相似文献   

16.
Videbaek, Regitze, and Peter Norsk. Atrialdistension in humans during microgravity induced by parabolic flights.J. Appl. Physiol. 83(6):1862-1866, 1997.The hypothesis was tested that human cardiacfilling pressures increase and the left atrium is distended during 20-speriods of microgravity (µG) created by parabolic flights, comparedwith values of the 1-G supine position. Left atrial diameter(n = 8, echocardiography) increasedsignificantly during µG from 26.8 ± 1.2 to 30.4 ± 0.7 mm(P < 0.05). Simultaneously, centralvenous pressure (CVP; n = 6, transducer-tipped catheter) decreased from 5.8 ± 1.5 to 4.5 ± 1.1 mmHg (P < 0.05), and esophageal pressure (EP; n = 6) decreased from1.5 ± 1.6 to 4.1 ± 1.7 mmHg (P < 0.05). Thus transmural CVP(TCVP = CVP  EP; n = 4)increased during µG from 6.1 ± 3.2 to 10.4 ± 2.7 mmHg(P < 0.05). It is concluded thatshort periods of µG during parabolic flights induce an increase inTCVP and left atrial diameter in humans, compared with the resultsobtained in the 1-G horizontal supine position, despite a decrease inCVP.

  相似文献   

17.
Role of endogenous female hormones in hypoxic chemosensitivity   总被引:5,自引:0,他引:5  
Tatsumi, Koichiro, Cheryl K. Pickett, Christopher R. Jacoby,John V. Weil, and Lorna G. Moore. Role of endogenous female hormones in hypoxic chemosensitivity. J. Appl.Physiol. 83(5): 1706-1710, 1997.Effective alveolar ventilation and hypoxicventilatory response (HVR) are higher in females than in males andafter endogenous or exogenous elevation of progesterone and estrogen.The contribution of normal physiological levels of ovarian hormones toresting ventilation and ventilatory control and whether their site(s) of action is central and/or peripheral are unclear.Accordingly, we examined resting ventilation, HVR, and hypercapnicventilatory responses (HCVR) before and 3 wk after ovariectomy in fivefemale cats. We also compared carotid sinus nerve (CSN) and centralnervous system translation responses to hypoxia in 6 ovariectomized and 24 intact female animals. Ovariectomy decreased serum progesterone butdid not change resting ventilation, end-tidalPCO2, or HCVR (allP = NS). Ovariectomy reduced theHVR shape parameter A in the awake(38.9 ± 5.5 and 21.2 ± 3.0 before and after ovariectomy, respectively, P < 0.05) andanesthetized conditions. The CSN response to hypoxia was lower inovariectomized than in intact animals (shape parameterA = 22.6 ± 2.5 and 54.3 ± 3.5 in ovariectomized and intact animals, respectively,P < 0.05), but central nervous system translation of CSN activity into ventilation was similar inovariectomized and intact animals. We concluded that ovariectomy decreased ventilatory and CSN responsiveness to hypoxia, suggesting that the presence of physiological levels of ovarian hormones influences hypoxic chemosensitivity by acting primarily at peripheral sites.

  相似文献   

18.
In this study, we test the hypothesisthat in newborn hearts (as in adults) hypoxia and acidificationstimulate increased Na+ uptake, in part via pH-regulatoryNa+/H+ exchange. Resulting increases inintracellular Na+ (Nai) alter the force drivingthe Na+/Ca2+ exchanger and lead to increasedintracellular Ca2+. NMR spectroscopy measuredNai and cytosolic Ca2+ concentration([Ca2+]i) and pH (pHi) inisolated, Langendorff-perfused 4- to 7-day-old rabbit hearts. AfterNa+/K+ ATPase inhibition, hypoxic hearts gainedNa+, whereas normoxic controls did not [19 ± 3.4 to139 ± 14.6 vs. 22 ± 1.9 to 22 ± 2.5 (SE) meq/kg drywt, respectively]. In normoxic hearts acidified using theNH4Cl prepulse, pHi fell rapidly and recovered,whereas Nai rose from 31 ± 18.2 to 117.7 ± 20.5 meq/kg dry wt. Both protocols caused increases in [Ca]i;however, [Ca]i increased less in newborn hearts than inadults (P < 0.05). Increases in Nai and[Ca]i were inhibited by theNa+/H+ exchange inhibitormethylisobutylamiloride (MIA, 40 µM; P < 0.05), aswell as by increasing perfusate osmolarity (+30 mosM) immediately before and during hypoxia (P < 0.05). The data supportthe hypothesis that in newborn hearts, like adults, increases inNai and [Ca]i during hypoxia and afternormoxic acidification are in large part the result of increased uptakevia Na+/H+ and Na+/Ca2+exchange, respectively. However, for similar hypoxia and acidification protocols, this increase in [Ca]i is less in newborn thanadult hearts.

  相似文献   

19.
Jungersten, Lennart, Anneli Ambring, Björn Wall, andÅke Wennmalm. Both physical fitness and acute exerciseregulate nitric oxide formation in healthy humans. J. Appl. Physiol. 82(3): 760-764, 1997.We analyzednitrate, a major stable end product of nitric oxide (NO) metabolism invivo in plasma and urine from groups of healthy subjects with differentworking capacities. Resting plasma nitrate was higher in athleticsubjects than in nonathletic controls [45 ± 2 vs. 34 ± 2 (SE) µM; P < 0.01]. In other subjects, both the resting plasma nitrate level(r = 0.53; P < 0.01) and the urinary excretionof nitrate at rest (r = 0.46; P < 0.01) correlated to thesubjects' peak work rates, as determined by bicycle ergometry. Twohours of physical exercise elevated plasma nitrate by 18 ± 4 (P < 0.01) and 16 ± 6%(P < 0.01), respectively, in athletes and nonathletes, compared with resting nitrate before exercise. We conclude that physical fitness and formation of NO at restare positively linked to each other. Furthermore, a single session ofexercise elicits an acute elevation of NO formation. The observedpositive relation between physical exercise and NO formation may helpto explain the beneficial effects of physical exercise oncardiovascular health.

  相似文献   

20.
Abnormal centralregulation of upper airway muscles may contribute to thepathophysiology of the childhood obstructive sleep apnea syndrome(OSAS). We hypothesized that this was secondary to global abnormalitiesof ventilatory control during sleep. We therefore compared the responseto chemical stimuli during sleep between prepubertal children with OSASand controls. Patients with OSAS aroused at a higherPCO2 (58 ± 2 vs. 60 ± 5 Torr,P < 0.05); those with the highestapnea index had the highest arousal threshold(r = 0.52, P < 0.05). The hypercapnic arousal threshold decreased after treatment. For all subjects, hypoxia was apoor stimulus to arousal, whereas hypercapnia and, particularly, hypoxic hypercapnia were potent stimuli to arousal. Hypercapnia resulted in decreased airway obstruction in OSAS. Ventilatory responseswere similar between patients with OSAS and controls; however, thesample size was small. We conclude that children with OSAS haveslightly blunted arousal responses to hypercapnia. However, the overallventilatory and arousal responses are normal in children with OSAS,indicating that a global deficit in respiratory drive is not a majorfactor in the etiology of childhood OSAS. Nevertheless, subtleabnormalities in ventilatory control may exist.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号