首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Etkin A  Egner T  Peraza DM  Kandel ER  Hirsch J 《Neuron》2006,51(6):871-882
Effective mental functioning requires that cognition be protected from emotional conflict due to interference by task-irrelevant emotionally salient stimuli. The neural mechanisms by which the brain detects and resolves emotional conflict are still largely unknown, however. Drawing on the classic Stroop conflict task, we developed a protocol that allowed us to dissociate the generation and monitoring of emotional conflict from its resolution. Using functional magnetic resonance imaging (fMRI), we find that activity in the amygdala and dorsomedial and dorsolateral prefrontal cortices reflects the amount of emotional conflict. By contrast, the resolution of emotional conflict is associated with activation of the rostral anterior cingulate cortex. Activation of the rostral cingulate is predicted by the amount of previous-trial conflict-related neural activity and is accompanied by a simultaneous and correlated reduction of amygdalar activity. These data suggest that emotional conflict is resolved through top-down inhibition of amygdalar activity by the rostral cingulate cortex.  相似文献   

2.
Memory performance in everyday life is often far from perfect and therefore needs to be monitored and controlled by metamemory evaluations, such as judgments of learning (JOLs). JOLs support monitoring for goal-directed modification of learning. Behavioral studies suggested retrieval processes as providing a basis for JOLs. Previous functional imaging research on JOLs found a dissociation between processes underlying memory prediction, located in the medial prefrontal cortex (mPFC), and actual encoding success, located in the medial temporal lobe. However, JOL-specific neural correlates could not be identified unequivocally, since JOLs were given simultaneously with encoding. Here, we aimed to identify the neurocognitive basis of JOLs, i.e., the cognitive processes and neural correlates of JOL, separate from initial encoding. Using functional magnetic resonance imaging (fMRI), we implemented a face-name paired associative design. In general, we found that actual memory success was associated with increased brain activation of the hippocampi bilaterally, whereas predicted memory success was accompanied by increased activation in mPFC, orbital frontal and anterior cingulate cortices. Masking brain activation during predicted memory success with activation during retrieval success revealed BOLD increases of the mPFC. Our findings indicate that JOLs actually incorporate retrieval processes.  相似文献   

3.
Age-related changes in autobiographical memory (AM) recall are characterized by a decline in episodic details, while semantic aspects are spared. This deleterious effect is supposed to be mediated by an inefficient recruitment of executive processes during AM retrieval. To date, contrasting evidence has been reported on the neural underpinning of this decline, and none of the previous studies has directly compared the episodic and semantic aspects of AM in elderly. We asked 20 young and 17 older participants to recall specific and general autobiographical events (i.e., episodic and semantic AM) elicited by personalized cues while recording their brain activity by means of fMRI. At the behavioral level, we confirmed that the richness of episodic AM retrieval is specifically impoverished in aging and that this decline is related to the reduction of executive functions. At the neural level, in both age groups, we showed the recruitment of a large network during episodic AM retrieval encompassing prefrontal, cortical midline and posterior regions, and medial temporal structures, including the hippocampus. This network was very similar, but less extended, during semantic AM retrieval. Nevertheless, a greater activity was evidenced in the dorsal anterior cingulate cortex (dACC) during episodic, compared to semantic AM retrieval in young participants, and a reversed pattern in the elderly. Moreover, activity in dACC during episodic AM retrieval was correlated with inhibition and richness of memories in both groups. Our findings shed light on the direct link between episodic AM retrieval, executive control, and their decline in aging, proposing a possible neuronal signature. They also suggest that increased activity in dACC during semantic AM retrieval in the elderly could be seen as a compensatory mechanism underpinning successful AM performance observed in aging. These results are discussed in the framework of recently proposed models of neural reorganization in aging.  相似文献   

4.
Anterior/posterior long axis specialization is thought to underlie the organization of the hippocampus. However it remains unclear whether antagonistic mechanisms differentially modulate processing of spatial information within the hippocampus. We used fMRI and a virtual reality 3D paradigm to study encoding and retrieval of spatial memory during active visuospatial navigation, requiring positional encoding and retrieval of object landmarks during the path. Both encoding and retrieval elicited BOLD activation of the posterior most portion of hippocampus, while concurrent deactivations (recently shown to reflect decreases in neural responses) were found in the most anterior regions. Encoding elicited stronger activity in the posterior right than the left hippocampus. The former structure also showed significantly stronger activity for allocentric vs. egocentric processing during retrieval. The anterior vs. posterior pattern mimics, from a functional point, although at much distinct temporal scales, the previous anatomical findings in London taxi drivers, whereby posterior enlargement was found at the cost of an anterior decrease, and the mirror symmetric findings observed in blind people, in whom the right anterior hippocampus was found to be larger, at the cost of a smaller posterior hippocampus, as compared with sighted people. In sum, we found a functional dichotomy whereby the anterior/posterior hippocampus shows antagonistic processing patterns for spatial encoding and retrieval of 3D spatial information. To our knowledge, this is the first study reporting such a dynamical pattern in a functional study, which suggests that differential modulation of neural responses within the human hippocampus reflects distinct roles in spatial memory processing.  相似文献   

5.
According to recent findings activation of anterior cingulate cortex (ACC) is related to detecting cognitive conflict. This conflict related activation elicits autonomic responses which can be assessed by psychophysiological measures such as heart rate variability calculated as beat to beat R-R intervals (RRI). Recent findings in neuroscience also suggest that cognitive conflict is related to specific nonlinear chaotic changes of the signal generated by neural systems. The present study used Stroop word-color test as an experimental approach to psychophysiological study of cognitive conflict in connection with RRI measurement, psychometric measurement of limbic irritability (LSCL-33), depression (BDI-II) and calculation of largest Lyapunov exponents in nonlinear data analysis of RRI time series. Significant correlation 0.61 between largest Lyapunov exponents and LSCL-33 found in this study indicate that a defect of neural inhibition during conflicting Stroop task is closely related to limbic irritability. Because limbic irritability is probably closely related to epileptiform abnormalities in the temporolimbic structures, this result might represent useful instrument for indication of anticonvulsant treatment in depressive patients who are resistant to antidepressant medication.  相似文献   

6.
W J Gardner 《Teratology》1980,22(2):229-238
This hypothesis is offered by a neurological surgeon interested in anomalies of the central nervous system. It is based on accumulating evidence indicating that some neural tube defects result not from failure of the tube to close but from its rupture after closure. The central nervous system, serving all organs, is the first to develop and its maldevelopment may cause damage to other emerging structures. The neural tube closes during the fourth week and is immediately distended by a proteinaceous neural tube fluid (NTF) secreted by its lining cells at a pressure four to five times that of the surrounding amniotic fluid. This NTF has been miscalled "cerebrospinal fluid." The choroid plexus does not begin to secrete true cerebrospinal fluid (CSF) until 2 weeks later. If oversecretion of NTF should occur during this 2-week interval, the resulting overexpansion of the neural tube may spread apart the developing somite, eventuating in a combination of anterior and posterior spina bifida that constitutes bilateral hemivertebrae. If the distending neural tube ruptures beneath intact cutaneous ectoderm, the escaping NTF will infiltrate mesoderm. The resulting dislocation of cells and their possible injury by the extraneous protein may damage the as yet unidentifiable anlagen of mesodermal organs. If neural tube overdistention splits the underlying notochord and damages primitive gut, anomalies of entodermal organs may result. The neuroenteric cyst is one such anomaly that the neurosurgeon is called upon to treat. He finds it accompanied by hemivertebrae and hydromyelia. A preliminary report on this hypothesis has been published (Gardner and Breuer, '80).  相似文献   

7.
H L Sive  K Hattori  H Weintraub 《Cell》1989,58(1):171-180
The cement gland is an ectodermal organ in the head of frog embryos, lying anterior to any neural tissue. As analyzed by specific RNA expression, cement gland, like neural tissue, was induced by the dorsal mesoderm. Interestingly, mesoderm with the highest cement gland-inducing potential lay posterior to the ectoderm fated to form this organ, indicating that its induction occurred at a distance from the inducer source. Cement gland induction first occurred during early gastrulation. However, most initially induced cells did not contribute to the mature cement gland, but instead formed part of the neural plate. This change in fate could be reconstituted in vitro. These results suggest that determination of part of the anteroposterior axis occurs progressively, where future neural ectoderm is first induced to a cement glandlike state. As gastrulation proceeds, further induction by mesoderm may override this state, which persists only in the extreme anterior of the embryo.  相似文献   

8.
9.
A metacognitive perspective is utilized to elucidate why it is so difficult to name common odors and what characterizes the subjective knowledge people have about their actual odor knowledge. Odor-naming failures are often accompanied by strong feelings of knowing (FOK) or feelings of imminent retrieval of what it is that smells. The paper's two experiments investigate FOK judgements and tip of the tongue (TOT) experiences for odor and person names. The data indicate that our inability to correctly name odors are typically not due to the often proposed uniquely poor association between odors and their proper names, but rather due to failures to identify the odors, that is, failures to know 'what it is'. It was also found that (i) TOT experiences are very unusual for odor names and more so than for person names; (ii) FOK judgements about odor names are significantly less predictive of later retrieval than equivalent judgements about names of persons; (iii) FOK judgements were highly correlated with the familiarity of the cue (odor or picture of famous person), rendering some support for the idea that FOK judgements are based on the perceived familiarity of the cue triggering the FOK; and (iv) the idea that FOK judgements are based on the amount of available information about the sought-for memory (accessibility theory) was also supported.  相似文献   

10.
Retrograde amnesia can occur after brain damage because this disrupts sites of storage, interrupts memory consolidation, or interferes with memory retrieval. While the retrieval failure account has been considered in several animal studies, recent work has focused mainly on memory consolidation, and the neural mechanisms responsible for reactivating memory from stored traces remain poorly understood. We now describe a new retrieval phenomenon in which rats' memory for a spatial location in a watermaze was first weakened by partial lesions of the hippocampus to a level at which it could not be detected. The animals were then reminded by the provision of incomplete and potentially misleading information—an escape platform in a novel location. Paradoxically, both incorrect and correct place information reactivated dormant memory traces equally, such that the previously trained spatial memory was now expressed. It was also established that the reminding procedure could not itself generate new learning in either the original environment, or in a new training situation. The key finding is the development of a protocol that definitively distinguishes reminding from new place learning and thereby reveals that a failure of memory during watermaze testing can arise, at least in part, from a disruption of memory retrieval.  相似文献   

11.
The anterior border of the neural plate, presumed to contain the prospective peripheral portion (roof) of the prospective telencephalon, emerges within a vaguely defined proneural ectodermal region. Fate maps carried out at HH4 in the chick reveal that this region still produces indistinctly neural, placodal and non-neural derivatives; it does not express neural markers. We examined how the definitive anterior border domain of the rostral forebrain becomes established and comes to display a neural molecular profile, whereas local non-neural derivatives become separated. The process, interpreted as a border sharpening mechanism via intercalatory cell movements, was studied using fate mapping, time-lapse microscopy and in situ hybridization. Separation of neural and non-neural domains proceeds along stages HH4-HH4+, is well advanced at HH5, and is accompanied by a novel dorsoventral intercalation, oriented orthogonal to the border, that distributes transitional cells into molecularly distinct neural and non-neural fields. Meanwhile, neuroectodermal Sox2 expression spreads peripherally from the neighbourhood of the node, reaching the nascent anterior border domain at HH5. We also show that concurrent signals from the endodermal layer are necessary to position and sharpen the neural border, and suggest that FGF8 might be a component of this signalling.  相似文献   

12.

Background

The psychodynamic theory of repression suggests that experiences which are related to internal conflicts become unconscious. Previous attempts to investigate repression experimentally were based on voluntary, intentional suppression of stimulus material. Unconscious repression of conflict-related material is arguably due to different processes, but has never been studied with neuroimaging methods.

Methods

We used functional magnetic resonance imaging (fMRI) in addition with skin conductance recordings during two free association paradigms to identify the neural mechanisms underlying forgetting of freely associated words according to repression theory.

Results

In the first experiment, free association to subsequently forgotten words was accompanied by increases in skin conductance responses (SCRs) and reaction times (RTs), indicating autonomic arousal, and by activation of the anterior cingulate cortex. These findings are consistent with the hypothesis that these associations were repressed because they elicited internal conflicts. To test this idea more directly, we conducted a second experiment in which participants freely associated to conflict-related sentences. Indeed, these associations were more likely to be forgotten than associations to not conflict-related sentences and were accompanied by increases in SCRs and RTs. Furthermore, we observed enhanced activation of the anterior cingulate cortex and deactivation of hippocampus and parahippocampal cortex during association to conflict-related sentences.

Conclusions

These two experiments demonstrate that high autonomic arousal during free association predicts subsequent memory failure, accompanied by increased activation of conflict-related and deactivation of memory-related brain regions. These results are consistent with the hypothesis that during repression, explicit memory systems are down-regulated by the anterior cingulate cortex.  相似文献   

13.
E Fride  Y Dan  M Gavish  M Weinstock 《Life sciences》1985,36(22):2103-2109
Maternal behavior (pup retrieval) was assessed in prenatally stressed rats during control and conflict situations (having to pass through an airstream) when their pups were 4-5 days old. There was no difference in pup retrieval between experimental and control rats under normal conditions but only 52% of the former retrieved their pups during the conflict situation, compared with 96% of the controls. Catecholamine (CA) levels in the arcuate nucleus (Arc.n.) and noradrenaline in the medial preoptic nucleus (POM) were not altered in prenatally stressed females, but their dopamine levels in the POM tended to be lower (p less than 0.1). The number of benzodiazepine (BZ) receptors in the hippocampi of prenatally stressed females was significantly lower than in controls. We conclude from these results that random prenatal noise and light stress increases the vulnerability to stressful situations in the female offspring during adulthood, which may be accompanied by altered CA function in the hypothalamus and BZ binding in the hippocampus.  相似文献   

14.
In this study, we investigated cardiomyocyte cytoarchitecture in a mouse model for dilated cardiomyopathy (DCM), the muscle LIM protein (MLP) knockout mouse and substantiated several observations in a second DCM model, the tropomodulin-overexpressing transgenic (TOT) mouse. Freshly isolated cardiomyocytes from both strains are characterized by a more irregular shape compared with wild-type cells. Alterations are observed at the intercalated disks, the specialized areas of mechanical coupling between cardiomyocytes, whereas the subcellular organization of contractile proteins in the sarcomeres of MLP knockout mice appears unchanged. Distinct parts of the intercalated disks are affected differently. Components from the adherens junctions are upregulated, desmosomal proteins are unchanged, and gap junction proteins are downregulated. In addition, the expression of N-RAP, a LIM domain- containing protein located at the intercalated disks, is upregulated in MLP knockout as well as in TOT mice. Detailed analysis of intercalated disk composition during postnatal development reveals that an upregulation of N-RAP expression might serve as an early marker for the development of DCM. Altered expression levels of cytoskeletal proteins (either the lack of MLP or an increased expression of tropomodulin) apparently lead to impaired function of the myofibrillar apparatus and to physiological stress that ultimately results in DCM and is accompanied by an altered appearance and composition of the intercalated disks.  相似文献   

15.
Imagining or simulating future events has been shown to activate the anterior right hippocampus (RHC) more than remembering past events does. One fundamental difference between simulation and memory is that imagining future scenarios requires a more extensive constructive process than remembering past experiences does. Indeed, studies in which this constructive element is reduced or eliminated by “pre-imagining” events in a prior session do not report differential RHC activity during simulation. In this fMRI study, we examined the effects of repeatedly simulating an event on neural activity. During scanning, participants imagined 60 future events; each event was simulated three times. Activation in the RHC showed a significant linear decrease across repetitions, as did other neural regions typically associated with simulation. Importantly, such decreases in activation could not be explained by non-specific linear time-dependent effects, with no reductions in activity evident for the control task across similar time intervals. Moreover, the anterior RHC exhibited significant functional connectivity with the whole-brain network during the first, but not second and third simulations of future events. There was also evidence of a linear increase in activity across repetitions in right ventral precuneus, right posterior cingulate and left anterior prefrontal cortex, which may reflect source recognition and retrieval of internally generated contextual details. Overall, our findings demonstrate that repeatedly imagining future events has a decremental effect on activation of the hippocampus and many other regions engaged by the initial construction of the simulation, possibly reflecting the decreasing novelty of simulations across repetitions, and therefore is an important consideration in the design of future studies examining simulation.  相似文献   

16.
Towards understanding of the cortical network underlying associative memory   总被引:1,自引:0,他引:1  
Declarative knowledge and experiences are represented in the association cortex and are recalled by reactivation of the neural representation. Electrophysiological experiments have revealed that associations between semantically linked visual objects are formed in neural representations in the temporal and limbic cortices. Memory traces are created by the reorganization of neural circuits. These regions are reactivated during retrieval and contribute to the contents of a memory. Two different types of retrieval signals are suggested as follows: automatic and active. One flows backward from the medial temporal lobe during the automatic retrieval process, whereas the other is conveyed as a top-down signal from the prefrontal cortex to the temporal cortex during the active retrieval process. By sending the top-down signal, the prefrontal cortex manipulates and organizes to-be-remembered information, devises strategies for retrieval and monitors the outcome. To further understand the neural mechanism of memory, the following two complementary views are needed: how the multiple cortical areas in the brain-wide network interact to orchestrate cognitive functions and how the properties of single neurons and their synaptic connections with neighbouring neurons combine to form local circuits and to exhibit the function of each cortical area. We will discuss some new methodological innovations that tackle these challenges.  相似文献   

17.
Changes in calcium (Ca2+) regulation contribute to loss of contractile function in dilated cardiomyopathy. Clinical treatment using beta-adrenergic receptor antagonists (beta-blockers) slows deterioration of cardiac function in end-stage heart failure patients; however, the effects of beta-blocker treatment on Ca2+ dynamics in the failing heart are unknown. To address this issue, tropomodulin-overexpressing transgenic (TOT) mice, which suffer from dilated cardiomyopathy, were treated with a nonselective beta-receptor blocker (5 mg. kg-1. day-1 propranolol) for 2 wk. Ca2+ dynamics in isolated cardiomyocytes of TOT mice significantly improved after treatment compared with untreated TOT mice. Frequency-dependent diastolic and Ca2+ transient amplitudes were returned to normal in propranolol-treated TOT mice and but not in untreated TOT mice. Ca2+ kinetic measurements of time to peak and time decay of the caffeine-induced Ca2+ transient to 50% relaxation were also normalized. Immunoblot analysis of untreated TOT heart samples showed a 3.6-fold reduction of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), whereas Na+/Ca2+ exchanger (NCX) concentrations were increased 2.6-fold relative to nontransgenic samples. Propranolol treatment of TOT mice reversed the alterations in SERCA and NCX protein levels but not potassium channels. Although restoration of Ca2+ dynamics occurred within 2 wk of beta-blockade treatment, evidence of functional improvement in cardiac contractility assessed by echocardiography took 10 wk to materialize. These results demonstrate that beta-adrenergic blockade restores Ca2+ dynamics and normalizes expression of Ca2+-handling proteins, eventually leading to improved hemodynamic function in cardiomyopathic hearts.  相似文献   

18.
The fate of the anterior neural ridge was studied by following the relative movements of simultaneous spot applications of DiI and DiO from stage 15 through stage 45. These dye movements were mapped onto the neuroepithelium of the developing brain whose shape was gleaned from whole-mount in situs to neural cell adhesion molecule and dissections of the developing nervous system. The result is a model of the cell movements that drive the morphogenesis of the forebrain. The midanterior ridge moves inside and drops down along the most anterior wall of the neural tube. It then pushes forward a bit, rotates ventrally during forebrain flexing, and gives rise to the chiasmatic ridge and anterior hypothalamus. The midanterior plate drops, forming the floor of the forebrain ventricle, and, keeping its place behind the ridge, it gives rise to the posterior hypothalamus or infundibulum. The midlateral anterior ridge slides into the lateral anterior wall of the neural tube and stretches laterally into the optic stalk and retina, and then rotates into a ventral position. The lateral anterior ridge converges to the most anterior part of the dorsal midline during neural tube closure, then rotates anteriorly, and gives rise to telencephalic structures. Whole-mount bromodeoxyuridine labeling at these stages showed that cell division is widespread and relatively uniform throughout the brain during the late neurula and early tailbud stages, but that during late tailbud stages cell division becomes restricted to specific proliferative zones. We conclude that the early morphogenesis of the brain is carried out largely by choreographed cell movements and that later morphogenesis depends on spatially restricted patterns of cell division. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Gottfried JA  Smith AP  Rugg MD  Dolan RJ 《Neuron》2004,42(4):687-695
Episodic memory is often imbued with multisensory richness, such that the recall of an event can be endowed with the sights, sounds, and smells of its prior occurrence. While hippocampus and related medial temporal structures are implicated in episodic memory retrieval, the participation of sensory-specific cortex in representing the qualities of an episode is less well established. We combined functional magnetic resonance imaging (fMRI) with a cross-modal paradigm, where objects were presented with odors during memory encoding. We then examined the effect of odor context on neural responses at retrieval when these same objects were presented alone. Primary olfactory (piriform) cortex, as well as anterior hippocampus, was activated during the successful retrieval of old (compared to new) objects. Our findings indicate that sensory features of the original engram are preserved in unimodal olfactory cortex. We suggest that reactivation of memory traces distributed across modality-specific brain areas underpins the sensory qualities of episodic memories.  相似文献   

20.
We sought to determine whether the normal inspiratory intrathoracic pressures (P(ITP)) produced during exercise contribute to the blunted cardiac output and locomotor limb blood flow responses observed in chronic heart failure (CHF). Five chronically instrumented dogs exercised on a treadmill at 2.5 mile/h at 5% grade while healthy or after the induction of tachycardia-induced CHF. We observed several key differences in the cardiovascular responses to changes in the inspiratory P(ITP) excursion between health and CHF; namely, 1) removing approximately 70% of the normally produced inspiratory P(ITP) excursion during exercise (with 15 cmH(2)O inspiratory positive pressure ventilation) significantly reduced stroke volume (SV) in healthy animals by 5 +/- 2% (P < 0.05) but significantly increased SV and cardiac output (Q(TOT)) in animals with CHF by 5 +/- 1% (P < 0.05); 2) doubling the magnitude of the inspiratory P(ITP) excursion had no effect on SV or Q(TOT) in healthy animals but significantly reduced steady-state Q(TOT) and SV in animals with CHF by -4 +/- 3% and -10 +/- 3%, respectively; 3) removing the majority of the normally produced inspiratory P(ITP) excursion had no effect on blood flow distribution in healthy animals but increased hindlimb blood flow (9 +/- 3%, P < 0.05) out of proportion to the increases in Q(TOT); and 4) the only similarity between healthy and CHF animals was that increasing the inspiratory P(ITP) excursion significantly reduced steady-state locomotor limb blood flow by 5 +/- 2% and 6 +/- 3%, respectively (P < 0.05 for both). We conclude that 1) the normally produced inspiratory P(ITP) excursions are required for a maximal SV response to submaximal exercise in healthy animals but detrimental to the SV and Q(TOT) responses to submaximal exercise in CHF, 2) the respiratory muscle ergoreflex tonically restrains locomotor limb blood flow during submaximal exercise in CHF, and 3) excessive inspiratory muscle work further compromises cardiac function and blood flow distribution in both health and CHF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号