共查询到20条相似文献,搜索用时 0 毫秒
1.
We analyzed the number and organization of collagen genes in the nematode Caenorhabditis elegans. Genomic Southern blot hybridization experiments and recombinant phage library screenings indicated that C. elegans has between 40 and 150 distinct collagen genes. A large number of recombinant phages containing collagen genes were isolated from C. elegans DNA libraries. Physical mapping studies indicated that most phage contained a single small collagen gene less than 3 kilobases in size. A few phage contained multiple collagen hybridizing regions and may contain a larger collagen gene or several tightly linked small collagen genes. No overlaps were observed between phages containing different collagen genes, implying that the genes are dispersed in the C. elegans genome. Consistent with the small size of most collagen genes, we found that the predominant class of collagen mRNA in C. elegans is 1.2 to 1.4 kilobases in length. Genomic Southern blot experiments under stringent hybridization conditions revealed considerable sequence diversity among collagen genes. Our data suggest that most collagen genes are unique or are present in only a few copies. 相似文献
2.
Collagen fibrils resemble smectic, liquid crystals in being highly ordered axially but relatively disordered laterally. In some connective tissues, x-ray diffraction reveals three-dimensional crystallinity in the molecular packing within fibrils, although the continued presence of diffuse scatter indicates significant underlying disorder. In addition, several observations from electron microscopy suggest that the molecular packing is organized concentrically about the fibril core. In the present work, theoretical equatorial x-ray diffraction patterns for a number of models for collagen molecular packing are calculated and compared with the experimental data from tendon fibrils. None of the models suggested previously can account for both the crystalline Bragg peaks and the underlying diffuse scatter. In addition, models in which any of the nearest-neighbor, intermolecular vectors are perpendicular to the radial direction are inconsistent with the observed radial orientation of the principal approximately 4 nm Bragg spacing. Both multiple-start spiral and concentric ring models are devised in which one of the nearest-neighbor vectors is along the radial direction. These models are consistent with the radial orientation of the approximately 4 nm spacing, and energy minimization results in radially oriented crystalline domains separated by disordered grain boundaries. Theoretical x-ray diffraction patterns show a combination of sharp Bragg peaks and underlying diffuse scatter. Close agreement with the observed equatorial diffraction pattern is obtained. The concentric ring model is consistent with the observation that the diameters of collagen fibrils are restricted to discrete values. 相似文献
3.
Fibroblasts in attached collagen matrices proliferate, whereas cells in floating or released matrices become quiescent. Cells in attached matrices had prominent actin stress fibers, indicating that they were under isometric tension, whereas stress fibers were absent from fibroblasts in floating or released matrices. Compared with cells in attached matrices, cells in floating or released matrices showed down-regulation of cyclin D1 and up-regulation of p27(Kip1) cyclin-dependent kinase inhibitor, and similar changes occurred after the ERK signaling pathway was blocked by UO126 in cells in attached matrices. A different pattern of changes in cell cycle regulatory proteins occurred, however, after serum deprivation or actin cytoskeletal depolymerization by latrunculin B, which did not prevent signaling through the ERK pathway. Therefore, cell quiescence in floating or released collagen matrices could be explained by decreased signaling through the ERK pathway, but these changes were not accounted for by the absence of isometric tension in the cells. 相似文献
4.
5.
Tritium-hydrogen exchange in insoluble collagen 总被引:1,自引:0,他引:1
6.
7.
8.
9.
10.
Interstitial and vascular type V collagen morphologic disorganization in usual interstitial pneumonia. 总被引:2,自引:0,他引:2
Edwin Roger Parra Walcy R Teodoro Ana Paula Pereira Velosa Cristiane Carla de Oliveira Natalino Hajime Yoshinari Vera Luiza Capelozzi 《The journal of histochemistry and cytochemistry》2006,54(12):1315-1325
Recent evidence suggests that type V collagen plays a role in organizing collagen fibrils, thus maintaining fibril size and spatial organization uniform. In this study we sought to characterize the importance of type V collagen morphological disorganization and to study the relationship between type V collagen, active remodeling of the pulmonary vascular/parenchyma (fibroblastic foci), and other collagen types in usual interstitial pneumonia (UIP). We examined type V collagen and several other collagens in 24 open lung biopsies with histological pattern of UIP from patients with idiopathic pulmonary fibrosis (IPF). We used immunofluorescence, morphometry, and three-dimensional reconstruction to evaluate the amount of collagen V and its interaction with the active remodeling progression in UIP, as well as types I and III collagen fibers. Active remodeling progression was significantly related to type V collagen density (p<0.05), showing a gradual and direct increase to minimal, moderate, and severe fibrosis degree in UIP and in the three different areas: normal, intervening, and mural-organizing fibrosis in UIP. Parenchymal changes were characterized by morphological disorganization of fibrillar collagen with diverse disarray and thickness when observed by three-dimensional reconstruction. We concluded that in the different temporal stages of UIP, vascular/parenchyma collagen type V is increased, in disarray, and is the most important predictor of survival. 相似文献
11.
Electron microscopic observations are presented on thin sections of excised chicken breast tendon following the introduction and diffusion of aqueous solutions of heavy metal salts. The dark banded regions of the collagen fibrils are seen to be in near-perfect register throughout the diameter of each fibril and, in many cases, to be continuous across the intervening ground substance. Clusters of uranyl ions form well-defined chains extending across the interfibrillar space between neighbouring fibrils, a distance of several hundred nanometres. It is suggested that the high degree of organization characteristic of collagen fibrils in tissue may perhaps be a property not only of the protein but also of the ground substance in which it is embedded, the fibres merely rendering visible a lattice pattern of their surroundings to which they have conformed. 相似文献
12.
G B Fields 《Journal of theoretical biology》1991,153(4):585-602
Mammalian collagenases cleave all three alpha chains of native, triple-helical types I, II, and III collagens after the Gly residue of the partial sequence Gly-[Ile or Leu]-[Ala or Leu] at a single locus approximately three-fourths from the amino terminus. There are an additional 31 sites in the triple-helical regions of types I, II, III, and IV collagens that contain the same partial sequence but are not hydrolyzed. A model has been developed to explain this remarkable specificity. The mammalian collagenase cleavage site in interstitial collagens is distinguished by: (a) a low side-chain molal volume-, high imino acid (greater than 33%)-containing region that is tightly triple-helical, consisting of four Gly-X-Y triplets preceding the cleavage site, (b) a low imino acid-containing (less than 17%), loosely triple-helical region consisting of four Gly-X-Y triplets following the cleavage site, and (c) a maximum of one charged residue for the entire 25 residue cleavage site region, which is always an Arg that follows the cleavage site in subsite P'5 or P'8. In addition, the high imino acid-containing region cannot have an imino acid adjacent to the cleaved Gly-[Ile or Leu] bond (i.e. in subsite P2). Careful scrutiny of the 31 non-cleaved sequences reveals that none of those sites shares all of the characteristics of the cleavage site. The criterion of this model thus explain both cleaved and non-cleaved sequences in the triple-helical regions of types I, II, III, and IV collagen, and are supported by all known experimental and theoretical results on collagen catabolism and structure. 相似文献
13.
I.F. Williams A.S. Craig D.A.D. Parry A.E. Goodship J. Shah I.A. Silver 《International journal of biological macromolecules》1985,7(5):275-282
Normal tendon comprises coaxially aligned bundles of crimped collagen fibres each of which possesses a fibrillar substructure. In acute traumatic injury this level of organization is disrupted and the mechanical function of the tendon impaired. During repair, a degree of recovery of the fibrillar structure takes place. In this tudy we have assessed the re-establishment of tendon organization after injury on the basis of the collagen fibril diameter distribution and the collagen crimp parameters. Crimp became undetectable following injury but one month later was present throughout the tissue. At this time the periodicity was greatly reduced by comparison with that of the normal tendon and normal values were not re-established within 14 months following injury. Collagen fibril diameters remained abnormally small over this same period of time. In particular, fibrils of diameters in excess of 100 nm, commonly found in normal and contralateral tendons, were totally absent from the observed distributions in the healing tendons. Such large diameter fibrils often account for as much as 50% of the total mass of collagen present in the uninjured tissue. Thus the mechanical properties of the healing tendon may remain significantly different from those of normal tendon for a minimum time of 14 months after injury. 相似文献
14.
Anna-Karin H. Hultg?rd-Ekwall Vincent Couloigner Kristofer Rubin Helge Rask-Andersen 《The journal of histochemistry and cytochemistry》2003,51(11):1491-1500
The human endolymphatic duct (ED) and sac of the inner ear have been suggested to control endolymph volume and pressure. However, the physiological mechanisms for these processes remain obscure. We investigated the organization of the periductal interstitial connective tissue cells and extracellular matrix (ECM) in four freshly fixed human EDs by transmission electron microscopy and by immunohistochemistry. The unique surgical material allowed a greatly improved structural and epitopic preservation of tissue. Periductal connective tissue cells formed frequent intercellular contacts and focally occurring electron-dense contacts to ECM structures, creating a complex tissue network. The connective tissue cells also formed contacts with the basal lamina of the ED epithelium and the bone matrix, connecting the ED with the surrounding bone of the vestibular aqueduct. The interstitial connective tissue cells were non-endothelial and non-smooth muscle fibroblastoid cells. We suggest that the ED tissue network forms a functional mechanical entity that takes part in the control of inner ear fluid pressure and endolymph resorption. 相似文献
15.
16.
Proteoglycan and collagen synthesis are correlated with actin organization in dedifferentiating chondrocytes. 总被引:6,自引:0,他引:6
The dedifferentiation of chondrocytes in culture is classically associated with a transition from a rounded to a spread morphology. However, the loss of chondroitin sulfate proteoglycan (CSPG) and type II collagen gene expression (markers of the differentiated chondrocyte) does not occur for all polygonal or fibroblast-like cells at the same stage of culture. Furthermore, it has been demonstrated that retinoic acid-dedifferentiated chondrocytes can reexpress type II collagen if treated by the microfilament disruptive drug dihydrocytochalasin B, without a return to the spherical shape. In the present study, we have investigated by fluorescent double-staining whether the synthesis of both CSPG and type II collagen by dedifferentiating chick chondrocytes in low density cultures is dependent on a type of actin organization. We report that the synthesis of CSPG and type II collagen synthesis is coincident with the presence of a faint microfibrillar actin architecture but is absent in chondrocytes showing well defined actin cables. This correlation was observed independently of the shapes exhibited by the cells. Moreover, type I collagen (marker of the dedifferentiated chondrocyte) is synthesized mainly in cells showing large actin cables. This study, performed in the absence of drugs, suggests that actin organization, rather than changes in cell shape, is involved in modulating the chondrogenic phenotype in vitro. 相似文献
17.
Eleni G Tzortzaki Anastassios V Koutsopoulos Konstantina I Dambaki Irini Lambiri Maria Plataki Marion K Gordon Donald R Gerecke Nikolaos M Siafakas 《The journal of histochemistry and cytochemistry》2006,54(6):693-700
Fibril-associated collagens with interrupted triple helices (FACITs) XII and XIV act as fibril organizers and assist in the maintenance of uniform fibril size. We investigated the spatial expression patterns of collagens XII and XIV in cryptogenic organizing pneumonia (COP)/organizing pneumonia (OP) and in idiopathic pulmonary fibrosis (IPF)/usual interstitial pneumonia (UIP) and compared them to normal human lung. Study subjects included 10 patients with COP/OP, 10 patients with IPF/UIP, and 8 control subjects. Immunostaining for collagens XII and XIV was carried out in paraffin-embedded human lung tissue sections. Picrosirius red histochemical staining for collagen I expression and electron microcopy to evaluate fibril diameter were also performed. In normal lung, collagens XII and XIV were expressed in perivascular and subpleural connective tissue. In COP/OP, both collagens showed intense staining in perivascular connective tissue, thickened alveolar septae, and subpleural areas. In IPF/UIP, XII and XIV were expressed in perivascular connective tissue, in areas of established fibrosis, and in areas of subpleural thickening. Only collagen XII was expressed in granulation tissue plugs in COP/OP and in fibroblastic foci in IPF/UIP. Collagen type I was overexpressed in fibrotic areas. Electron micrographs revealed obvious fibril diameter alteration and fusion in the same areas. FACITs XII and XIV are expressed in normal and fibrotic lung. Unlike collagen XIV, collagen XII was expressed in granulation tissue plugs in COP/OP and in fibroblast foci in IPF/UIP. This may suggest a possible distinct role for both collagens in the modulation of the extracellular matrix during the onset of fibrotic process. 相似文献
18.
Summary Immunofluorescence and electron microscopy were used to analyze the relationships between the organization of collagen fibrils in elasmoid scales, and the orientation of microtubules and actin microfilaments in the scleroblasts producing this collagenous stroma. Attention was focused on the basal plate of the scales because of the highly ordered three-dimensional arrangement of the collagen fibrils in superimposed plies forming an acellular plywood-like structure. The collagen fibrils are synthesized by the scleroblasts forming a monolayered pseudo-epithelium, the hyposquama, at the lowest surface of the scale. Fully developed scales with a low collagen deposition rate were compared with regenerating scales active in fibrillogenesis. When an ordered array of the collagen fibrils is found, the innermost collagen fibrils are coaligned with microtubules and actin microfilaments. Thus, because of this coalignment, microtubules and actin microfilaments of the hyposquamal scleroblasts are subjected to consecutive alterations during the formation of the plies of the basal plate. The sequence of events when the collagen fibrils change their direction from one ply to the other in the basal plate is deduced from immunofluorescence and phase-contrast-microscopic observations. During the formation of the orthogonal plywood-like structure in the regenerating scales, first microtubules may change their curse with a rotating angle of about 90°; then, actin microfilaments are disorganized and reorganized by interacting mechanically with the microtubules with which they are coaligned. Collagen fibrils are synthesized in a direction that is roughly perpendicular to that of the preceding ply. The unknown signals inducing the change in direction of the cytoskeleton may be transmitted throughout the hyposquama via gap junctions.This work is dedicated to the memory of Jacques Escaig 相似文献
19.
Circular organization of the DNA synthetic pathway in Caulobacter crescentus. 总被引:2,自引:0,他引:2 下载免费PDF全文
Genetic analysis of the cell cycle of Caulobacter crescentus has identified a DNA synthetic pathway and a cell division pathway (M. A. Osley and A. Newton, J. Mol. Biol. 138:109-128, 1980). The results presented here show that in double-shift experiments the function of the PC2076 gene product, which is required for the initiation of DNA synthesis, depends on completion of a late stage of chromosome replication in the previous cell cycle. These findings suggest a circular organization of steps in the DNA synthetic pathway in C. crescentus. 相似文献
20.
The collagen fibrils are formed by self-assembly of individual collagen molecules, but the mechanism that drives their orderly packing during fibril formation is not clearly defined. To identify structural determinants critical for the D-periodic alignment of collagen molecules we employed three sets of genetically engineered collagen II variants: (i) a set in which domains corresponding to the specific D periods have been purposely deleted, (ii) a set of collagen variants consisting of tandem repeats of a specific D period, and (iii) a set lacking definite fragments of the D4 period. All collagen variants were analyzed for their ability to assemble into D-periodic fibrils. Even though all genetically engineered collagen variants differ significantly from the wild-type collagen II, most of them were able to form filamentous structures. The D-periodic banding pattern, an indication of the staggered arrangement of collagen monomers, however, occurred only when the D1, D4, and D0.4 domains of interacting collagen monomers could potentially cluster together to form a triad through telopeptide-mediated binding. Our results identify a critical step in the formation of collagenous matrices and provide experimental evidence for the active involvement of the N-terminal and C-terminal regions of fibrillar collagens in this process. 相似文献