首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bradyrhizobium sp. strain ORS285 is a photosynthetic bacterium that forms nitrogen-fixing nodules on the roots and stems of tropical aquatic legumes of the Aeschynomene genus. The symbiotic interaction of Bradyrhizobium sp. strain ORS285 with certain Aeschynomene spp. depends on the presence of nodulation (nod) genes whereas the interaction with other species is nod gene independent. To study the nod gene-dependent molecular dialogue between Bradyrhizobium sp. strain ORS285 and Aeschynomene spp., we used a nodB-lacZ reporter strain to monitor the nod gene expression with various flavonoids. The flavanones liquiritigenin and naringenin were found to be the strongest inducers of nod gene expression. Chemical analysis of the culture supernatant of cells grown in the presence of naringenin showed that the major Nod factor produced by Bradyrhizobium sp. strain ORS285 is a modified chitin pentasaccharide molecule with a terminal N-C(18:1)-glucosamine and with a 2-O-methyl fucose linked to C-6 of the reducing glucosamine. In this respect, the Bradyrhizobium sp. strain ORS285 Nod factor is the same as the major Nod factor produced by the nonphotosynthetic Bradyrhizobium japonicum USDA110 that nodulates the roots of soybean. This suggests a classic nod gene-dependent molecular dialogue between Bradyrhizobium sp. strain ORS285 and certain Aeschynomene spp. This is supported by the fact that B. japonicum USDA110 is able to form N(2)-fixing nodules on both the roots and stems of Aeschynomene afraspera.  相似文献   

2.
Previously, restriction fragment length polymorphism analysis using the nodD1YABC gene probe showed the genetic diversity of common nodD1ABC gene regions of Bradyrhizobium japonicum, Bradyrhizobium elkanii, and the Thai soybean Bradyrhizobium. The nodD1 sequences of representative strains of the 3 groups differed phylogenetically, suggesting that responses of NodD1 proteins of the 3 Bradyrhizobium groups to diverse flavonoids may differ. To confirm this hypothesis, 6 representative strains were chosen from the 3 Bradyrhizobium groups. Six reporter strains were constructed, all carrying the pZB32 plasmid, which contains a nod box and the nodY-lacZ fusion of B. japonicum USDA 110. Differences in nodY-lacZ expression among the strains in response to 37 flavonoid compounds at various concentrations were evaluated. Of those compounds, prunetin (4',5-dihydroxy-7-methoxyisoflavone) and esculetin (6,7-dihydroxycoumarin) were identified as Bradyrhizobium group-specific nod gene inducers. Esculetin showed nod gene induction activities unique to Thai Bradyrhizobium strains. The levels of nodY-lacZ induction among B. japonicum and Thai Bradyrhizobium strains increased with increasing concentration of prunetin, whereas, those in B. elkanii strains did not.  相似文献   

3.
Ethiopian Bradyrhizobium strains isolated from root nodules of Crotalaria spp., Indigofera spp., Erythina brucei and soybean (Glycine max) represented genetically diverse phylogenetic groups of the genus Bradyrhizobium. Strains were characterized using the amplified fragment length polymorphism fingerprinting technique (AFLP) and multilocus sequence analysis (MLSA) of core and symbiotic genes. Based on phylogenetic analyses of concatenated recA-glnII-rpoB-16S rRNA genes sequences, Bradyrhizobium strains were distributed into fifteen phylogenetic groups under B. japonicum and B. elkanii super clades. Some of the isolates belonged to the species B. yuanmingense, B. elkanii and B. japonicum type I. However, the majority of the isolates represented unnamed Bradyrhizobium genospecies and of these, two unique lineages that most likely represent novel Bradyrhizobium species were identified among Ethiopian strains. The nodulation nodA gene sequence analysis revealed that all Ethiopian Bradyrhizobium isolates belonged to nodA sub-clade III.3. Strains were further classified into 14 groups together with strains from Africa, as well as some originating from the other tropical and subtropics regions. Strains were also clustered into 14 groups in nodY/K phylogeny similarly to the nodA tree. The nifH phylogenies of the Ethiopian Bradyrhizobium were generally also congruent with the nodA gene phylogeny, supporting the monophyletic origin of the symbiotic genes in Bradyrhizobium. The phylogenies of nodA and nifH genes were also partially congruent with that inferred from the concatenated core genes sequences, reflecting that the strains obtained their symbiotic genes vertically from their ancestor as well as horizontally from more distantly related Bradyrhizobium species.  相似文献   

4.
To elucidate the phylogenetic relationships between Thai soybean bradyrhizobia and USDA strains of Bradyrhizobium, restriction fragment length polymorphism (RFLP) analysis using the nifDK gene probe and sequencing of the partial 16S rRNA gene were performed. In our previous work, Thai isolates of Bradyrhizobium sp. (Glycine max) were separated clearly from Bradyrhizobium japonicum and Bradyrhizobium elkanii based on the RFLP analysis using the nodDYABC gene probe. RFLP analysis using the nifDK gene probe divided 14 Thai isolates and eight USDA strains of B. japonicum into different groups, respectively, but categorized into the same cluster. All of seven strains within these Thai isolates had the same sequence of the partial 16S rRNA gene, and it was an intermediate sequence between those of B. japonicum USDA 110 and B. elkanii USDA 76T. Furthermore, three USDA strains of B. japonicum, USDA of (B. japonicum ATCC 10324T), USDA 115 and USDA 129, had the same partial 16S rRNA gene sequence that seven Thai isolates had. These results suggest that Thai isolates of Bradyrhizobium sp. (Glycine max) are genetically distinct from USDA strains of B. japonicum and B. elkanii, but also indicate a close relationship between Thai isolates and USDA strains of B. japonicum.  相似文献   

5.
AIMS: To isolate and characterize bradyrhizobia that nodulate yardlong bean and sunnhemp in Guam. METHODS AND RESULTS: Bradyrhizobia populations that nodulate yardlong bean and sunnhemp in Guam were examined for genetic diversity and their relatedness to Bradyrhizobium japonicum and B. elkanii reference strains. Genomic DNA of 58 isolates of Bradyrhizobium spp. was hybridized with B. japonicum nodY and B. elkanii nodK genes. Based on the hybridization patterns, the isolates were classified into three nodY-nodK hybridizing groups. Group I comprised the majority of the isolates and hybridized with nodY whereas group II isolates hybridized with nodK. The group III isolates, that did not hybridize with either nodY or nodK, formed nitrogen-fixing nodules on cowpea but did not nodulate soybean. DNA sequence analysis of a 280-bp fragment of the variable region of the 16S rRNA gene of a few group III isolates showed that these isolates were more similar to Bradyrhizobium spp. than to B. japonicum or B. elkanii. CONCLUSIONS: The majority of the isolates nodulating yardlong bean and sunnhemp in Guam are similar to B. japonicum, although some isolates are similar to Bradyrhizobium spp. that nodulate a miscellaneous group of legumes including cowpea. SIGNIFICANCE AND IMPACT OF THE STUDY: Since both yardlong bean and sunnhemp are nodulated by a range of bradyrhizobia, selection of superior strains may be based on nodulation effectiveness on both legumes.  相似文献   

6.
The cowpea (Vigna unguiculata L.), peanut (Arachis hypogaea L.), and mung bean (Vigna radiata L.) belong to a group of plants known as the "cowpea miscellany" plants, which are widely cultivated throughout the tropic and subtropical zones of Africa and Asia. However, the phylogeny of the rhizobial strains that nodulate these plants is poorly understood. Previous studies have isolated a diversity of rhizobial strains from cowpea miscellany hosts and have suggested that, phylogenetically, they are from different species. In this work, the phylogeny of 42 slow-growing rhizobial strains, isolated from root nodules of cowpea, peanut, and mung bean from different geographical regions of China, was investigated using sequences from the 16S rRNA, atpD and glnII genes, and the 16S-23S rRNA intergenic spacer. The indigenous rhizobial strains from the cowpea miscellany could all be placed in the genus Bradyrhizobium , and Bradyrhizobium liaoningense and Bradyrhizobium yuanmingense were the main species. Phylogenies derived from housekeeping genes were consistent with phylogenies generated from the ribosomal gene. Mung bean rhizobia clustered only into B. liaoningense and B. yuanmingense and were phylogenetically less diverse than cowpea and peanut rhizobia. Geographical origin was significantly reflected in the phylogeny of mung bean rhizobia. Most cowpea rhizobia were more closely related to the 3 major groups B. liaoningense, B. yuanmingense, and Bradyrhizobium elkanii than to the minor groups Bradyrhizobium japonicum or Bradyrhizobium canariense . However, most peanut rhizobia were more closely related to the 2 major groups B. liaoningense and B. yuanmingense than to the minor group B. elkanii.  相似文献   

7.
8.
The (Brady)rhizobium nodulation gene products synthesize lipo-chitin oligosaccharide (LCO) signal molecules that induce nodule primordia on legume roots. In spot inoculation assays with roots of Vigna umbellata, Bradyrhizobium elkanii LCO and chemically synthesized LCO induced aberrant nodule structures, similar to the activity of these LCOs on Glycine soja (soybean). LCOs containing a pentameric chitin backbone and a reducing-end 2-O-methyl fucosyl moiety were active on V. umbellata. In contrast, the synthetic LCO-IV(C16:0), which has previously been shown to be active on G. soja, was inactive on V. umbellata. A B. japonicum NodZ mutant, which produces LCO without 2-O-methyl fucose at the reducing end, was able to induce nodule structures on both plants. Surprisingly, the individual, purified, LCO molecules produced by this mutant were incapable of inducing nodule formation on V. umbellata roots. However, when applied in combination, the LCOs produced by the NodZ mutant acted cooperatively to produce nodulelike structures on V. umbellata roots.  相似文献   

9.
Strains of Bradyrhizobium spp. form nitrogen-fixing symbioses with many legumes, including soybean. Although inorganic sulfur is preferred by bacteria in laboratory conditions, sulfur in agricultural soil is mainly present as sulfonates and sulfur esters. Here, we show that Bradyrhizobium japonicum and B. elkanii strains were able to utilize sulfate, cysteine, sulfonates, and sulfur-ester compounds as sole sulfur sources for growth. Expression and functional analysis revealed that two sets of gene clusters (bll6449 to bll6455 or bll7007 to bll7011) are important for utilization of sulfonates sulfur source. The bll6451 or bll7010 genes are also expressed in the symbiotic nodules. However, B. japonicum mutants defective in either of the sulfonate utilization operons were not affected for symbiosis with soybean, indicating the functional redundancy or availability of other sulfur sources in planta. In accordance, B. japonicum bacteroids possessed significant sulfatase activity. These results indicate that strains of Bradyrhizobium spp. likely use organosulfur compounds for growth and survival in soils, as well as for legume nodulation and nitrogen fixation.  相似文献   

10.
Partial sequences of three nod genes (nodC, nodD1, and nodA 5' flanking region) and of 16S and 23S rDNA were obtained from isolates of Bradyrhizobium sp. associated with the native North American legume Amphicarpaea bracteata. Isolates from Amphicarpaea had identical sequences in the three nod gene regions, but differed from all other Bradyrhizobium taxa at > 10% of nucleotide sites. Parsimony analysis of all nod gene segments indicated a phylogenetic relationship of these bacteria to B. elkanii, with B. japonicum diverging prior to the diversification of these taxa. All Bradyrhizobium isolates from Amphicarpaea were also identical to B. elkanii in the size of the intervening sequence (IVS) in the 5' region of the 23S rRNA gene, while B. japonicum had an IVS length variant with 29 additional nucleotides. Parsimony analysis of both 16S and 23S partial rDNA sequences grouped Bradyrhizobium sp. isolates from Amphicarpaea into a clade together with B. elkanii, consistent with the relationships inferred from nod sequences.  相似文献   

11.
AIMS: Desmodia are leguminous plants used as important forage and herbal medicine in China. Little information is available about the nodule bacteria of Desmodium species. To understand the genetic diversity of rhizobia associated with Desmodium species grown in China, isolates from temperate and subtropical regions were obtained and analysed. METHODS AND RESULTS: A total of 39 rhizobial strains isolated from 9 Desmodium species grown in China were characterized by PCR-based 16S rDNA gene and 16S-23S rDNA intergenic spacer gene restriction fragment length polymorphism (RFLP) and 16S rRNA gene sequencing. The results showed high diversity among rhizobia symbiotic with Desmodium species. Most microsymbionts of Desmodium species belonged to Bradyrhizobium closely related to Bradyrhizobium elkanii, Bradyrhizobium japonicum and Bradyrhizobium yuanmingense. Several small groups or single strain were related to Rhizobium, Sinorhizobium or Mesorhizobium. CONCLUSIONS: Desmodium species formed nodules with diverse rhizobia in Chinese soils. SIGNIFICANCE AND IMPACT OF THE STUDY: These results offered the first systematic information about the microsymbionts of desmodia grown in the temperate and subtropical regions of China.  相似文献   

12.
13.
14.
利用16S rRNA基因RFLP、16S rRNA基因序列分析以及16S-23S rRNA IGS PCR RFLP技术对分离自我国南北大豆产区的慢生大豆根瘤菌进行了群体遗传多样性和系统发育研究。16S rRNA基因PCR RFLP分析以及16S rRNA基因序列分析结果表明:所有供试慢生大豆根瘤菌可分为B.japonicum和B.elkanii两个类群,其中属于B.japonicum的为优势种群,占供试菌株的91%,属于B.elkanii的仅占9%,多样性水平较低。16S-23S rRNA IGS PCRRFLP研究结果表明:属于B.japonicum的慢生根瘤菌具有较丰富的遗传多样性,在69%的相似性水平上可分为群Ⅰ和群Ⅱ两大类群。群I的菌株以分离自黑龙江和河北等北部区域的菌株为代表,群Ⅱ的菌株以分离自广西和江苏等南部地域的菌株为代表,反映出明显的地域特征。两群菌株在系统发育上均与USDA6、USDA110和USDA122等B.japonicum的模式或代表菌株有差异。  相似文献   

15.
Cowpea (Vigna unguiculata) and peanut (Arachis hypogaea) in southern Africa are nodulated by a genetically diverse group of Bradyrhizobium strains. To determine the identity of these bacteria, a collection of 22 isolates originating from the root nodules of both hosts in Botswana and South Africa was investigated using the combined sequences for the core genome genes rrs, recA, and glnII. These data separated the majority of the isolates into one of three unique lineages that most likely represent novel Bradyrhizobium species. Some isolates were also conspecific with B. yuanmingense and with B. elkanii, although none grouped with B. japonicum, B. canariense or B. liaoningense. To study the evolution of nodulation genes in these bacteria, the common nodulation gene, nodA, and host-specific nodulation genes, nodZ, noeE, and noeI, were analyzed. The nodA phylogeny showed that the cowpea and peanut Bradyrhizobium isolates represent various locally adapted groups or ecotypes that form part of Clade III of the seven known BradyrhizobiumnodA clades. This large and highly diverse clade comprises all strains from sub-Saharan Africa, as well as some originating from the Americas, Australia, Indonesia, China and Japan. Some similar groupings were supported by the other nodulation genes, although the overall phylogenies for the nodulation genes were incongruent with that inferred from the core genome genes, suggesting that horizontal gene transfer significantly influences the evolution of cowpea and peanut root-nodule bacteria. Furthermore, identification of the nodZ, noeI, and noeE genes in the isolates tested indicates that African Bradyrhizobium species may produce highly decorated nodulation factors, which potentially represent an important adaptation enabling nodulation of a great variety of legumes inhabiting the African continent.  相似文献   

16.
The USDA, ARS National Rhizobium Germplasm Collection contains 143 accessions of slow-growing soybean strains among which there are 17 distinct serological groups. However, 11 strains appear to have no serological affinity with the 17 serogroups. Therefore, we determined whether these strains were diverse and examined their phylogenetic placement. Nine strains formed nitrogen-fixing symbioses with soybean indicating that these accessions were not contaminants. We concluded from results of amplified fragment length polymorphism (AFLP) analysis, using 3 selective primers with 8 strains, that they were genetically dissimilar. Nine strains were examined for their fatty acid composition using fatty acid methyl ester (FAME) derivatives. The FAME results with 5 strains and serotype strains of Bradyrhizobium elkanii were similar, while results with each of the remaining 2 pairs were either similar to the type strain of Bradyrhizobium japonicum (USDA 6) or to USDA 110. Evolutionary history of 9 strains was reconstructed from sequence divergence of a combination of the complete 16S rRNA gene, the internally transcribed spacer region, and about 400 bases of the 5' end of the 23S rRNA gene. Placement of 5 strains was nested within B. elkanii, 2 with USDA 110, and the other 2 with USDA 6. We concluded that soybean isolates that cannot be placed within one of the 17 established serogroups are phenotypically and genetically as diverse as the serotype strains.  相似文献   

17.
Symbiotic nitrogen fixing bacteria-known as rhizobia-harbour a set of nodulation (nod) genes that control the synthesis of modified lipo-chitooligosaccharides, called Nod factors that are required for legume nodulation. The nodA gene, which is essential for symbiosis, is responsible for the attachment of the fatty acid group to the oligosaccharide backbone. The nodZ, nolL, and noeI genes are involved in specific modifications of Nod factors common to bradyrhizobia, i.e., the transfer of a fucosyl group on the Nod factor core, fucose acetylation and fucose methylation, respectively. PCR amplification, sequencing and phylogenetic analysis of nodA gene sequences from a collection of diverse Bradyrhizobium strains revealed the monophyletic character with the possible exception of photosynthetic Bradyrhizobium, despite high sequence diversity. The distribution of the nodZ, nolL, and noeI genes in the studied strains, as assessed by gene amplification, hybridization or sequencing, was found to correlate with the nodA tree topology. Moreover, the nodA, nodZ, and noeI phylogenies were largely congruent, but did not closely follow the taxonomy of the strains shown by the housekeeping 16S rRNA and dnaK genes. Additionally, the distribution of nodZ, noeI, and nolL genes suggested that their presence may be related to the requirements of their legume hosts. These data indicated that the spread and maintenance of nodulation genes within the Bradyrhizobium genus occurred through vertical transmission, although lateral gene transfer also played a significant role.  相似文献   

18.
Cowpea (Vigna unguiculata) and mung bean (Vigna radiata) are important legume crops yet their rhizobia have not been well characterized. In the present study, 62 rhizobial strains isolated from the root nodules of these plants grown in the subtropical region of China were analyzed via a polyphasic approach. The results showed that 90% of the analyzed strains belonged to or were related to Bradyrhizobium japonicum, Bradyrhizobium liaoningense, Bradyrhizobium yuanmingense and Bradyrhizobium elkanii, while the remaining represented Rhizobium leguminosarum, Rhizobium etli and Sinorhizobium fredii. Diverse nifH and nodC genes were found in these strains and their symbiotic genes were mainly coevolved with the housekeeping genes, indicating that the symbiotic genes were mainly maintained by vertical transfer in the studied rhizobial populations.  相似文献   

19.
The common nodulation locus and closely linked nodulation genes of Bradyrhizobium (Arachis) sp. strain NC92 have been isolated on an 11.0-kb EcoRI restriction fragment. The nucleotide sequence of a 7.0-kb EcoRV-EcoRI subclone was determined and found to contain open reading frames (ORFs) homologous to the nodA, nodB, nodD1, nodD2, and nolA genes of Bradyrhizobium japonicum and Bradyrhizobium elkanii. Nodulation assays of nodD1, nodD2, or nolA deletion mutants on the host plants Macroptilium atropurpureum (siratro) and Vigna unguiculata (cowpea) indicate that nolA is required for efficient nodulation, as nolA mutants exhibit a 6-day nodulation delay and reduced nodule numbers. The nolA phenotype was complemented by providing the nolA ORF in trans, indicating that the phenotype is due to the lack of the nolA ORF. nodD1 mutants displayed a 2-day nodulation delay, whereas nodD2 strains were indistinguishable from the wild type. Translational nodA-lacZ, nodD1-lacZ, nodD2-lacZ, and nolA-lacZ fusions were created. Expression of the nodA-lacZ fusion was induced by the addition of peanut, cowpea, and siratro seed exudates and by the addition of the isoflavonoids genistein and daidzein. In a nodD1 or nodD2 background, basal expression of the nodA-lacZ fusion increased two- to threefold. The level of expression of the nodD2-lacZ and nolA-lacZ fusions was low in the wild type but increased in nodD1, nodD2, and nodD1 nodD2 backgrounds independently of the addition of the inducer genistein. nolA was required for increased expression of the nodD2-lacZ fusion. These data suggest that a common factor is involved in the regulation of nodD2 and nolA, and they are also consistent with a model of nod gene expression in Bradyrhizobium (Arachis) sp. strain NC92 in which negative regulation is mediated by the products of the nodD1 and nodD2 genes.  相似文献   

20.
Nepal consists wide range of climatic and topographical variations. Here, we explored the phylogeny of native mungbean bradyrhizobia isolated from different agro-ecological regions of Nepal and accessed their nodulation and nitrogen fixation characteristics. Soil samples were collected from three agro-ecological regions with contrasting climate and topography. A local mungbean cultivar, Kalyan, was used as a trap plant. We characterized isolates based on the full nucleotide sequence of the 16S rRNA, ITS region, and nodA genes; and partial sequences of nodD1 and nifD genes. We found 50% of isolates phylogenetically related to B. yuanmingense, 13% to B. japonicum, 8% to B. elkanii, and 29% to novel phylogenetic origin. Results of the inoculation test suggested that expression of different symbiotic genes in isolates resulted in different degrees of symbiotic functioning. Our results indicate B. yuanmingense and novel strains are more efficient symbiotic partners than B. elkanii for the local mungbean cv. Kalyan. We also found most mungbean rhizobial genotypes were conserved across agro-ecological regions. All the strains from tropical Terai region belonged to B. yuanmingense or a novel lineage of B. yuanmingense, and dominance of B. japonicum related strains was observed in the Hill region. Higher genetic diversity of Bradyrhizobium strains was observed in temperate and sub-tropical region than in the tropical region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号