首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goal of this research was to induce neuron-like properties in Sf21 cells, an insect ovarian cell line, which could lead to a new high-throughput insecticide screening method and a way to mass produce insect neuronal material for basic research. This study applied differentiation agents to produce viable neuron-like cells. In the presence of the molting hormone 20-hydroxyecdysone (20-HE), or insulin, in the growth medium, a maximum of ca. 30?% of Sf21 cells expressed an apparent neuronal morphology of unipolar, bipolar, or multipolar axon-like processes within 2?C3?days. Maximal differentiation occurred after 2?days in the presence of 50???M 20-HE or 3?days in 10???M insulin. Both 20-HE and insulin displayed time- and concentration-dependent differentiation with biphasic curves, suggesting that two binding sites or processes were contributing to the observed effects. In addition, combinations of 20-HE and insulin produced apparent synergistic effects on differentiation. Caffeine, a central nervous system stimulant, inhibited induction of elongated processes by 20-HE and/or insulin, with an IC50 of 9 nM for 20-HE, and the inhibition was incomplete, resulting in about one-quarter of the differentiated cells remaining, even at high concentrations (up to 1?mM). The ability to induce a neural phenotype simplifies the studies of insect cells, compared to either the use of primary nervous tissue or genetic engineering techniques. The presence of ion channels or receptors in the differentiated cells remains to be determined.  相似文献   

2.
3.
《Fly》2013,7(4):306-311
The steroid 20-hydroxy-ecdysone (20-HE) and the sesquiterpenoid Juvenile Hormone (JH) coordinate insect life stage transitions. 20-HE exerts these effects by the sequential induction of response genes. In the nematode Caenorhabditis elegans hormones also play a role in such transitions, but notably, microRNA such as let-7 and lin-4 have likewise been found to help order developmental steps. Little is known about the corresponding function of homologous microRNA in Drosophila melanogaster, and the way microRNA might be regulated by 20-HE in the fly is ambiguous. Here we used Drosophila S2 cells to analyze the effects of 20-HE on D. melanogaster microRNA let-7 and miR-125, the homolog of lin-4. The induction by 20-HE of let-7 and miR-125 in S2 cells is inhibited by RNAi knockdown of the ecdysone receptor and, as previously shown, by knockdown of its cofactor broad-complex C. To help resolve the currently ambiguous role of 20-HE in the control of microRNA, we show that nanomolar concentrations of 20-HE primes cells to subsequently express microRNA when exposed to micromolar levels of 20-HE. We then explore the role microRNA plays in the established relationship between 20-HE and the induction of innate immunity. We show that the 3'UTR of the antimicrobial peptide diptericin has a let-7 binding site and that let-7 represses translation from this site. We conclude that 20-HE facilitates the initial expression of innate immunity while it simultaneously induces negative regulation via microRNA control of antimicrobial peptide translation.  相似文献   

4.
The steroid hormone 20-hydroxyecdysone (20-HE) controls diverse aspects of neuronal differentiation during metamorphosis in the hawkmoth Manduca sexta. In the present study we have examined the effect of 20-HE on glial cells of the brain during the metamorphic period. The antennal (olfactory) lobe of Manduca provides an ideal system in which to study effects of hormones on glial cells, since three known classes of glial cells participate in its development, and at least one type is critically important for establishment of normal neuronal morphology. These glial cells, associated with the neuropil, form boundaries for developing olfactory glomeruli as a result of proliferation and migration. We determined whether glial cells proliferate in response to 20-HE by injecting a pulse of 20-HE into the hemolymph at different stages of development and monitoring proliferation of all three types of glial cells. Hormone injections at the beginning and end of metamorphic development, when hormone titers are normally low, did not stimulate proliferation of neuropil-associated glial cells. Injections during the period when hormone titers are normally rising produced significant increases in their proliferation. Injections when hormone titers are normally high were ineffective at enhancing their proliferation. One other class of glial cells, the perineurial cells, also proliferate in response to 20-HE. Thus, glial proliferation in the brain is under the control of steroid hormones during metamorphic development. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
During metamorphosis in the hawkmoth, Manduca sexta, identified larval leg motoneurons survive the degeneration of their larval targets to innervate new muscles of the adult legs. The dendrites and axon terminals of these motoneurons regress at the end of the larval stage and then regrow during adult development. Previous studies have implicated the insect steroid, 20-hydroxyecdysone (20-HE), in similar examples of dendritic reorganization during metamorphosis. The present studies were undertaken to test whether 20-HE acts directly on the leg motoneurons to regulate dendritic growth. Larval leg motoneurons were labeled with a fluorescent dye to permit their identification in culture following the dissociation of thoracic ganglia at later stages of development. Leg motoneurons isolated from early pupal stage animals (just before the normal onset of dendritic regrowth) survived in vitro and grew processes regardless of whether 20-HE was added to the culture medium. The extent of process outgrowth, however, as measured by the total length of all processes and the number of branches, was significantly greater for motoneurons maintained in the presence of 20-HE. The enhancement could be blocked by the addition of a juvenile hormone analog. By contrast, larval leg motoneurons that were isolated just before the normal period of dendritic regression did not show enhanced growth of neurites in the presence of 20-HE. The results suggest that 20-HE acts directly on the leg motoneurons to regulate the growth of processes during metamorphosis.  相似文献   

6.
The steroid hormone 20-hydroxyecdysone (20-HE) regulates several processes during insect metamorphosis. We studied the effects of 20-HE on the development of voltage-sensitive ionic currents of thoracic leg motoneurons of Manduca sexta. The larval leg motoneurons persist throughout metamorphosis but undergo substantial morphological reorganization, which is under the control of 20-HE and accompanied by changes in Ca2+ and K+ current densities. To determine whether 20-HE controls the changes in Ca2+ and K+ current levels during postembryonic development, identified thoracic leg motoneurons isolated from late larval and early pupal stages were taken into primary cell culture. Whole-cell Ca2+ and K+ currents were measured after 1–4 days of steroid hormone incubation. In the presence of 20-HE, peak Ca2+ currents of pupal leg motoneurons increased from day 1 to day 4 in vitro. Thus, at culture day 4 the pupal Ca2+ current levels were larger in 20-HE–treated than in untreated cells. By contrast, 20-HE did not affect the Ca2+ current amplitudes of larval leg motoneurons. Whole-cell K+ currents, measured at 4 days in pupal motoneurons, consisted of a fast-activating transient current and a sustained, slowly inactivating current. 20-HE did not affect the amplitude of the transient or sustained currents after 4 days in vitro. Thus, a direct steroid hormone effect may control the proper maturation of voltage-sensitive Ca2+ currents in leg motoneurons. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 211–223, 1998  相似文献   

7.
Alina Garbuzov  Marc Tatar 《Fly》2010,4(4):306-311
The steroid 20-hydroxy-ecdysone (20-HE) and the sesquiterpenoid Juvenile Hormone (JH) coordinate insect life stage transitions. 20-HE exerts these effects by the sequential induction of response genes. In the nematode Caenorhabditis elegans hormones also play a role in such transitions, but notably, microRNA such as let-7 and lin-4 have likewise been found to help order developmental steps. Little is known about the corresponding function of homologous microRNA in Drosophila melanogaster, and the way microRNA might be regulated by 20-HE in the fly is ambiguous. Here we used Drosophila S2 cells to analyze the effects of 20-HE on D. melanogaster microRNA let-7 and miR-125, the homolog of lin-4. The induction by 20-HE of let-7 and miR-125 in S2 cells is inhibited by RNai knockdown of the ecdysone receptor and, as previously shown, by knockdown of its cofactor broad-complex C. To help resolve the currently ambiguous role of 20-HE in the control of microRNa, we show that nanomolar concentrations of 20-HE primes cells to subsequently express microRNa when exposed to micromolar levels of 20-HE. We then explore the role microRNa plays in the established relationship between 20-HE and the induction of innate immunity. We show that the 3′UTR of the antimicrobial peptide diptericin has a let-7 binding site and that let-7 represses translation from this site. We conclude that 20-HE facilitates the initial expression of innate immunity while it simultaneously induces negative regulation via microRNa control of antimicrobial peptide translation.Key words: microRNA, ecdysone, innate immunity, let-7, diptericin, inflammation  相似文献   

8.
《Insect Biochemistry》1987,17(7):1095-1098
The effects of exogenous hormones on oocyte development in isolated abdomens from blood-fed female Aedes aegypti were examined. Abdomens were prepared immediately after a blood meal. Single applications of hormones were administered immediately after ligation or 18 hr after the blood meal. Double applications were done at both times. Oocyte development was assayed by measuring the amount of yolk in oocytes 66 hr after the blood meal. Topical application of maximum doses of methoprene immediately after ligation caused oocytes to mature in 60% of the abdomens; a half-maximum response was obtained with 300 pg. Injection of 700 ng of 20-hydroxyecdysone (20-HE) was necessary to cause an equivalent response. Delaying the injection of 20-HE until 18 hr after feeding reduced the amount necessary to obtain a half-maximum response to 150 ng. Treating the abdomens twice dramatically reduced the amount of 20-HE needed for the second dose: pretreatment of abdomens immediately after ligation with 50 pg of 20-HE reduced the amount of 20-HE needed in the second injection to 30 ng. Pretreatment with a topical application of 50 pg of methoprene had a similar effect. These data indicate that the sensitivity of the mosquito to exogenous hormones changes after a blood meal, and that either 20-HE or methoprene can promote a further increase in sensitivity.  相似文献   

9.
中华绒螯蟹血淋巴20-羟蜕皮酮诱发蜕皮和卵巢发育的作用   总被引:12,自引:0,他引:12  
通过放射免疫法测定了中华绒螯蟹蜕皮周期血淋巴20-羟蜕皮酮(20-HE)含量的变化。血淋巴20-HE同卵母细胞发育各个阶段有密切的时相关系:在卵母细胞小生长期血淋巴20-HE持续上升,经青春蜕皮进入卵母细胞大生长期后又迅速降低。不能及时青春蜕皮的青春期前雌蟹,稍后仍出现20-HE下降的趋势。对不同实验条件和生理状态下雌蟹的比较表明,20-HE具有诱发蜕皮的特性。卵母细胞早期生长必需高浓度的血淋巴20-HE。外源注射的20-HE有刺激卵巢增重的作用。  相似文献   

10.
Large peaks of ecdysone (E, 2,875 ng/g live wt) and 20-hydroxyecdysone (20-HE, 2,150 ng/g live wt) occur on days 8 and 12, respectively, of postdiapause pupal-adult metamorphosis at 20°C in the bertha armyworm, Mamestra configurata, and then decline to low levels (< 100 ng/g live wt) prior to eclosion of the moth (50% eclosion at day 31.8). These peaks of E and 20-HE can be suppressed by treating the developing pupae with a physiological dose (2,500 ng/g live wt) of 20-HE. Suppression of E and 20-HE by 20-HE treatment was dose dependent, rapid (within 24 h of treatment) and permanent. The peaks of E and 20-HE were suppressed by 20-HE treatment on days 1, 3, 5, and 7 but the 20-HE peak was not suppressed by treatment on days 9 or 11. It is proposed that the mechanism by which 20-HE suppresses the production of E and thereby its own production forms a negative feedback loop that operates during the first 0.4 units of pupal-adult development in M. configurata. The function of the transitory peaks of E and 20-HE that form this feedback loop is currently unknown. Since most adults from pupae that had their ecdysteroid levels experimentally suppressed by 20-HE treatment were morphologically normal, it seems that the peaks of E and 20-HE have little or no function in controlling morphological development in pupae of M. configurata.  相似文献   

11.
At the initiation of metamorphosis when exposed to ecdysteroid in the absence of juvenile hormone (JH), the lepidopteran epidermis changes its commitment from one for larval differentiation to one for pupal differentiation. Changes in mRNA populations during this change both in vivo and in vitro were followed by a one-dimensional SDS-gel electrophoretic analysis of translation products made in a mRNA-dependent rabbit reticulocyte lysate system. The larval epidermal cell was found to lose its translatable mRNAs for larval cuticular proteins and the larval-specific pigment insecticyanin during the change in commitment; these never reappeared. For Class I cuticular proteins and for insecticyanin, this loss occurred during the exposure to ecdysteroid, each with a differing time course. By contrast, Class II cuticular mRNAs first increased during this time, then also disappeared by the time the cells were pupally committed. In vitro these mRNAs appeared in only trace amounts in response to 20-hydroxyecdysone (20-HE). The pupally committed cell (late in the wandering stage) contained mRNAs for three low-molecular-weight proteins which were precipitable with the pupal cuticular antiserum. The remainder of the pupal cuticular mRNAs were not translatable until the third day after wandering, a time when pupal cuticle is being deposited in response to a molting surge of ecdysteroid. The pupally committed cell also had at least one new noncuticular mRNA which coded for a 34K protein and which was absent from both larval and pupal epidermal cells making cuticle. Since its appearance in response to 20-HE in vitro is repressed by JH, it is called a pupal commitment-specific protein. Thus, during the change of commitment 20-HE inactivates larval-specific genes irreversibly in a sequential cascade of events. The activation of most pupal-specific genes then requires a subsequent exposure to more ecdysteroid.  相似文献   

12.
13.
Dopa decarboxylase (DDC) which converts dopa to dopamine is important for cuticular melanization and sclerotization in insects. An antibody to Drosophila DDC was found to precipitate both DDC activity and a 49-kDa polypeptide synthesized by the epidermis of molting Manduca larvae. Using the Drosophila DDC gene, we isolated the Manduca DDC gene which on hybrid selection produced a 49-kDa translation product precipitable by the Drosophila DDC antibody. The 3.1-kb DDC mRNA appeared 12 hr after head capsule slippage (HCS) and reached maximal levels 7 hr later. Peak expression was twofold higher in melanizing allatectomized larvae and could be depressed to normal levels by application of 0.1 micrograms juvenile hormone I at HCS. Infusion of 1 microgram/hr 20-hydroxyecdysone (20-HE) for 18 hr beginning 2 hr after HCS or addition of 1 microgram/ml 20-HE to the culture medium for 24 hr prevented the normal increase in DDC mRNA. When Day 2 fourth instar epidermis was explanted before the molting ecdysteroid rise and cultured with 1-3 micrograms/ml 20-HE for 17 hr and then for 24 hr in hormone-free medium, DDC expression was three- to fourfold higher than that in epidermis cultured in the absence of hormone. Twelve or more hours of incubation with 20-HE was required for an increase in DDC mRNA, but continuous exposure to 20-HE prevented the increase. In all cultures an initial rapid increase in DDC mRNA was observed which decayed with time in vitro and apparently was associated with the wound response. Thus, ecdysteroid during a larval molt is necessary to program the later expression of DDC, but the subsequent decline of the ecdysteroid is required for this expression to occur.  相似文献   

14.
15.
Summary

Long-term maintenance of lobster, Homarus americanus and crayfish, Pacifasticus leniusculus primary cell cultures of testicular and hematopoietic tissues, for 11 and 3 months, respectively, succeeded in a modified Medium 199 supplemented with 10% fetal bovine serum (pH 7.5, 200°C). In addition, NaC1 was used to adjust the lobster culture medium to 1000 mOsm and the crayfish medium to 400 mOsm. Proline concentration was also elevated. Testes were dissociated with 200 U/ml type II collagenase 2–3 days prior to culture.

Lobster hemocytes reacted to 10?7 M 20-hydroxyecdysone (20-HE) by reducing contact inhibition and increasing invasive behavior one week after hormonal exposure. The presence of 10?7 M 20-HE caused mesodermal cell death and spermatogonial proliferation in lobster testicular cell cultures within one week. Crayfish testicular mesodermal cells formed vacuoles 5 days after exposure to 10?8 M 20-HE. These results are discussed in relation to the cellular events that occur in vivo during premolt.  相似文献   

16.
Lobsters become transiently more aggressive before ecdysis. This aggressiveness accompanies an increase in hemolymph titers of 20-hydroxyecdysone (20-HE). Combats between intermolt female lobsters, injected with premolt levels of 20-HE, and larger, saline-injected opponents were videotaped. Aggressive, defensive, and avoidance behaviors were ranked according to aggressiveness in a Rank of Aggression hierarchy, which included opponent-directed and (nonopponent) redirected behaviors. Treated animals performed more and more highly aggressive behaviors than saline-injected controls. Opponents of treated animals performed fewer aggressive behaviors than saline-injected control opponents. Controls performed more defensive behaviors than treated animals, when redirected behaviors were considered. Differences in avoidance behaviors among the four types of combatants were not significant. The total aggressive content was the same in treated and control fights, but the interactions between combatants in the two fights were significantly different. Treated animals were equally as aggressive and defensive as their opponents; controls were relatively less aggressive and more defensive than their opponents. These results correlate with molt-cycle variations in behavior, 20-HE titers, and the effects of 20-HE and molt-differentiated hemolymph on the claw opener muscle. They suggest that 20-HE orchestrates intrinsic, cellular, and nuclear events that produce the molt-cycle transformations in agonistic behavior and aggressive state of lobsters.  相似文献   

17.
18.
Previously, we identified two proteins with molecular masses of 200 and 210 kDa in basement membranes of Sarcophaga imaginal discs as substrates for cathepsin L [Homma, K. and Natori, S. (1996) Eur. J. Biochem. 240, 443-447]. Here we demonstrated that the same proteins were also present in the basement membranes of larval brains. These proteins were suggested to be digested by cathepsin L secreted from the larval brains in response to 20-HE. From the behavior of these proteins during metamorphosis, we concluded that the basement membranes of larval brains are degraded at the early pupal stage and synthesized again at the late pupal stage, coinciding with the timing of brain remodeling that takes place during metamorphosis. Possibly, the transient disappearance of the basement membranes makes brain remodeling easier, and cathepsin L is suggested to play a crucial role in the degradation of the basement membranes.  相似文献   

19.
Changes in the specific and total activity of the lysosomal marker enzyme acid phosphatase (Acph) and in the amount of enzyme protein were examined in the fat body and the hemolymph from the last larval molt to the larval-pupal apolysis. The specific activity showed minor changes during the last larval period. In contrast, the total activity of the enzyme was low during the feeding period and higher during the wandering stage and strikingly increased at the time of puparium formation. We purified a protein having para-nitrophenyl phosphate phosphatase (Acph) activity and raised antisera against it. The amount of Acph protein in the fat body and hemolymph was examined using an ELISA. The specific Acph content showed little variation, but the total amount of the enzyme protein showed a stepwise increase in both organs during last larval stage and was markedly elevated in the pupal stage in the fat body. In contrast, a considerable decrease in the amount of Acph protein was observed in the hemolymph during this period. These data were in agreement with immunohistochemical observations showing an accumulation of the enzyme protein in fat body cells during the prepupal stage with a concomitant disappearance of the enzyme from the hemolymph. Inhibition of ecdysteroid secretion by water stress prevented the changes both in total enzyme activity and in the amount of Acph protein. However, Acph protein content and enzyme activity could be restored when the water stress was followed by a 20-hydroxyecdysone (20-HE) treatment. Taken together, our data show that Acph is secreted by fat body cells into the hemolymph during the larval stage, where it is stored in an inactive form. Increase in the 20-HE titer at the end of last larval stage reverses this process, and the enzyme is taken up by the fat body cells, where it becomes activated and appears in auto- and heterophagic vacuoles. Arch. Insect Biochem. Physiol. 34:369–390, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
H S Lin  S Hsu 《Radiation research》1989,117(1):70-78
We investigated changes in radiosensitivity of peritoneal exudate macrophage colony-forming cells (PE-CFC) when exudative peritoneal macrophages were cultured in vitro. The change in the shape of the dose-response curve of PE-CFC to ionizing irradiation was partly dependent on the concentration of oxygen in the gas phase of the incubators. When cells were incubated in an environment containing 20% oxygen, the value of both Dq and D0 for PE-CFC increased. The dose-response curve of PE-CFC cultured for 3 days resembled that of alveolar macrophage colony-forming cells (AL-CFC). The changes in radiosensitivity were accompanied by an increase in the level of three antioxidant enzymes: superoxide dismutase, catalase, and glutathione peroxidase. However, when they were cultured in a 6% oxygen environment, only the value of Dq increased. When alveolar macrophages were incubated in vitro, no significant change in the shape of the dose-response curve of AL-CFC was noted whether they were cultured in gas phase containing either 20 or 6% oxygen. It is concluded that the radiosensitivity of PE-CFC changes when they are cultured in vitro. The increase in D0 appears to be related to the intracellular level of antioxidant enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号