首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron and aluminum complexes of nitrilotriacetic acid cause severe nephrotoxicity in Wistar rats. In addition, a high incidence of renal cell carcinoma is seen in ferric nitrilotriacetate-treated animals. The present study was performed to see if lipid peroxidation is involved in ferric nitrilotriacetate toxicity. Ferric nitrilotriacetate had more bleomycin-detectable 'free' iron than any ferric salt, while iron complexed with desferrioxamine or ferric chondroitin sulfate had none. The toxicity of ferric nitrilotriacetate in vivo was more pronounced in vitamin E-deficient rats. A thiobarbituric acid-reactive substance was present in the kidneys of vitamin E-deficient rats in amounts markedly elevated compared to vitamin E-sufficient, or vitamin E-supplemented rats. Non-complexed nitrilotriacetate or aluminum nitrilotriacetate did not produce any thiobarbituric acid-reactive substance in vitamin E-sufficient rats died by the 58th day of administration. We suggest that the iron-stimulated production of free radicals leading to lipid peroxidation is the major cause of ferric nitrilotriacetate-mediated renal toxicity. Vitamin E, a known scavenger of free radicals, is effective in protecting against this iron-induced toxicity.  相似文献   

2.
The lipid peroxidation (LPO) of the lung tissue and the bronchoalveolar lavage in rats under the influence of immobilization has been investigated. The effects accompanying the development of oxidative stress in animals--an increase in the content of conjugated dienes and fluorescent LPO products in biological objects and a strong decrease in the content of vitamin E in the lung tissue were registered.  相似文献   

3.
Lipoperoxidative capacity of various brain areas of aging rats was examined in vitro using the thiobarbituric acid test. Significant regional differences in the generation of lipid peroxides were found in freshly prepared homogenates from different areas of brain incubated under air. Incubation under oxygen resulted in marked stimulation of lipid peroxidation, with highest increases in hypothalamus (144%). Addition of exogenous Fe2+ and ascorbic acid resulted in stimulation of lipid peroxidation ranging from 10-fold in cortex to 20-fold in hypothalamus homogenates during incubation in air. A linear relationship was found between endogenous iron content in brain regions and their ability to produce lipid peroxides in vitro under oxygen for all areas except striatum. Several iron chelating agents effectively inhibited lipid peroxidation under hyperbaric oxygen whereas oxygenfree radical scavengers, as well as catalase and superoxide dismutase were not effective. It is concluded that regional differences in lipoperoxidative capacity of brain areas in vitro are in part governed by local endogenous iron content and may indicate regional susceptibility to oxidative damage.  相似文献   

4.
The role of iron in allyl alcohol-induced lipid peroxidation and hepatic necrosis was investigated in male NMRI mice in vivo. Ferrous sulfate (0.36 mmol/kg) or a low dose of ally alcohol (0.6 mmol/kg) itself caused only minor lipid peroxidation and injury to the liver within 1 h. When FeSO4 was administered before allyl alcohol, lipid peroxidation and liver injury were potentiated 50-100-fold. Pretreatment with DL-tocopherol acetate 5 h before allyl alcohol protected dose-dependently against allyl alcohol-induced lipid peroxidation and liver injury in vivo. Products of allyl alcohol metabolism, i.e. NADH and acrolein, both mobilized trace amounts of iron from ferritin in vitro. Catalytic concentrations of FMN greatly facilitated the NADH-induced reductive release of ferritin-bound iron. NADH effectively reduced ferric iron in solution. Consequently, a mixture of NADH and Fe3+ or NADH and ferritin induced lipid peroxidation in mouse liver microsomes in vitro. Our results suggest that the reductive stress (excessive NADH formation) during allyl alcohol metabolism can release ferrous iron from ferritin and can reduce chelated ferric iron. These findings provide a rationale for the strict iron-dependency of allyl alcohol-induced lipid peroxidation and hepatotoxicity in mice in vivo and document iron mobilization and reduction as one of several essential steps in the pathogenesis.  相似文献   

5.
It was shown in experiments on random-bred male rats that during mechanical asphyxia, lipid peroxidation in the brain, heart, lungs and skeletal muscles experiences activation. At the beginning of the resuscitation measures under elevated tissue oxygenation there is a further increase in the intensity of lipid peroxidation, whereas the content of lipid hydroperoxides and Schiff's bases approaches the initial values only after 3 months. It is assumed that excessive activation of lipid peroxidation plays the key role in the pathogenesis of the postresuscitation disease. Preliminary administration of the synthetic antioxidant ionol in a dose of 30 mg/kg reduces activation of lipid peroxidation in all the organs and tissues under study, improves energy supply of the brain and heart, and decreases 3-fold the lethality in the early postresuscitation period.  相似文献   

6.
The effect of intracerebral hemorrhage (injection of 0.15 ml of autogenic blood during 2 min in capsula interna) on lipid peroxidation in brain tissue was studied in rat experiments. Intracerebral hemorrhage resulted in a progressive increase of conjugated diene and malonic dialdehyde concentrations, and a decrease in the levels of cerebral lipids antiradical activity. This effect appeared by the 3-rd hour and was significantly manifest 24 hours after the blood injection into the brain.  相似文献   

7.
Ischemia was simulated in rat liver perfused by physiological solution. The concentration of free iron and lipid peroxidation (LPO) products was measured 1, 2, 3, 4 and 5 hours after ischemia onset. The ESR method was used to measure free iron concentration. The LPO intensity was evaluated by the TBA test and by optical density at 232 nm. The content of free iron in cytoplasm increased in the course of ischemia with an increase in the concentration of LPO products. The content of free iron in the membranes remained unchanged. It is supposed that activation of LPO in ischemia may be caused by the appearance in the cytoplasm of a large amount of free iron. This iron can be liberated from ferritin in conditions of low oxygen concentration.  相似文献   

8.
The time course of lipid peroxidation (LP) products was studied in the heart, liver, and brain of rats exposed to 1, 6 and 12 h stress and compared with the extent of LP induction in these organs in vitro. It was shown that the LP activation in the internal organs with maximum in 1 h stress was accompanied by 2 fold decrease in LP products in the brain. More prolonged stress eliminated differences between tissues in all organs approaching the LP level to the control. The LP induction in vitro also revealed reciprocal relations between the LP intensity in brain and internal organs which remained in control group as well. Possible role of the LP suppression in brain induced by acute stress and significance of the phenomenon are under discussion.  相似文献   

9.
Selenocysteine (Sec) insertion sequence-binding protein 2 (SBP2) is essential for the biosynthesis of Sec-containing proteins, termed selenoproteins. Subjects with mutations in the SBP2 gene have decreased levels of several selenoproteins, resulting in a complex phenotype. Selenoproteins play a significant role in antioxidative defense, and deficiencies in these proteins can lead to increased oxidative stress. However, lipid peroxidation and the effects of antioxidants in subjects with SBP2 gene mutations have not been studied. In the present study, we evaluated the lipid peroxidation products in the blood of a subject (the proband) with mutations in the SBP2 gene. We found that the proband had higher levels of free radical-mediated lipid peroxidation products, such as 7β-hydroxycholesterol, than the control subjects. Treatment of the proband with vitamin E (α-tocopherol acetate, 100 mg/day), a lipid-soluble antioxidant, for 2 years reduced lipid peroxidation product levels to those of control subjects. Withdrawal of vitamin E treatment for 7 months resulted in an increase in lipid peroxidation products. Collectively, these results clearly indicate that free radical-mediated oxidative stress is increased in the subject with SBP2 gene mutations and that vitamin E treatment effectively inhibits the generation of lipid peroxidation products.  相似文献   

10.
The relationship between the antioxidant effects of reduced coenzyme Q10 (ubiquinol, UQH2) and vitamin E (alpha-tocopherol) was investigated in beef heart submitochondrial particles in which lipid peroxidation was initiated by incubation with ascorbate + ADP-Fe3+. These effects were examined after extraction of coenzyme Q10 (UQ-10) and vitamin E from the particles and reincorporation of the same components alone or in combination. The results show that UQH2 efficiently inhibits lipid peroxidation even when vitamin E is absent. It is concluded that UQH2 can inhibit lipid peroxidation directly, without the mediation of vitamin E.  相似文献   

11.
Red blood cells (RBC) from normal and vitamin E-deficient rats were incubated in a hypertonic solution of reduced glutathione adjusted to pH 8. Methemoglobin formation occurred in intact RBC from both normal and vitamin E-deficient rats. Hemolysis was significantly greater in RBC from vitamin E-deficient rats. Experiments with catalase, superoxide dismutase, and methional showed that H(2)O(2) was the primary extracellular source of oxidant stress. Extracellular superoxide and hydroxyl radical were not involved in oxidant stress. Experiments with dimethyl sulfoxide showed that intracellular hydroxyl radical, generated from H(2)O(2), was the hemolytic agent. Neither methemoglobin formation nor lipid peroxidation involved hydroxyl radical. Indeed, lipid peroxidation and hemolysis in RBC from vitamin E-deficient rats were concurrent rather than consecutive events. Phase contrast microscopy showed that rigid, crenated RBC with a precipitate around the interior periphery formed during glutathione-induced oxidant stress. The precipitate dissolved slowly as the crenated RBC were converted to smooth ghosts. It appeared that protein precipitates involving mixed disulfide bonds were reduced and solubilized when extracellular glutathione penetrated the ruptured cell. Comparisons between normal RBC and vitamin E-deficient RBC suggest that vitamin E has little effect on the inward diffusion of extra-cellular H(2)O(2). Vitamin E apparently interacts with different oxidant species derived from intracellular H(2)O(2) in preventing lipid peroxidation and the sulfhydryl group oxidation leading to hemolysis.  相似文献   

12.
The present study was designed to determine whether the supplementation of vitamin E in the copper-deficient diet would ameliorate the severity of copper deficiency in fructose-fed rats. Lipid peroxidation was measured in the livers and hearts of rats fed a copper-deficient diet (0.6 microg Cu/g) containing 62% fructose with adequate vitamin E (0.1 g/kg diet) or supplemented with vitamin E (1.0 g/kg diet). Hepatic lipid peroxidation was significantly reduced by vitamin E supplementation compared with the unsupplemented adequate rats. In contrast, myocardial lipid peroxidation was unaffected by the level of vitamin E. Regardless of vitamin E supplementation, all copper-deficient rats exhibited severe signs of copper deficiency, and some of the vitamin E-supplemented rats died of this deficiency. These findings suggest that although vitamin E provided protection against peroxidation in the liver, it did not protect the animals against the severity of copper deficiency induced by fructose consumption.  相似文献   

13.
Iron overload could promote the generation of free radicals and result in deleterious cellular damages. A physiological increase of oxidative stress has been observed in pregnancy. A routine iron supplement, especially a combined iron and vitamin C supplementation, without biological justifications (low hemoglobin [Hb] and iron stores) could therefore aggravate this oxidative risk. We investigated the effect of a daily combined iron supplementation (100 mg/d as fumarate) and vitamin C (500 mg/d as ascorbate) for the third trimester of pregnancy on lipid peroxidation (plasma TBARS), antioxidant micronutriments (Zn, Se, retinol, vitaminE, (β-carotene) and antioxidant metalloenzymes (RBC Cu-Zn SOD and Se-GPX). The iron-supplemented group (n=27) was compared to a control group (n=27), age and number of pregnancies matched. At delivery, all the women exhibited normal Hb and ferritin values. In the supplemented group, plasma iron level was higher than in the control group (26.90±5.52 mmol/L) and TBARs plasma levels were significantly enhanced (p<0.05) (3.62±0.36 vs 3.01±0.37 mmol/L). No significant changes were observed in plasma trace elements and red blood cell antioxidant metalloenzymes. Furthermore, the α-tocopherol plasma level was lowered in the iron-supplemented groups, suggesting an increased utilization of vitamin E. These data show that pharmalogical doses of iron, associated with high vitamin C intakes, can result in uncontrolled lipid peroxidation. This is predictive of adverse effects for the mother and the fetus. This study illustrates the potential harmful effects of iron supplementation when prescribed only on the assumption of anemia and not on the bases of biological criteria.  相似文献   

14.
A study on the effect of retinolin vitro on the hemolysis of vitamin E deficient rat red blood cells showed that retinol enhanced the lysis of the E deficient cells as compared to the lysis of normal cells. The lipid peroxidation present during hydrogen peroxide induced lysis of E deficient cells was however markedly inhibited in the presence of retinol without affecting the rate of lysis. In an actively peroxidising system of non-enzymatic lipid peroxidation of rat liver or brain homogenates and of brain lysosomes incubated with human erythrocytes, no lysis was obtained; incorporation of retinol in such systems resulted in lysis but no peroxidation. Hydrogen peroxide generating substances almost completely inhibited the lysis of normal human erythrocytes by retinol, but linoleic acid hydroperoxide and auto-oxidised liver or brain homogenates and ox-brain liposomes increased the lysis. It is concluded that vitamin E deficient erythrocyte hemolysis may be augmented by retinol, an anti-oxidant, having a lytic function without the peroxidation of stromal lipids  相似文献   

15.
d-Penicillamine, a trifunctional aminoacid known for its ability to form metal complexes and for being a radical scavenger, has been investigated in vitro and in vivo in the rat brain cortex. At 50 M the drug facilitate lipid hydroperoxides and TBARS formation in brain cortex homogenates, while at higher concentrations a clear inhibition of the lipid peroxidative process was observed. The activity of thed-penicillamine (25 and 50 mg/Kg i.p) was evaluated in vivo after a 7-day treatment in rats in whose brain cortex a slow process of lipid peroxidation was induced by iron-saccharate injection. Lipid hydroperoxides, lipid soluble fluorescent compounds and the iron content of both iron-injected and contralateral hemicortices showed a significant decrease in comparison to rats untreated withd-penicillamine. The higher dose also induced in normal rats a significant decrease in basal TBARS and iron content of the brain cortex. In the iron-injected cortex the observed Fe2+/Fe3+ ratio was significantly different from that of normal rats. On the contrary ratios obtained formd-penicillamine treated animals were higher in comparison to both normal and iron-injected animals. These results suggest thatd-penicillamine, acting as a reducing agent, inhibits the iron redox system and, as a chelating agents, can remove metal from action sites where lipid peroxidation may occur.  相似文献   

16.
Data are presented in this paper on the effect of vitamin E on rats given a fish diet after whole-body gamma-irradiation. The content of lipid peroxidation products in rat plasma, brain and liver and also the content of vitamin E have been investigated. Irradiation increases lipid peroxidation in the studied tissues and decreases vitamin E content. This process is aggravated by the fish diet. Vitamin E given in addition to fish diet helps the organism to stabilize the antioxidant homeostasis at a qualitatively different level.  相似文献   

17.
Activation of rat brain protein kinase C by lipid oxidation products   总被引:3,自引:0,他引:3  
The unsaturated fatty acid components of membrane lipids are susceptible to oxidation in vitro and in vivo. The initial oxidation products are hydroperoxy fatty acids that are converted spontaneously or enzymatically to a variety of products. Hydroperoxy derivatives of oleic, linoleic, or arachidonic acids stimulate the activity of protein kinase C (PKC) purified from rat brain. The hydroperoxy acids satisfy the requirement of PKC for phospholipid (e.g., phosphatidylserine). Activation is observed in the presence or absence of 1 mM Ca2+. Reduction of the hydroperoxides to alcohols or dehydration of the hydroperoxides to ketones increases the Ka for activation three- to fourfold but does not significantly reduce the maximal extent of PKC activation. The Ka's for activation by hydroperoxy acids are approximately half the values exhibited by the unoxidized fatty acids. Since oxidation of unsaturated fatty acids to hydroperoxides is the first event in lipid peroxidation, activation of PKC by hydroperoxy fatty acids may be an early cellular response to oxidative stress.  相似文献   

18.
Abstract

The objective of this work was to examine the time-dependent pro-oxidant versus antioxidant effect of various doses of vitamin E used commonly in experimental studies. Erythrocyte activity of superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and plasma lipid peroxidation levels were investigated following biweekly intramuscular administration of 100, 300 and 600 mg/kg of vitamin E at a baseline time point, and additionally at 2, 4 and 6 weeks after initiating treatment. Vitamin E had an antioxidant effect when administered at low doses over short time periods, and increased the activity of antioxidant enzymes. At higher doses and over longer time periods, it increased the level of lipid peroxidation, and attenuated the activity of antioxidant enzymes. These results suggest that time-dependent variations in vitamin E effects should be considered in design and interpretation of experimental antioxidant studies, as well as during clinical trials.  相似文献   

19.
The objective of this work was to examine the time-dependent pro-oxidant versus antioxidant effect of various doses of vitamin E used commonly in experimental studies. Erythrocyte activity of superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT) and plasma lipid peroxidation levels were investigated following biweekly intramuscular administration of 100, 300 and 600 mg/kg of vitamin E at a baseline time point, and additionally at 2, 4 and 6 weeks after initiating treatment. Vitamin E had an antioxidant effect when administered at low doses over short time periods, and increased the activity of antioxidant enzymes. At higher doses and over longer time periods, it increased the level of lipid peroxidation, and attenuated the activity of antioxidant enzymes. These results suggest that time-dependent variations in vitamin E effects should be considered in design and interpretation of experimental antioxidant studies, as well as during clinical trials.  相似文献   

20.
Vitamin E significantly (P less than 0.01), inhibited lipid peroxidation as indicated by malonaldehyde (MDA) production and improved significantly (P less than 0.01) motility and percent live spermatazoa of B. bubalis semen. Bulls with higher MDA formation had lower sperm motility and percent live count. Variance due to bulls for all the three parameters were significant (P less than 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号