首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Peroxidases are heme enzymes found in bacteria, fungi, plants and animals, which exploit the reduction of hydrogen peroxide to catalyze a number of oxidative reactions, involving a wide variety of organic and inorganic substrates. The catalytic cycle of heme peroxidases is based on three consecutive redox steps, involving two high-valent intermediates (Compound I and Compound II), which perform the oxidation of the substrates. Therefore, the thermodynamics and the kinetics of the catalytic cycle are influenced by the reduction potentials of three redox couples, namely Compound I/Fe3+, Compound I/Compound II and Compound II/Fe3+. In particular, the oxidative power of heme peroxidases is controlled by the (high) reduction potential of the latter two couples. Moreover, the rapid H2O2-mediated two-electron oxidation of peroxidases to Compound I requires a stable ferric state in physiological conditions, which depends on the reduction potential of the Fe3+/Fe2+ couple. The understanding of the molecular determinants of the reduction potentials of the above redox couples is crucial for the comprehension of the molecular determinants of the catalytic properties of heme peroxidases.This review provides an overview of the data available on the redox properties of Fe3+/Fe2+, Compound I/Fe3+, Compound I/Compound II and Compound II/Fe3+ couples in native and mutated heme peroxidases. The influence of the electron donor properties of the axial histidine and of the polarity of the heme environment is analyzed and the correlation between the redox properties of the heme group with the catalytic activity of this important class of metallo-enzymes is discussed.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
The bacterial CO-sensing heme protein CooA activates expression of genes whose products perform CO-metabolism by binding its target DNA in response to CO binding. The required conformational change has been proposed to result from CO-induced displacement of the heme and of the adjacent C-helix, which connects the sensory and DNA-binding domains. Support for this proposal comes from UV Resonance Raman (UVRR) spectroscopy, which reveals a more hydrophobic environment for the C-helix residue Trp110 when CO binds. In addition, we find a tyrosine UVRR response, which is attributable to weakening of a Tyr55-Glu83 H-bond that anchors the proximal side of the heme. Both Trp and Tyr responses are augmented in the heme domain when the DNA-binding domain has been removed, apparently reflecting loss of the inter-domain restraint. This augmentation is abolished by a Glu83Gln substitution, which weakens the anchoring H-bond. The CO recombination rate following photolysis of the CO adduct is similar for truncated and full-length protein, though truncation does increase the rate of CO association in the absence of photolysis; together these data indicate that truncation causes a faster dissociation of the endogenous Pro2 ligand. These findings are discussed in the light of structural evidence that the N-terminal tail, once released from the heme, selects the proper orientation of the DNA-binding domain, via docking interactions.  相似文献   

15.
16.
Redox properties of the photosynthetic gene repressor PpsR and the blue-light photoreceptor/antirepressor AppA from Rhodobacter sphaeroides have been characterized. Redox titrations of PpsR reveal the presence of a two-electron couple, with an E (m) value of -320 mV at pH 7.0, which is likely to arise from the reversible conversion of two cysteine thiols to a disulfide. This E (m) value is very much more negative than the E (m) = -180 mV value measured previously at pH 7.0 for the disulfide/dithiol couple in CrtJ, the homolog for PpsR in the closely related bacterium Rhodobacter capsulatus. AppA, a flavin-containing blue-light receptor that is also involved in the regulation of gene expression in R. sphaeroides, contains multiple cysteines in its C-terminal region, two of which function as a redox-active dithiol/disulfide couple with an E (m) value of -325 mV at pH 7.0 in the dark. Titrations of this dithiol/disulfide couple in illuminated samples of AppA indicate that the E (m) value of this disulfide/dithiol couple is -315 mV at pH 7.0, identical to the value obtained for AppA in the dark within the combined experimental uncertainties of the two measurements. The E (m) values of AppA and PpsR demonstrate that these proteins are thermodynamically capable of electron transfer for their activity as an anti-repressor/repressor in R. sphaeroides.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号