首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

Genome size is known to affect various plant traits such as stomatal size, seed mass, and flower or shoot phenology. However, these associations are not well understood for species with very large genomes, which are laregly represented by geophytic plants. No detailed associations are known between DNA base composition and genome size or species ecology.

Methods

Genome sizes and GC contents were measured in 219 geophytes together with tentative morpho-anatomical and ecological traits.

Key Results

Increased genome size was associated with earliness of flowering and tendency to grow in humid conditions, and there was a positive correlation between an increase in stomatal size in species with extremely large genomes. Seed mass of geophytes was closely related to their ecology, but not to genomic parameters. Genomic DNA GC content showed a unimodal relationship with genome size but no relationship with species ecology.

Conclusions

Evolution of genome size in geophytes is closely related to their ecology and phenology and is also associated with remarkable changes in DNA base composition. Although geophytism together with producing larger cells appears to be an advantageous strategy for fast development of an organism in seasonal habitats, the drought sensitivity of large stomata may restrict the occurrence of geophytes with very large genomes to regions not subject to water stress.  相似文献   

2.

Background

We are interested in understanding if metacommunity dynamics contribute to the persistence of complex spatial food webs subject to colonization-extinction dynamics. We study persistence as a measure of stability of communities within discrete patches, and ask how do species diversity, connectance, and topology influence it in spatially structured food webs.

Methodology/Principal Findings

We answer this question first by identifying two general mechanisms linking topology of simple food web modules and persistence at the regional scale. We then assess the robustness of these mechanisms to more complex food webs with simulations based on randomly created and empirical webs found in the literature. We find that linkage proximity to primary producers and food web diversity generate a positive relationship between complexity and persistence in spatial food webs. The comparison between empirical and randomly created food webs reveal that the most important element for food web persistence under spatial colonization-extinction dynamics is the degree distribution: the number of prey species per consumer is more important than their identity.

Conclusions/Significance

With a simple set of rules governing patch colonization and extinction, we have predicted that diversity and connectance promote persistence at the regional scale. The strength of our approach is that it reconciles the effect of complexity on stability at the local and the regional scale. Even if complex food webs are locally prone to extinction, we have shown their complexity could also promote their persistence through regional dynamics. The framework we presented here offers a novel and simple approach to understand the complexity of spatial food webs.  相似文献   

3.

Background

Sedges (Cyperaceae) form an important ecological component of many ecosystems around the world. Sword and rapier sedges (genus Lepidosperma) are common and widespread components of the southern Australian and New Zealand floras, also occurring in New Caledonia, West Papua, Borneo, Malaysia and southern China. Sedge ecology is seldom studied and no comprehensive review of sedge ecology exists. Lepidosperma is unusual in the Cyperaceae with the majority of species occurring in dryland habitats.

Scope

Extensive review of ecological literature and field observations shows Lepidosperma species to be important components of many ecosystems, often dominating understorey and sedge-rich communities. For the first time, a detailed ecological review of a Cyperaceae genus is presented.

Conclusions Lepidosperma

species are long-lived perennials with significant abundance and persistence in the landscape. Speciation patterns in the genus are of considerable interest due to complex biogeographical patterns and a high degree of habitat specificity. Potential benefits exist for medicinal products identified from several Lepidosperma species. Over 178 organisms, including 26 mammals, 42 birds, six reptiles, five amphibians, eight arachnids, 75 insects, three crustaceans and 13 fungi, are found to be dependent on, or making use of, Lepidosperma species. A significant relationship exists between Lepidosperma species and the moth genus Elachista. Implications for the conservation and ecology of both sedges and associated species are discussed.  相似文献   

4.

Questions

A variety of mechanisms sustain diversity in natural communities as a result of ecological interactions between organisms. Competition has been studied extensively in the context of species maintenance, but facilitation is often conceptualized as simply reducing competition between functionally different species, which tends to decline throughout the plants' life span. Here we explore how interspecific facilitation may sustain diversity throughout the species' life by avoiding the extinction of locally rare species at juvenile stages and reducing performance disparities between neighbors of differing species at mature stages.

Methods

To do so, we measured whether rarer species relied more on facilitation than abundant ones in semiarid shrubland in southeast Spain. A mechanistic explanation of this relationship was subsequently tested by correlating rarity with the species' affinity to a particularly edaphic stressful environment. Finally, we assessed whether growing associated with neighbors in vegetation patches shaped by facilitation could balance performance disparities between species when they become adults.

Results

We show that facilitation (i) favors the rare species, which, in addition, tend to be those with low affinity to the stressful environment, and (ii) reduces the performance dissimilarities among plants growing associated within multispecific vegetation patches compared to plants growing alone.

Conclusions

These facilitative effects, beyond the reduction of competition between functionally similar species, might ensure positive and long-lasting effects of biotic interactions, implying a more critical role for facilitation in preserving biodiversity than previously thought.  相似文献   

5.

Background  

Although today 15% of living primates are endemic to Madagascar, their diversity was even greater in the recent past since dozens of extinct species have been recovered from Holocene excavation sites. Among them were the so-called "giant lemurs" some of which weighed up to 160 kg. Although extensively studied, the phylogenetic relationships between extinct and extant lemurs are still difficult to decipher, mainly due to morphological specializations that reflect ecology more than phylogeny, resulting in rampant homoplasy.  相似文献   

6.

Aim

Species geographical range sizes play a crucial role in determining species vulnerability to extinction. Although several mechanisms affect range sizes, the number of biotic interactions and species climatic tolerance are often thought to play discernible roles, defining two dimensions of the Hutchinsonian niche. Yet, the relative importance of the trophic and the climatic niche for determining species range sizes is largely unknown.

Location

Central and northern Europe.

Time period

Present.

Major taxa studied

Gall-inducing sawflies and their parasitoids.

Methods

We use data documenting the spatial distributions and biotic interactions of 96 herbivore species, and their 125 parasitoids, across Europe and analyse the relationship between species range size and the climatic and trophic dimensions of the niche. We then compare the observed relationships with null expectations based on species occupancy to understand whether the relationships observed are an inevitable consequence of species range size or if they contain information about the importance of each dimension of the niche on species range size.

Results

We find that both niche dimensions are positively correlated with species range size, with larger ranges being associated with wider climatic tolerances and larger numbers of interactions. However, diet breadth appears to more strongly limit species range size. Species with larger ranges have more interactions locally and they are also able to interact with a larger diversity of species across sites (i.e. higher β-diversity), resulting in a larger number of interactions at continental scales.

Main conclusions

We show for the first time how different aspects of species diet niches are related to their range size. Our study offers new insight into the importance of biotic interactions in determining species spatial distributions, which is critical for improving understanding and predictions of species vulnerability to extinction under the current rates of global environmental change.  相似文献   

7.

Aim

Whether intraspecific spatial patterns in body size are generalizable across species remains contentious, as well as the mechanisms underlying these patterns. Here we test several hypotheses explaining within-species body size variation in terrestrial vertebrates including the heat balance, seasonality, resource availability and water conservation hypotheses for ectotherms, and the heat conservation, heat dissipation, starvation resistance and resource availability hypotheses for endotherms.

Location

Global.

Time period

1970–2016.

Major taxa studied

Amphibians, reptiles, birds and mammals.

Methods

We collected 235,905 body size records for 2,229 species (amphibians = 36; reptiles = 81; birds = 1,545; mammals = 567) and performed a phylogenetic meta-analysis of intraspecific correlations between body size and environmental variables. We further tested whether correlations differ between migratory and non-migratory bird and mammal species, and between thermoregulating and thermoconforming ectotherms.

Results

For bird species, smaller intraspecific body size was associated with higher mean and maximum temperatures and lower resource seasonality. Size–environment relationships followed a similar pattern in resident and migratory birds, but the effect of resource availability on body size was slightly positive only for non-migratory birds. For mammals, we found that intraspecific body size was smaller with lower resource availability and seasonality, with this pattern being more evident in sedentary than migratory species. No clear size–environment relationships were found for reptiles and amphibians.

Main conclusions

Within-species body size variation across endotherms is explained by disparate underlying mechanisms for birds and mammals. Heat conservation (Bergmann's rule) and heat dissipation are the dominant processes explaining biogeographic intraspecific body size variation in birds, whereas in mammals, body size clines are mostly explained by the starvation resistance and resource availability hypotheses. Our findings contribute to a better understanding of the mechanisms behind species adaptations to the environment across their geographic distributions.  相似文献   

8.
Niu K  Schmid B  Choler P  Du G 《PloS one》2012,7(4):e35448

Background

Understanding the relationship between species traits and species abundance is an important goal in ecology and biodiversity science. Although theoretical studies predict that traits related to performance (e.g. reproductive allocation) are most directly linked to species abundance within a community, empirical investigations have rarely been done. It also remains unclear how environmental factors such as grazing or fertilizer application affect the predicted relationship.

Methodology

We conducted a 3-year field experiment in a Tibetan alpine meadow to assess the relationship between plant reproductive allocation (RA) and species relative abundance (SRA) on control, grazed and fertilized plots. Overall, the studied plant community contained 32 common species.

Principal Findings

At the treatment level, (i) RA was negatively correlated with SRA on control plots and during the first year on fertilized plots. (ii) No negative RA–SRA correlations were observed on grazed plots and during the second and third year on fertilized plots. (iii) Seed size was positively correlated with SRA on control plots. At the plot level, the correlation between SRA and RA were not affected by treatment, year or species composition.

Conclusions/Significance

Our study shows that the performance-related trait RA can negatively affect SRA within communities, which is possibly due to the tradeoffs between clonal growth (for space occupancy) and sexual reproduction. We propose that if different species occupy different positions along these tradeoffs it will contribute to biodiversity maintenance in local communities or even at lager scale.  相似文献   

9.

Background

Island faunas have played central roles in the development of evolutionary biology and ecology. Birds are among the most studied organisms on islands, in part because of their dispersal powers linked to migration. Even so, we lack of information about differences in the movement ecology of island versus mainland populations of birds.

Methodology/Principal Findings

Here we present a new general pattern indicating that large birds with deferred sexual maturity are sedentary on islands, and that they become so even when they are migratory on the mainland. Density-dependent variation in the age at first breeding affects the survivorship of insular populations and this, in turn, affects the movement ecology of large birds. Because density-dependent variation in the age of first breeding is critical to the long-term survival of small isolated populations of long-lived species, migratory forms can successfully colonize islands only if they become sedentary once there. Analyses of the movement ecology of continental and insular populations of 314 species of raptors, 113 species of Ciconiiformes and 136 species of passerines, along with individual-based population simulations confirm this prediction.

Conclusions

This finding has several consequences for speciation, colonization and survival of small isolated population of species with deferred sexual maturity.  相似文献   

10.

Background  

The genus Campylobacter includes many species, some of which are known human and animal pathogens. Even though studies have repeatedly identified domestic dogs as a risk factor for human campylobacteriosis, our understanding of Campylobacter ecology in this reservoir is limited. Work to date has focused primarily on a limited number of species using culture-based methods. To expand our understanding of Campylobacter ecology in dogs, a collection of fecal samples from 70 healthy and 65 diarrheic pet dogs were examined for the presence and levels of 14 Campylobacter species using quantitative PCR.  相似文献   

11.

Background  

How novel morphological traits originate and diversify represents a major frontier in evolutionary biology. Horned beetles are emerging as an increasingly popular model system to explore the genetic, developmental, and ecological mechanisms, as well as the interplay between them, in the genesis of novelty and diversity. The horns of beetles originate during a rapid growth phase during the prepupal stage of larval development. Differential growth during this period is either implicitly or explicitly assumed to be the sole mechanism underlying differences in horn expression within and between species. Here I focus on male horn dimorphisms, a phenomenon at the center of many studies in behavioral ecology and evolutionary development, and quantify the relative contributions of a previously ignored developmental process, pupal remodeling, to the expression of male dimorphism in three horned beetle species.  相似文献   

12.

Background and Aims

Most Neotropical species of Malpighiaceae produce floral fatty oils in calyx glands to attract pollinating oil-collecting bees, which depend on this resource for reproduction. This specialized type of pollination system tends to be lost in members of the family that occur outside the geographic distribution (e.g. Africa) of Neotropical oil-collecting bees. This study focused on the pollination ecology, chemical ecology and reproductive biology of an oil flower species, Pterandra pyroidea (Malpighiaceae) from the Brazilian Cerrado. Populations of this species consist of plants with oil-secreting (glandular) flowers, plants with non-oil-secreting flowers (eglandular) or a mix of both plant types. This study specifically aims to clarify the role of eglandular morphs in this species.

Methods

Data on pollinators were recorded by in situ observations. Breeding system experiments were conducted by isolating inflorescences and by enzymatic reactions. Floral resources, pollen and floral oils offered by this species were analysed by staining and a combination of various spectroscopic methods.

Key Results

Eglandular flowers of P. pyroidea do not act as mimics of their oil-producing conspecifics to attract pollinators. Instead, both oil-producing and oil-free flowers depend on pollen-collecting bees for reproduction, and their main pollinators are bumble-bees. Floral oils produced by glandular flowers are less complex than those described in closely related genera.

Conclusions

Eglandular flowers represent a shift in the pollination system in which oil is being lost and pollen is becoming the main reward of P. pyroidea flowers. Pollination shifts of this kind have hitherto not been demonstrated empirically within Neotropical Malpighiaceae and this species exhibits an unusual transition from a specialized towards a generalized pollination system in an area considered the hotspot of oil-collecting bee diversity in the Neotropics. Transitions of this type provide an opportunity to study ongoing evolutionary mechanisms that promote the persistence of species previously involved in specialized mutualistic relationships.  相似文献   

13.

Background

Understanding the factors that generate and maintain biodiversity is a central goal in ecology. While positive species interactions (i.e., facilitation) have historically been underemphasized in ecological research, they are increasingly recognized as playing important roles in the evolution and maintenance of biodiversity. Dominant habitat-forming species (foundation species) buffer environmental conditions and can therefore facilitate myriad associated species. Theory predicts that facilitation will be the dominant community-structuring force under harsh environmental conditions, where organisms depend on shelter for survival and predation is diminished. Wind-swept, arid Patagonian rocky shores are one of the most desiccating intertidal rocky shores ever studied, providing an opportunity to test this theory and elucidate the context-dependency of facilitation.

Methodology/Principal Findings

Surveys across 2100 km of southern Argentinean coastline and experimental manipulations both supported theoretical predictions, with 43 out of 46 species in the animal assemblage obligated to living within the matrices of mussels for protection from potentially lethal desiccation stress and predators having no detectable impact on diversity.

Conclusions/Significance

These results provide the first experimental support of long-standing theoretical predictions and reveal that in extreme climates, maintenance of whole-community diversity can be maintained by positive interactions that ameliorate physical stress. These findings have important conservation implications and emphasize that preserving foundation species should be a priority in remediating the biodiversity consequences of global climate change.  相似文献   

14.
15.

Background

“The enigma of soil animal species diversity” was the title of a popular article by J. M. Anderson published in 1975. In that paper, Anderson provided insights on the great richness of species found in soils, but emphasized that the mechanisms contributing to the high species richness belowground were largely unknown. Yet, exploration of the mechanisms driving species richness has focused, almost exclusively, on above-ground plant and animal communities, and nearly 35 years later we have several new hypotheses but are not much closer to revealing why soils are so rich in species. One persistent but untested hypothesis is that species richness is promoted by small-scale environmental heterogeneity.

Methodology/Principal Findings

To test this hypothesis we manipulated small-scale heterogeneity in soil properties in a one-year field experiment and investigated the impacts on the richness of soil fauna and evenness of the microbial communities. We found that heterogeneity substantially increased the species richness of oribatid mites, collembolans and nematodes, whereas heterogeneity had no direct influence on the evenness of either the fungal, bacterial or archaeal communities or on species richness of the large and mobile mesostigmatid mites. These results suggest that the heterogeneity-species richness relationship is scale dependent.

Conclusions

Our results provide direct evidence for the hypothesis that small-scale heterogeneity in soils increase species richness of intermediate-sized soil fauna. The concordance of mechanisms between above and belowground communities suggests that the relationship between environmental heterogeneity and species richness may be a general property of ecological communities.  相似文献   

16.

Background  

Because the systems of social organisation in the various species of Pemphigus aphids span the continuum from asociality through to advanced sociality (typified by the possession of morphologically specialised soldiers), the genus is an ideal model clade in which to study the influence of ecology on the origins of eusociality. We made detailed study of the ecology of three gall-dwelling species that show clear differences in their levels of social behaviour. To elucidate evolutionary relationships and to attempt to estimate the number of origins of sociality, we also created a phylogeny based on sequences spanning the mitochondrial genes Cytochrome Oxidase I and II for nine species of Pemphigus.  相似文献   

17.

A challenge

Variation is ubiquitous in nature across all spatial and temporal scales and underlies prominent ecological and evolutionary theories. Although understanding the causes and consequences of trait variation is a central goal of trait-based ecology, the scaling of trait variance across space and time (variance scaling) is unresolved.

A solution

We argue that characterizing trait variance across spatio-temporal scales using a combination of prominent power laws can elucidate the role of environmental variability in trait variation and potential mechanisms driving trait patterns. In particular, the species–time–area relationship and Taylor's power law help to establish a generalizable framework for developing and testing variance scaling theory. Finally, we outline priority research questions and tractable systems for answering them. Successional forests, long-term forest monitoring networks and censuses of short-lived taxa are ideal for coupling high-resolution environmental data with measurements of trait variance across scales to test the models proposed here.

Main conclusions

Characterizing the behaviour of variance across spatio-temporal scales is feasible and a prerequisite for developing a predictive theory of trait-based ecology.  相似文献   

18.

Background

The positive relationship between biodiversity and ecosystem functioning (BEF) is due mainly to complementarity between species. Most BEF studies primarily focused on plant interactions; however, plants are embedded in a dense network of multitrophic interactions above and below the ground, which are likely to play a crucial role in BEF relationships.

Scope

In the present review I point out the relevance of aboveground–belowground interactions as a source of complementarity effects in grassland biodiversity experiments. A review of the current knowledge on the role of decomposers, arbuscular mycorrhizal fungi, rhizobia, plant growth promoting rhizobacteria, invertebrate ecosystem engineers, herbivores, pathogens and predators in biodiversity experiments, indicates that soil biota can drive both positive and negative complementarity between plant species via a multitude of mechanisms.

Conclusions

I pose four main processes by which aboveground–belowground interactions determine positive complementarity effects: enlarging biotope space, mediating legume effects, increasing plant community resistance, and maintaining plant diversity. By contrast, soil biota may also reinforce negative complementarity effects by competing with plants for nutrients or by exerting herbivore or pathogen pressure, thereby reducing community productivity. Thus, considering aboveground–belowground interactions as well as interactions between antagonistic and mutualistic consumers may improve the mechanistic understanding of complementarity effects in plant diversity–ecosystem functioning experiments and should inspire future research.  相似文献   

19.

Aim

The Baltic Sea forms a unique regional sea with its salinity gradient ranging from marine to nearly freshwater conditions. It is one of the most environmentally impacted brackish seas worldwide, and the low biodiversity makes it particularly sensitive to anthropogenic pressures including climate change. We applied a novel combination of models to predict the fate of one of the dominant foundation species in the Baltic Sea, the bladder wrack Fucus vesiculosus.

Location

The Baltic Sea.

Methods

We used a species distribution model to predict climate change‐induced displacement of F. vesiculosus and combined these projections with a biophysical model of dispersal and connectivity to explore whether the dispersal rate of locally adapted genotypes may match estimated climate velocities to recolonize the receding salinity gradient. In addition, we used a population dynamic model to assess possible effects of habitat fragmentation.

Results

The species distribution model showed that the habitat of F. vesiculosus is expected to dramatically shrink, mainly caused by the predicted reduction of salinity. In addition, the dispersal rate of locally adapted genotypes may not keep pace with estimated climate velocities rendering the recolonization of the receding salinity gradient more difficult. A simplistic model of population dynamics also indicated that the risk of local extinction may increase due to future habitat fragmentation.

Main conclusions

Results point to a significant risk of locally adapted genotypes being unable to shift their ranges sufficiently fast considering the restricted dispersal and long generation time. The worst scenario is that F. vesiculosus may disappear from large parts of the Baltic Sea before the end of this century with large effects on the biodiversity and ecosystem functioning. We finally discuss how to reduce this risk through conservation actions, including assisted colonization and assisted evolution.  相似文献   

20.

Aim

Communities contain more individuals of small species and fewer individuals of large species. According to the ‘metabolic theory of ecology’, the relationship of log mean abundance with log mean body size across communities should exhibit a slope of −3/4 that is invariant across environmental conditions. Here, we investigate whether this slope is indeed invariant or changes systematically across gradients in temperature, resource availability and predation pressure.

Location

1048 lakes across the USA.

Time Period

2012.

Major Taxa Studied

Phytoplankton.

Results

We found that the size–abundance relationship across all sampled phytoplankton communities was significantly lower than −3/4 and near −1 overall. More importantly, we found strong evidence that the environment affects the slope: it varies between −0.33 and −0.93 across interacting gradients of temperature, resource (phosphorus) supply and zooplankton predation pressure. Therefore, phytoplankton communities have orders of magnitude more small or large cells depending on environmental conditions across geographical locations.

Conclusion

Our results emphasise the importance of the environmental factors' effect on macroecological patterns that arise through physiological and ecological processes. An investigation of the mechanisms underlying the link between individual energetics constrain and macroecological patterns would allow to predict how global warming and changes in nutrients will alter large-scale ecological patterns in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号