首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allometric biomass allocation theory predicts that leaf biomass (ML) scaled isometrically with stem (MS) and root (MR) biomass, and thus above‐ground biomass (leaf and stem) (MA) and root (MR) scaled nearly isometrically with below‐ground biomass (root) for tree seedlings across a wide diversity of taxa. Furthermore, prior studies also imply that scaling constant should vary with species. However, litter is known about whether such invariant isometric scaling exponents hold for intraspecific biomass allocation, and how variation in scaling constants influences the interspecific scaling relationship between above‐ and below‐ground biomass. Biomass data of seedlings from five evergreen species were examined to test scaling relationships among biomass components across and within species. Model Type II regression was used to compare the numerical values of scaling exponents and constants among leaf, stem, root, and above‐ to below‐ground biomass. The results indicated that ML and MS scaled in an isometric or a nearly isometric manner with MR, as well as MA to MR for five woody species. Significant variation was observed in the Y‐intercepts of the biomass scaling curves, resulting in the divergence for intraspecific scaling and interspecific scaling relationships for ML versus MS and ML versus MR, but not for MS versus MR and MA versus MR. We conclude, therefore, that a nearly isometric scaling relationship of MA versus MR holds true within each of the studied woody species and across them irrespective the negative scaling relationship between leaf and stem.  相似文献   

2.
Scaling relationship between tree respiration rates and biomass   总被引:1,自引:0,他引:1  
The WBE theory proposed by West, Brown and Enquist predicts that larger plant respiration rate, R, scales to the three-quarters power of body size, M. However, studies on the R versus M relationship for larger plants (i.e. trees larger than saplings) have not been reported. Published respiration rates of field-grown trees (saplings and larger trees) were examined to test this relationship. Our results showed that for larger trees, aboveground respiration rates RA scaled as the 0.82-power of aboveground biomass MA, and that total respiration rates RT scaled as the 0.85-power of total biomass MT, both of which significantly deviated from the three-quarters scaling law predicted by the WBE theory, and which agreed with 0.81–0.84-power scaling of biomass to respiration across the full range of measured tree sizes for an independent dataset reported by Reich et al. (Reich et al. 2006 Nature 439, 457–461). By contrast, R scaled nearly isometrically with M in saplings. We contend that the scaling exponent of plant metabolism is close to unity for saplings and decreases (but is significantly larger than three-quarters) as trees grow, implying that there is no universal metabolic scaling in plants.  相似文献   

3.
Background and Aims Empirical studies and allometric partitioning (AP) theory indicate that plant above-ground biomass (MA) scales, on average, one-to-one (isometrically) with below-ground biomass (MR) at the level of individual trees and at the level of entire forest communities. However, the ability of the AP theory to predict the biomass allocation patterns of understorey plants has not been established because most previous empirical tests have focused on canopy tree species or very large shrubs.Methods In order to test the AP theory further, 1586 understorey sub-tropical forest plants from 30 sites in south-east China were harvested and examined. The numerical values of the scaling exponents and normalization constants (i.e. slopes and y-intercepts, respectively) of log–log linear MA vs. MR relationships were determined for all individual plants, for each site, across the entire data set, and for data sorted into a total of 19 sub-sets of forest types and successional stages. Similar comparisons of MA/MR were also made.Key Results The data revealed that the mean MA/MR of understorey plants was 2·44 and 1·57 across all 1586 plants and for all communities, respectively, and MA scaled nearly isometrically with respect to MR, with scaling exponents of 1·01 for all individual plants and 0·99 for all communities. The scaling exponents did not differ significantly among different forest types or successional stages, but the normalization constants did, and were positively correlated with MA/MR and negatively correlated with scaling exponents across all 1586 plants.Conclusions The results support the AP theory’s prediction that MA scales nearly one-to-one with MR (i.e. MAMR ≈1·0) and that plant biomass partitioning for individual plants and at the community level share a strikingly similar pattern, at least for the understorey plants examined in this study. Furthermore, variation in environmental conditions appears to affect the numerical values of normalization constants, but not the scaling exponents of the MA vs. MR relationship. This feature of the results suggests that plant size is the primary driver of the MA vs. MR biomass allocation pattern for understorey plants in sub-tropical forests.  相似文献   

4.
Supports for the molecular evolution of host–pathogen interactions on enemy release hypothesis are rare. According to the theory of plant immunity and the coevolution of hosts and pathogens, we hypothesized that the evolutionary rate (dN/dS) of resistance genes (R-genes) in invasive plants would be greater than in non-invasive plants, assuming that based on the enemy release hypothesis, the former would suffer less selection stress from co-evolutionary specialist pathogens. To test our hypothesis, we isolated and analyzed the conserved nucleotide-binding sites (NBS) of resistance gene analogues (RGAs) of an invasive weed, Wedelia trilobata (WTRGA). We then used the information in GenBank to compare the dN/dS of the NBS R-gene/RGAs in invasive and homologous non-invasive plants. Three W. trilobata NBS RGA sequences were obtained, belonging to the Toll/Interleukin-1 receptor (TIR) (WTRGA1 and WTRGA2) and non-TIR subclasses (WTRGA3). Compared with the homologous non-invasive plants, the invasive plants showed a significantly greater dN/dS for TIR NBS R-gene/RGAs (p < 0.0001), supporting our hypothesis. Future research should include an examination of R-genes/RGAs from more invasive plants on a population level to understand diversity and R-gene functions in invasive plant species, as well as to explore how disease resistance allows plants to adapt to changing pathogen stresses.  相似文献   

5.
The significance of xylem function and metabolic scaling theory begins from the idea that water transport is strongly coupled to growth rate. At the same time, coordination of water transport and growth seemingly should differ between plant functional types. We evaluated the relationships between water transport, growth and species stature in six species of co‐occurring trees and shrubs. Within species, a strong proportionality between plant hydraulic conductance (K), sap flow (Q) and shoot biomass growth (G) was generally supported. Across species, however, trees grew more for a given K or Q than shrubs, indicating greater growth‐based water‐use efficiency (WUE) in trees. Trees also showed slower decline in relative growth rate (RGR) than shrubs, equivalent to a steeper G by mass (M) scaling exponent in trees (0.77–0.98). The K and Q by M scaling exponents were common across all species (0.80, 0.82), suggesting that the steeper G scaling in trees reflects a size‐dependent increase in their growth‐based WUE. The common K and Q by M exponents were statistically consistent with the 0.75 of ideal scaling theory. A model based upon xylem anatomy and branching architecture consistently predicted the observed K by M scaling exponents but only when deviations from ideal symmetric branching were incorporated.  相似文献   

6.
Empirical studies indicate that the exponents governing the scaling of plant respiration rates (R) with respect to biomass (M) numerically vary between three‐fourth for adult plants and 1.0 for seedlings and saplings and are affected by nitrogen (N) and phosphorus (P) content. However, whether the scaling of R with respect to M (or N and P) varies among different phylogenetic groups (e.g., gymnosperms vs. angiosperms) or during the growing and dormant seasons remains unclear. We measured the whole‐plant R and M, and N and P content of the seedlings of four woody species during the growing season (early October) and the dormant season (January). The data show that (i) the scaling exponents of R versus M, R versus N, and R versus P differed significantly among the four species, but (ii), not between the growing and dormant seasons for each of the four species, although (iii) the normalization constants governing the scaling relationships were numerically greater for the growing season compared to the dormant season. In addition, (iv) the scaling exponents of R versus M, R versus N, and R versus P were numerically larger for the two angiosperm species compared to those of the two gymnosperm species, (v) the interspecific scaling exponents for the four species were greater during the growing season than in the dormant season, and (vi), interspecifically, P scaled nearly isometric with N content. Those findings indicate that the metabolic scaling relationships among R, M, N, and P manifest seasonal variation and differ between angiosperm and gymnosperm species, that is, there is no single, canonical scaling exponent for the seedlings of woody species.  相似文献   

7.
Allometric aspects of population dynamics: A symmetry approach   总被引:1,自引:0,他引:1  
Summary The maximum intrinsic rate of increase (r max ) shows a –0.25 scaling with adult body weight (W) in mammals (and others). Average adult life span (1/M) and age at maturity () show –0.25 scalings, independent of population size; these two lead to ther max scaling, providedR o is invariant with body size in rarified populations (=R om ). Thus ther max scaling follows from the existence of two population size symmetries (i.e. 1/M and ) and one body size symmetry (R o ). The theory provides a formula to calculate the height (A 3) of the scalingr max =A 3 ·W –0.25. The theory also helps to explain Fowler's Rules, which linkR om to the relative position of the inflection point of the population growth curve.  相似文献   

8.
The allometric relationships for plant daily biomass production rates, different measures of body size (dry weight and length) and photosynthetic biomass per plant are reported for two mutants of Arabidopsis thaliana (abi1-1, insensitive to ABA; era1-2, hypersensitive to ABA). Scaling relationships, such as daily rate of growth (G) vs body mass (M), plant body length or plant height (L) vs body mass (M), photosynthetic biomass (M p ) vs non-photosynthetic biomass (M n ), and daily rate of growth (G) vs. photosynthetic biomass (M p ) were significantly different in abi1-1 and era1-2. It is implied that the sensitivity to abscisic acid may change the scaling relationships for plant biomass production rate and body size in Arabidopsis thaliana. Because these scaling relationships are closely related to sensitivity to abscisic acid, they are of importance for phytohormonal ecology.  相似文献   

9.
10.
This study provides the first measurements of the standard respiration rate (RS) and growth dynamics of European sardine Sardina pilchardus larvae reared in the laboratory. At 15° C, the relationship between RS (µl O2 individual?1 h?1) and larval dry mass (MD, µg) was equal to: RS = 0·0057(±0·0007, ± s.e.)·MD0·8835(±0·0268), (8–11% MD day?1). Interindividual differences in RS were not related to interindividual differences in growth rate or somatic (Fulton's condition factor) or biochemical‐based condition (RNA:DNA).  相似文献   

11.
Forest biomass plays a key role in the global carbon cycle. In the present study, a general allometric model was derived to predict the relationships among the stem biomass Ms, aboveground biomass MA and total biomass MT, based on previously developed scaling relationships for leaf, stem and root standing biomass. The model predicted complex scaling exponents for MT and/or MA with respect to Ms. Because annual biomass accumulation in the stem, root and branch far exceeded the annual increase in standing leaf biomass, we can predict that MT ∝MA ∝ Ms as a simple result of the model. Although slight variations existed in different phyletic affiliations (i.e. conifers versus angiosperms), empirical results using Model Type Ⅱ (reduced major axis) regression supported the model's predictions. The predictive formulas among stem, aboveground and total biomass were obtained using Model Type I (ordinary least squares) regression to estimate forest biomass. Given the low mean percentage prediction errors for aboveground (and total biomass) based on the stem biomass, the results provided a reasonable method to estimate the biomass of forests at the individual level, which was insensitive to the variation in local environmental conditions (e.g. precipitation, temperature, etc.).  相似文献   

12.
Oxidative respiration is strongly temperature driven. However, in woody stems, efflux of CO2 to the atmosphere (E A), commonly used to estimate the rate of respiration (R S), and stem temperature (T st) have often been poorly correlated, which we hypothesized was due to transport of respired CO2 in xylem sap, especially under high rates of sap flow (f s). To test this, we measured E A, T st, f s and xylem sap CO2 concentrations ([CO2*]) in 3-year-old Populus deltoides trees under different weather conditions (sunny and rainy days) in autumn. We also calculated R S by mass balance as the sum of both outward and internal CO2 fluxes and hypothesized that R S would correlate better with T st than E A. We found that E A sometimes correlated well with T st, but not on sunny mornings and afternoons or on rainy days. When the temperature effect on E A was accounted for, a clear positive relationship between E A and xylem [CO2*] was found. [CO2*] varied diurnally and increased substantially at night and during periods of rain. Changes in [CO2*] were related to changes in f s but not T st. We conclude that changes in both respiration and internal CO2 transport altered E A. The dominant component flux of R S was E A. However, on a 24-h basis, the internal transport flux represented 9–18% and 3–7% of R S on sunny and rainy days, respectively, indicating that the contribution of stem respiration to forest C balance may be larger than previously estimated based on E A measurements. Unexpectedly, the relationship between R S and T st was sometimes weak in two of the three trees. We conclude that in addition to temperature, other factors such as water deficits or substrate availability exert control on the rate of stem respiration so that simple temperature functions are not sufficient to predict stem respiration.  相似文献   

13.
Amphibian pulmonary and systemic vascular circuits are arranged in parallel, with potentially important consequences for resistance (R) to blood flow. The contribution of the parallel anatomic arrangement to total vascular R (R T), independent of blood viscosity, is unknown. We measured pulmonary (R P) and systemic (R S) vascular R with an in situ Ringer’s solution perfusion technique using anesthetized anuran and urodele species to determine: (1) relative contributions of vascular anatomy and blood viscosity to R T; (2) distensibility index (%Δ flow kPa?1) of the pulmonary and systemic vascular circuits; and (3) interspecific correlates of variation in these parameters with red blood cell size, cardiac power output, and aerobic capacities. R P was lower than R S in anurans, while R P of the urodeles was greater than R S and significantly greater than anuran R P. Anuran R T was lowest and did not vary interspecifically, whereas urodele R T was significantly greater than anuran, and varied interspecifically. Pulmonary and systemic circuit distensibility differences may explain cardiac shunt patterns in toads with changes in cardiac output from rest to activity. When blood viscosity was taken into account, vascular resistance accounted for about 25 % of R T while blood viscosity accounted for the remaining 75 %. Owing to lower R T, terrestrial anuran species required lower cardiac power outputs when moving fluid through their vasculature compared to aquatic species. These results indicate that physical characteristics of the vasculature can account for interspecific differences in cardiovascular physiology and suggest a co-evolution of cardiac and vascular anatomy among amphibians.  相似文献   

14.
Abstract: Some data suggest that the sodium-dependent, high-affinity L-glutamate (Glu) transport sites in forebrain are different from those in cerebellum. In the present study, sodium-dependent transport of L-[3H]Glu was characterized in cerebellum and cortex. In both cerebellar and cortical tissue, activity was enriched in synaptosomes. Approximately 100 excitatory amino acid analogues were tested as potential inhibitors of transport activity. Many of the compounds tested inhibited transport activity by <65% at 1 mM and were not studied further. One group of compounds exhibited inhibition conforming to theoretical curves with Hill coefficients of 1 and were <10-fold selective as inhibitors of transport activity. These included three of the putative endogenous substrates for transport: L-Glu, L-aspartate, and L-cysteate. Four of the compounds exhibited inhibition conforming to theoretical curves with Hill coefficients of 1 and were > 10-fold selective as inhibitors. These included β-N-oxalyl-L-α,β-diaminopropionate, α-methyl-DL-glutamate, (2S, 1′S,2′S)-2-(carboxycyclopropyl)glycine, and (2S, 1′S,2′S,3′S)-2-(2-carboxy-3-methoxymethylcyclopropyl)glycine. Data obtained with a few of the inhibitors were consistent with two sites in one or both of the brain regions. (2S, 1′R,2′R)-2-(Carboxycyclopropyl)glycine (L-CCG-II) was identified as the most potent (IC50= 5.5 μM) and selective (60–100-fold) inhibitor of transport activity in cerebellum. One of the potential endogenous substrates, L-homocysteate, was also a selective inhibitor of cerebellar transport activity. The data for inhibition of transport activity in cortex by both L-CCG-II and L-homocysteate were best fit to two sites. Kainate was equipotent as an inhibitor of transport activity, and in both brain regions the data for inhibition were best fit to two sites. The possibility that there are four subtypes of excitatory amino acid transport is discussed. Altering sodium and potassium levels affects cerebellar and cortical transport activity differently, suggesting that the differences extend to other recognition sites on these transporters.  相似文献   

15.
The relationship between body mass (M) and metabolic rate was investigated through the assessment of active (RA) and standard (RS) metabolic rate at different life stages in zebrafish Danio rerio (5 day‐old larvae, 2 month‐old juveniles and 6 month‐old adults). Scaling exponents and constants were assessed for standard (RS = 0·273M0·965 in mgO2 g?1 h?1) and active metabolic rate (RA = 0·799M0·926 in mgO2 g?1 h?1). These data provide the basis for further experiments regarding the effects of environmental factors on aerobic metabolism throughout the life cycle of this species.  相似文献   

16.
Metabolism fuels all biological activities, and thus understanding its variation is fundamentally important. Much of this variation is related to body size, which is commonly believed to follow a 3/4-power scaling law. However, during ontogeny, many kinds of animals and plants show marked shifts in metabolic scaling that deviate from 3/4-power scaling predicted by general models. Here, we show that in diverse aquatic invertebrates, ontogenetic shifts in the scaling of routine metabolic rate from near isometry (bR = scaling exponent approx. 1) to negative allometry (bR < 1), or the reverse, are associated with significant changes in body shape (indexed by bL = the scaling exponent of the relationship between body mass and body length). The observed inverse correlations between bR and bL are predicted by metabolic scaling theory that emphasizes resource/waste fluxes across external body surfaces, but contradict theory that emphasizes resource transport through internal networks. Geometric estimates of the scaling of surface area (SA) with body mass (bA) further show that ontogenetic shifts in bR and bA are positively correlated. These results support new metabolic scaling theory based on SA influences that may be applied to ontogenetic shifts in bR shown by many kinds of animals and plants.  相似文献   

17.
Xiong  Feng  Nie  Xiuqing  Yang  Lucun  Wang  Lingling  Li  Jingjing  Zhou  Guoying 《Plant Ecology》2021,222(4):499-509

To identify the patterns of aboveground biomass (MA) and belowground biomass (MB) partitioning of a tall perennial herbal plant, Rheum tanguticum Maxim. ex Balf. (R. tanguticum), we determined MA, MB, total biomass (MT), and below- to aboveground biomass ratio (MB/MA) through three consecutive sampling campaigns during 2016–2018 on the Qinghai-Tibetan plateau. We then documented MA, MB, MT, and MB/MA, and their log–log relationship with environmental factors using data from 47 sites. MB/MA showed a significant negative relationship with mean annual precipitation (MAP) and altitude but a positive relationship with mean annual temperature (MAT), soil total nitrogen content (TN), and soil humidity (SH). While MT increased with altitude and decreased with MAT, TN, and SH, but the relationship between MAP and MT was not significant. Reduced major axis analysis revealed a slope of the log–log relationship between MA and MB to be 1.16, supporting an allometric partitioning pattern of R. tanguticum. Furthermore, the scaling exponent revealed different changes to different environmental factors. Specifically, scaling exponent was sensitive to the gradient of MAP and SH, but not to the gradient of altitude, MAT, or TN. This indicated that the scaling exponent was affected by water availability.

  相似文献   

18.
Fitness costs associated with resistance to insecticides have been well documented, usually at normal temperature conditions, in many insect species. In this study, using chlorpyrifos‐resistant homozygote (RR) and chlorpyrifos‐susceptible homozygote (SS) of resistance ace1 allele of Plutella xylostella (DBM), we confirmed firstly that high temperature experience in pupal stage influenced phenotype of wing venation in insecticide‐resistant and insecticide‐susceptible Plutella xylostella, and SS DBM showed significantly higher thermal tolerance and lower damages of wing veins under heat stress than RR DBM. As compared to SS DBM, RR DBM displayed significantly lower AChE sensitivity to chlorpyrifos, higher basal GSTs activity and P450 production at 25°C, but higher inhibitions on the enzyme activities and P450 production as well as reduced resistance to chlorpyrifos under heat stress. Furthermore, RR DBM displayed significantly higher basal expressions of hsp69s, hsp72s, hsp20, hsp90, Apaf‐1, and caspase‐7 at 25°C, but lower induced expressions of hsps and higher induced expressions of Apaf‐1, caspase‐9, and caspase‐7 under heat stress. These results suggest that fitness costs of chlorpyrifos resistance in DBM may partly attribute to excess consumption of energy caused by over production of detoxification enzymes and hsps when the proteins are less demanded at conducive environments but reduced expressions when they are highly demanded by the insects to combat environmental stresses, or to excess expressions of apoptotic genes under heat stress, which results in higher apoptosis. The evolutionary and ecological implications of these findings at global warming are discussed.  相似文献   

19.
In terrestrial ecosystems, atmospheric nitrogen (N) deposition has greatly increased N availability relative to other elements, particularly phosphorus (P). Alterations in the availability of N relative to P can affect plant growth rate and functional traits, as well as resource allocation to above‐ versus belowground biomass (MA and MB). Biomass allocation among individual plants is broadly size‐dependent, and this can often be described as an allometric relationship between MA and MB, as represented by the equation , or log MA = logα + βlog MB. Here, we investigated whether the scaling exponent or regression slope may be affected by the N:P supply ratio. We hypothesized that the regression slope between MA and MB should be steeper under a high N:P supply ratio due to P limitation, and shallower under a low N:P supply ratio due to N limitation. To test these hypotheses, we experimentally altered the levels of N, P, and the N:P supply ratio (from 1.7:1 to 135:1) provided to five alpine species representing two functional groups (grasses and composite forbs) under greenhouse conditions; we then measured the effects of these treatments on plant morphology and tissue content (SLA, leaf area, and leaf and root N/P concentrations) and on the scaling relationship between MA and MB. Unbalanced N:P supply ratios generally negatively affected plant biomass, leaf area, and tissue nutrient concentration in both grasses and composite forbs. High N:P ratios increased tissue N:P ratios in both functional groups, but more in the two composite forbs than in the grasses. The positive regression slopes between log MA and log MB exhibited by plants raised under a N:P supply ratio of 135:1 were significantly steeper than those observed under the N:P ratio of 1.7:1 and 15:1. Synthesis: Plant biomass allocation is highly plastic in response to variation in the N:P supply ratio. Studies of resource allocation of individual plants should focus on the effects of nutrient ratios as well as the availability of individual elements. The two forb species were more sensitive than grasses to unbalanced N:P supplies. To evaluate the adaptive significance of this plasticity, the effects of unbalanced N:P supply ratio on individual lifetime fitness must be measured.  相似文献   

20.
In metabolic scaling theory the size-dependence of plant processes is described by a power function of form Y=Y o M θ where Y is a characteristic such as plant productivity that changes with plant size (M) raised to the θ th power and Y o is a normalization constant that adjusts the general relationship across environments and species. In essence, the theory considers that the value of θ arises in the size-dependent relationship between leaf area and vascular architecture that influences plant function and that Y o modulates this general relationship to account for ecological and evolutionary effects on the exchange of resources between plant and environment. Enquist and colleagues have shown from first principles that Y o is a function of carbon use efficiency, the carbon fraction of a plant, the area-specific carbon assimilation rate of a leaf, the laminar area of a leaf, and the mass of a leaf. We show that leaf longevity provides a functional integration of these traits that can serve as a simpler normalization in scaling plant productivity for individual species and potentially for mixed-species communities as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号