首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cai S  Singh BR 《Biochemistry》2004,43(9):2541-2549
Fourier transform infrared spectroscopy is becoming an increasingly important method to study protein secondary structure. The amide I region of the protein infrared spectrum is the widely used region, whereas the amide III region has been comparatively neglected due to its low signal. Since there is no water interference in the amide III region and, more importantly, the different secondary structures of proteins have more resolved differences in their amide III spectra, it is quite promising to use the amide III region to determine protein secondary structure. In our current study, a partial least squares (PLS) method was used to predict protein secondary structures from the protein IR spectra. The IR spectra of aqueous solutions of 16 different proteins of known crystal structure have been recorded, and the amide I, the amide III, and the amide I combined with the amide III region of these proteins were used to set up the calibration set for the PLS algorithm. Our results correlate quite well with the data from X-ray studies, and the prediction from the amide III region is better than that from amide I or combined amide I and amide III regions.  相似文献   

2.
A Fourier transform infrared spectrometer has been interfaced with a surface balance and a new external reflection infrared sampling accessory, which permits the acquisition of spectra from protein monolayers in situ at the air/water interface. The accessory, a sample shuttle that permits the collection of spectra in alternating fashion from sample and background troughs, reduces interference from water vapor rotation-vibration bands in the amide I and amide II regions of protein spectra (1520-1690 cm-1) by nearly an order of magnitude. Residual interference from water vapor absorbance ranges from 50 to 200 microabsorbance units. The performance of the device is demonstrated through spectra of synthetic peptides designed to adopt alpha-helical, antiparallel beta-sheet, mixed beta-sheet/beta-turn, and unordered conformations at the air/water interface. The extent of exchange on the surface can be monitored from the relative intensities of the amide II and amide I modes. Hydrogen-deuterium exchange may lower the amide I frequency by as much as 11-12 cm-1 for helical secondary structures. This shifts the vibrational mode into a region normally associated with unordered structures and leads to uncertainties in the application of algorithms commonly used for determination of secondary structure from amide I contours of proteins in D2O solution.  相似文献   

3.
Raman spectroscopy was employed to examine the secondary structure of the cAMP receptor protein (CRP). Spectra were obtained over the range 400-1900 cm-1 from solutions of CRP and from CRP-cAMP cocrystals. The spectra of CRP dissolved in 30 mM sodium phosphate and 0.15 M NaCl buffered at either pH 6 or pH 8 or dissolved in 0.15-0.2 M NaCl at protein concentrations of 5, 15, and 30 mg/mL were examined. Estimates of the secondary structure distribution were made by analyzing the amide I region of the spectra (1630-1700 cm-1). CRP secondary structure distributions were essentially the same in either pH and at all protein concentrations examined. The amide I analyses indicated a structural distribution of 44% alpha-helix, 28% beta-strand, 18% turn, and 10% undefined for CRP in solution. Raman spectra of CRP-cAMP cocrystals differed from the spectra of CRP in solution. Some differences were assigned to interfering background bands, whereas other spectral differences were attributed to changes in CRP structure. Differences in the amide III region and in the intensity at 935 cm-1 were consistent with alterations in secondary structure. Analysis of the amide I region of the CRP-cAMP cocrystal spectrum indicated a secondary structure distribution of 37% alpha-helix, 33% beta-strand, 17% turn, and 12% undefined. This result is in agreement with a published secondary structure distribution derived from X-ray analysis of CRP-cAMP cocrystals (37% alpha-helix and 36% beta-strand).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We present an improved technique for estimating protein secondary structure content from amide I and amide III band infrared spectra. This technique combines the superposition of reference spectra of pure secondary structure elements with simultaneous aromatic side chain, water vapor, and solvent background subtraction. Previous attempts to generate structural reference spectra from a basis set of reference protein spectra have had limited success because of inaccuracies arising from sequential background subtractions and spectral normalization, arbitrary spectral band truncation, and attempted resolution of spectroscopically degenerate structure classes. We eliminated these inaccuracies by defining a single mathematical function for protein spectra, permitting all subtractions, normalizations, and amide band deconvolution steps to be performed simultaneously using a single optimization algorithm. This approach circumvents many of the problems associated with the sequential nature of previous methods, especially with regard to removing the subjectivity involved in each processing step. A key element of this technique was the calculation of reference spectra for ordered helix, unordered helix, sheet, turns, and unordered structures from a basis set of spectra of well-characterized proteins. Structural reference spectra were generated in the amide I and amide III bands, both of which have been shown to be sensitive to protein secondary structure content. We accurately account for overlaps between amide and nonamide regions and allow different structure types to have different extinction coefficients. The agreement between our structure estimates, for proteins both inside and outside the basis set, and the corresponding determinations from X-ray crystallography is good.  相似文献   

5.
The infrared amide bands are sensitive to the conformation of the polypeptide backbone of proteins. Since the backbone of proteins folds in complex spatial arrangements, the amide bands of these proteins result from the superimposition of vibration modes corresponding to the different types of structural motifs (alpha helices, beta sheets, etc.). Initially, band deconvolution techniques were applied to determine the secondary structure of proteins, i.e., the abundance of each structural motif in the polypeptide chain was directly related to the area of the suitable deconvolved vibration modes under the amide I band (1700-1600 cm(-1)). Recently, several multivariate regression methods have been used to predict the secondary structure of proteins as an alternative to the previous methods. They are based on establishing a relationship between a matrix of infrared protein spectra and another that includes their secondary structure, expressed as the fractions of the different structural motifs, determined from X-ray analysis. In this study, we investigated the use of the local regression method interval partial least-squares (iPLS) to seek improvements to the full-spectrum PLS and other regression methods. The local character of iPLS avoids the use of spectral regions that can introduce noise or that can be irrelevant for prediction and focuses on finding specific spectral ranges related to each secondary structure motif in all the proteins. This study has been applied to a representative protein data set with infrared spectra covering a large wavenumber range, including amides I-III bands (1700-1200 cm(-1)). iPLS has revealed new structural mode assignments related to less explored amide bands and has offered a satisfactory predictive ability using a small amount of selected specific spectral information.  相似文献   

6.
One of the most versatile methods for monitoring the structure of proteins, either in solution or in the solid state, is Fourier transform infrared spectroscopy. Also known as mid-range infrared, which covers the frequency range from 4000 to 400 cm-1, this wavelength region includes bands that arise from three conformationally sensitive vibrations within the peptide backbone (amide I, II and III). Of these vibrations, amide I is the most widely used and can provide information on secondary structure composition and structural stability. One of the advantages of infrared spectroscopy is that it can be used with proteins that are either in solution or in the solid state. The use of infrared to monitor protein structure and stability is summarized herein. In addition, specialized infrared methods are presented, such as techniques for the study of membrane proteins and oriented samples. In addition, there is a growing body of literature on the use of infrared to follow reaction kinetics and ligand binding in proteins, as well as a number of infrared studies on protein dynamics. Finally, the potential for using near-infrared spectroscopy to study protein structure is introduced.  相似文献   

7.
Mnemiopsin 2 from a luminous ctenophore with two functional EF-hand motifs is a calcium-regulated photoprotein that is responsible for emitting a bright blue bioluminescence upon reacting with coelenterazine and calcium ions in Mnemiopsis leidyi. Synchrotron radiation-based Fourier-transform infrared (SR-FTIR) spectroscopy was applied to analyze the distribution of secondary structures, the conformational changes resulting from calcium binding and the structural stabilities in wild-type mnemiopsin 2, as well as its mutant type that possesses three EF-hand motifs. The distribution of secondary structures of these proteins indicates that mutant apo-mnemiopsin 2 has a more stable secondary structure than the wild-type. Analyses of the SR-FTIR spectra revealed that the conformational changes at the secondary structures of both mnemiopsin 2 depend on the calcium concentrations, such that the most noticeable changes in structures of wild-type and mutant mnemiopsin 2 occur at optimum concentrations 6 and 2 mM of calcium chloride, respectively. The addition of calcium to both proteins increases the proportions of their secondary structures in the amide I and II regions. The major amide I bands in the IR spectra of both mnemiopsin‑calcium complexes shift towards smaller wavenumbers, whereas their main amide II bands are identified at larger wavenumbers.  相似文献   

8.
One of the most versatile methods for monitoring the structure of proteins, either in solution or in the solid state, is Fourier transform infrared spectroscopy. Also known as mid-range infrared, which covers the frequency range from 4000 to 400 cm(-1), this wavelength region includes bands that arise from three conformationally sensitive vibrations within the peptide backbone (amide I, II and III). Of these vibrations, amide I is the most widely used and can provide information on secondary structure composition and structural stability. One of the advantages of infrared spectroscopy is that it can be used with proteins that are either in solution or in the solid state. The use of infrared to monitor protein structure and stability is summarized herein. In addition, specialized infrared methods are presented, such as techniques for the study of membrane proteins and oriented samples. In addition, there is a growing body of literature on the use of infrared to follow reaction kinetics and ligand binding in proteins, as well as a number of infrared studies on protein dynamics. Finally, the potential for using near-infrared spectroscopy to study protein structure is introduced.  相似文献   

9.
The redox-dependent changes in secondary structure of cytochromes c from horse, cow, and dog hearts in water at 20 degrees C have been determined by amide I infrared spectroscopy. Second derivative amide I spectra were obtained by use of a procedure that includes a convenient method for the effective subtraction of the spectrum of water vapor in the system. The band at 1657 cm-1 representing the helix structure was unaffected by a change in redox state whereas changes in bands due to turns at 1680, 1672, and 1666 cm-1, unordered structure at 1650 cm-1, and beta-structures at 1632 and 1627 cm-1 occurred. About one-fourth of the beta-extended chain spectral region and one-fifth of the beta-turn region (involving a total of approximately 9-13 residues) were sensitive to the oxidation state of heme iron. No significant changes in the secondary structure of either the reduced or oxidized protein due to changes in ionic strength were detected. The localized structural rearrangements triggered by the changes in oxidation state of heme iron are consistent with differences in the binding of heme iron to a histidine imidazole nitrogen and a methionine sulfur atom from the beta-extended chain. The demonstrated ability to obtain highly reproducible second derivative amide I infrared spectra confirms the unique utility of such spectral measurements for localization of subtle changes in secondary structure within a protein, especially for changes among the multiple turns and beta-structures.  相似文献   

10.
Raman spectra, in the frequency region of the protein vibrations, of intact single muscle fibers of the giant barnacle are presented. Strong bands at 1521 and 1156 cm-1 in the spectra are attributed to resonance-enhanced Raman bands of membrane-bound beta-carotene. Many bands of the myofibrillar proteins are also observed, and at least three spectral features confirm that these proteins adopt a predominantly alpha-helical structure: (1) the amide I band at 1648 cm-1, (2) the weak scattering in the amide III region, and (3) a strong skeletal C-C stretching band at 939 cm-1. Deuterated fibers have also been examined in order to find the exact shape of the amide III band. The presence in the fibers of paramyosin, which is only found in catch muscles, is also apparent from the spectra.  相似文献   

11.
Ye M  Zhang QL  Li H  Weng YX  Wang WC  Qiu XG 《Biophysical journal》2007,93(8):2756-2766
The infrared (IR) absorption of the amide I band for the loop structure may overlap with that of the alpha-helices, which can lead to the misassignment of the protein secondary structures. A resolution-enhanced Fourier transform infrared (FTIR) spectroscopic method and temperature-jump (T-jump) time-resolved IR absorbance difference spectra were used to identify one specific loop absorption from the helical IR absorption bands of horse heart cytochrome c in D2O at a pD around 7.0. This small loop consists of residues 70-85 with Met-80 binding to the heme Fe(III). The FTIR spectra in amide I' region indicate that the loop and the helical absorption bands overlap at 1653 cm(-1) at room temperature. Thermal titration of the amide I' intensity at 1653 cm(-1) reveals that a transition in loop structural change occurs at lower temperature (Tm=45 degrees C), well before the global unfolding of the secondary structure (Tm approximately 82 degrees C). This loop structural change is assigned as being triggered by the Met-80 deligation from the heme Fe(III). T-jump time-resolved IR absorbance difference spectra reveal that a T-jump from 25 degrees C to 35 degrees C breaks the Fe-S bond between the Met-80 and the iron reversibly, which leads to a loop (1653 cm(-1), overlap with the helical absorption) to random coil (1645 cm(-1)) transition. The observed unfolding rate constant interpreted as the intrachain diffusion rate for this 16 residue loop was approximately 3.6x10(6) s(-1).  相似文献   

12.
Ultraviolet resonance Raman spectra of cytochrome c conformational states   总被引:2,自引:0,他引:2  
R A Copeland  T G Spiro 《Biochemistry》1985,24(18):4960-4968
Ultraviolet resonance Raman (UV RR) spectra are reported for ferricytochrome c from tuna and horse heart at pH 1.6, 7, 10, and 13, representing distinct conformational states of the protein (states II, III, IV, and V, respectively). The spectra were obtained with pulsed laser excitation at 200 and 218 nm, via H2 Raman shifting the fourth harmonic output of a pulsed YAG laser. At these deep UV wavelengths, strong enhancement is observed for vibrational modes associated with tryptophan, tyrosine, and phenylalanine side chains and with the amide groups of the polypeptide backbone. The amide I peak frequency is consistent with a dominant contribution from alpha-helical regions, although a broad high-frequency tail reflects a variety of unordered conformations. The peak frequency is 12 cm-1 higher for cytochrome c from tuna than from horse, suggesting a less tightly wound structure, which is consistent with the lower denaturation temperature previously reported for the tuna protein. The amide I peak broadens when native protein (state III) is converted to the low- or high-pH forms (states II and IV), reflecting some disordering of the polypeptide chain, but the peak frequencies are unshifted, establishing that the alpha-helical segments are not completely unfolded in these states. Raising the pH to 13 (state V), however, does produce a frequency upshift, reflecting helix unfolding. The amide II and III frequencies are likewise consistent with a dominant alpha-helix contribution in the native proteins; they gain intensity, and amide III is shifted to a lower frequency, in states II and IV, consistent with partial disordering.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The CD spectra of human carbonic anhydrase I and II and bovine carbonic anhydrase III were recorded and analyzed. The 3D structures of these isoenzymes are known, showing very similar secondary structure and polypeptide-chain fold. The tryptophan content, however, differs between the isoenzymes, i.e., isoenzymes I, II, and III possess 6, 7, and 8 tryptophans, respectively. All of the tryptophans except the additional tryptophans in isoenzymes II and III, i.e., W245 and W47, are conserved. Despite the fact that X-ray structure determinations showed that the isoenzymes had highly similar secondary structure, the contents of alpha-helix and beta-sheet structure differed considerably when using different CD algorithms for estimation of the fractions of various secondary structural elements. This shows that aromatic amino acids also interfere in the wavelength region (far-UV) used to calculate the amount of secondary structure. Such interference is especially problematic when analyzing proteins like carbonic anhydrase, which consist mainly of beta-structure that gives rise to weak ellipticity bands, compared to the bands arising from alpha-helical structure.  相似文献   

14.
Fourier transform infrared (FTIR) spectroscopy has emerged as a powerful tool to guide the development of stable lyophilized protein formulations by providing information on the structure of proteins in amorphous solids. The underlying assumption is that IR spectral changes in the amide I and III region upon protein dehydration are caused by protein structural changes. However, it has been claimed that amide I IR spectral changes could be the result of water removal per se. Here, we investigated whether such claims hold true. The structure of horseradish peroxidase (HRP) and poly(ethylene glycol)-modified HRP (HRP-PEG) has been investigated under various conditions (in aqueous solution, the amorphous dehydrated state, and dissolved/suspended in toluene and benzene) by UV-visible (UV-Vis), FTIR, and resonance Raman spectroscopy. The resonance Raman and UV-Vis spectra of dehydrated HRP-PEG dissolved in neat toluene or benzene were very similar to that of HRP in aqueous buffer, and thus the heme environment (heme iron spin, coordination, and redox state) was essentially the same under both conditions. Therefore, the three-dimensional structure of HRP-PEG dissolved in benzene and toluene was similar to that in aqueous solution. The amide I IR spectra of HRP-PEG in aqueous buffer and of dehydrated HRP-PEG dissolved in neat benzene and toluene were also very similar, and the secondary structure compositions (percentages of alpha-helices and beta-sheets) were within the standard error the same. These results are irreconcilable with recent claims that water removal per se could cause substantial amide I IR spectral changes (M. van de Weert, P.I. Haris, W.E. Hennink, and D.J. Crommelin. 2001. Anal. Biochem. 297:160-169). On the contrary, amide I IR spectral changes upon protein dehydration are caused by perturbations in the secondary structure.  相似文献   

15.
R A Copeland  T G Spiro 《Biochemistry》1987,26(8):2134-2139
Raman intensities obtained with UV laser excitation at 223, 218, 204, 200, and 192 nm are reported for the amide I, II, III, and II' bands of random-coil polylysine. The excitation profiles show enhancement via the pi-pi electronic transition, at approximately 190 nm. Enhancement for amide I is weak, however, and most of the intensity can be accounted for by preresonance with a deeper UV transition at approximately 165 nm. The amide II' band dominates the spectrum in D2O, consistent with the suggestion that the main distortion coordinate in the pi-pi excited state is the stretching of the C-N peptide bond. Amide II intensities with 200- and 192-nm excitation are reported for several proteins. The previously reported negative linear correlation with alpha-helix content (due to Raman hypochromism in the alpha-helices) is found not to apply to proteins with high beta-sheet content when the excitation wavelength is 200 nm. Much higher intensities are seen for these proteins and are attributed to a red shift of the pi-pi absorption for the beta-structure. A linear correlation with alpha-helix content is found for excitation of 192 nm, which corresponds to an isosbestic point of the beta-sheet and random-coil absorption bands. Characteristic amide II Raman cross sections are derived for alpha-helical, beta-sheet, and random-coil elements and are used to determine secondary structure for alpha 1- and beta-purothionin, by use of amide II intensities with 200- and 192-nm excitation. The results are in good agreement with a previous determination based on amide I band deconvolution in off-resonance Raman spectra.  相似文献   

16.
F Dousseau  M Pézolet 《Biochemistry》1990,29(37):8771-8779
A method for estimating protein secondary structure from infrared spectra has been developed. The infrared spectra of H2O solutions of 13 proteins of known crystal structure have been recorded and corrected for the spectral contribution of water in the amide I and II region by using the algorithm of Dousseau et al. [Dousseau, F., Therrien, M., & Pézolet, M. (1989) Appl. Spectrosc. 43, 538-542]. This calibration set of proteins has been analyzed by using either a classical least-squares (CLS) method or the partial least-squares (PLS) method. The pure-structure spectra calculated by the classical least-squares method are in good agreement with spectra of poly(L-lysine) in the alpha-helix, beta-sheet, and undefined conformations. The results show that the best agreement between the secondary structure determined by X-ray crystallography and that predicted by infrared spectroscopy is obtained when both the amide I and II bands are used to generate the calibration set, when the PLS method is used, and when it is assumed that the secondary structure of proteins is composed of only four types of structure: ordered and disordered alpha-helices, beta-sheet, and undefined conformation. Attempts to include turns in the secondary structure estimation have led to a loss of accuracy. The standard deviation of the difference between X-ray and infrared secondary structure estimates with this method is 4.8% for the alpha-helix, 3.7% for the beta-sheet, and 5.1% for the undefined structure, whereas the regression coefficients are 0.95, 0.96, and 0.56, respectively. The spectra of the calibration proteins were also recorded in 2H2O solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Pevsner A  Diem M 《Biopolymers》2003,72(4):282-289
The IR absorption spectra of protein, DNA, RNA, and phospholipid films as a function of the water content are reported. We find that the hydration of protein films affects the peak intensity of amide I and amide II bands and the shape of the amide III band. For nucleic acids, the symmetric (nu(S) PO(2) (-)) and antisymmetric (nu(AS) PO(2) (-)) stretching vibrations of the phosphate linkage are the most affected by hydration, because both intensity changes and frequency shifts are observed. The spectra of phospholipid films are also sensitive to hydration, and they exhibit changes in the peak intensities and frequencies of both nu(S) PO(2) (-) and nu(AS) PO(2) (-) vibrations. We interpret the spectral differences between water saturated and dried films both in terms of structural changes and the change in the local dielectric in the vicinity of the polar and solvent exposed groups. In addition, we observe that the most significant change in the absorption intensity, frequency, and shape of the water sensitive vibrations occurs at high hydration levels. The principal component analysis of hydration results and the kinetics of water removal from sample films are also discussed. In addition, protein spectra acquired using film and KBr pellet sampling techniques are compared.  相似文献   

18.
Fourier-transform infrared spectroscopy is a valuable method for the study of protein conformation in solution primarily because of the sensitivity to conformation of the amide I band (1700-1620 cm-1) which arises from the backbone C = O stretching vibration. Combined with resolution-enhancement techniques such as derivative spectroscopy and self-deconvolution, plus the application of iterative curve-fitting techniques, this method provides a wealth of information concerning protein secondary structure. Further extraction of conformational information from the amide I band is dependent upon discerning the correlations between specific conformational types and component bands in the amide I region. In this paper, we report spectra-structure correlations derived from conformational perturbations in bovine trypsin which arise from autolytic processing, zymogen activation, and active-site inhibition. IR spectra were collected for the single-chain (beta-trypsin) and once-cleaved, double-chain (alpha-trypsin) forms as well as at various times during the course of autolysis and also for zymogen, trypsinogen, and beta-trypsin inhibited with diisopropyl fluorophosphate. Spectral differences among the various molecular forms were interpreted in light of previous biochemical studies of autolysis and the known three-dimensional structures of the zymogen, the active enzyme, and the DIP-inhibited form. Our spectroscopic results from these proteins in D2O imply that certain loop structures may absorb in the region of 1655 cm-1. Previously, amide I' infrared bands near 1655 cm-1 have been interpreted as arising solely from alpha-helices. These new data suggest caution in interpreting this band. We have also proposed that regions of protein molecules which are known from crystallographic experiments to be disordered absorb in the 1645 cm-1 region and that type II beta-turns absorb in the region of 1672-1685 cm-1. Our results also corroborate assignment of the low-frequency component of extended strands to bands below 1636 cm-1. Additionally, the results of multiple measurements have allowed us to estimate the variability present in component band areas calculated by curve fitting the resolution-enhanced IR spectra. We estimate that this approach to data analysis and interpretation is sensitive to changes of 0.01 unit or less in the relative integrated intensities of component bands in spectra whose peaks are well resolved.  相似文献   

19.
Maeda Y  Fujihara M  Ikeda I 《Biopolymers》2002,67(2):107-112
The structure of horseradish peroxidase (HRP) in phosphate buffered saline (PBS)/dimethyl sulfoxide (DMSO) mixed solvents at different compositions is investigated by IR, electronic absorption, and fluorescence spectroscopies. The fluorescence spectra and the amide I spectra of ferric HRP [HRP(Fe3+)] show that overall structural changes are relatively small up to 60% DMSO. Although the amide I band of HRP(Fe3+) shows a gradual change in the secondary structure and a decrease in the contents of a helices, its fluorescence spectra indicate that the distance between the heme and Trp173 is almost constant. In contrast, the changes in the positions of the Soret bands for resting HRP(Fe3+) and catalytic intermediates (compounds I and II) and the IR spectra at the C-O stretching vibration mode of carbonyl ferrous HRP [HRP(Fe2+)-CO] show that the microenvironment in the distal heme pocket is altered, even with low DMSO contents. The large reduction of the catalytic activity of HRP even at low DMSO contents can be attributed to the structural transition in the distal heme pocket. In PBS/DMSO mixtures containing more than 70 vol % DMSO, HRP undergoes large structural changes, including a large loss of the secondary structure and a dissociation of the heme from the apoprotein. The presence of the components of the amide I band that can be assigned to strongly hydrogen bonding amide C=O groups at 1616 and 1684 cm(-1) suggests that the denatured HRP may aggregate through strong hydrogen bonds.  相似文献   

20.
D D Schlereth  W M?ntele 《Biochemistry》1992,31(33):7494-7502
Using suitable surface-modified electrodes, we have developed an electrochemical system which allows a reversible heterogeneous electron transfer at high (approximately 5 mM) protein concentrations between the electrode and myoglobin or hemoglobin in an optically transparent thin-layer electrochemical (OTTLE) cell. With this cell, which is transparent from 190 to 10,000 nm, we have been able to obtain electrochemically-induced Fourier-transform infrared (FTIR) difference spectra of both proteins. Clean protein difference spectra between the redox states were obtained because of the absence of redox mediators in the protein solution. The reduced-minus-oxidized difference spectra are characteristic for each protein and arise from redox-sensitive heme modes as well as from polypeptide backbone and amino acid side chain conformational changes concomitant with the redox transition. The amplitudes of the difference bands, however, are small as compared to the total amide I absorbance, and correspond to approximately 1% (4%) of the reduced-minus-oxidized difference absorbance in the Soret region of myoglobin (hemoglobin) and to less than 0.1% of the total amide I absorbance. Some of the bands in the 1560-1490-cm-1 spectral regions could be assigned to side-chain vibrational modes of aromatic amino acids. In the conformationally sensitive spectral region between 1680 and 1630 cm-1, bands could be attributed to peptide C = O modes because of their small (2-5 cm-1) shift in 2H2O. A similar assignment could be achieved for amide II modes because of their strong shift in 2H2O.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号