首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The combined effect of prostaglandin F2alpha (PGF2alpha) and cAMP on glucose transport in 3T3-L1 adipocytes was examined. In cells pretreated with PGF2alpha and 8-bromo cAMP for 8 h, a synergy between these two agents on glucose uptake was found. Insulin-stimulated glucose transport, on the other hand, was only slightly affected. The synergistic effect of these two agents was suppressed in the presence of cycloheximide and actinomycin D. In concord, immunoblot and Northern blot analyses revealed that GLUT1 protein and mRNA levels were both increased in cells pretreated with both PGF2alpha and 8-bromo cAMP, greater than the additive effect of each agent alone. The synergistic action of PGF2alpha with 8-bromo cAMP to enhance glucose transport was inhibited by GF109203X, a selective protein kinase C (PKC) inhibitor. In addition, in cells depleted of diacylglycerol-sensitive PKC by prolonged treatment with 4beta-phorbol 12beta-myristate 13alpha-acetate, a PKC activator, the synergistic effects of PGF2alpha and 8-bromo cAMP on glucose transport and GLUT1 mRNA accumulation were both abolished. Taken together, these results indicate that PGF2alpha may act with cAMP in a synergistic way to increase glucose transport, probably through enhanced GLUT1 expression by a PKC-dependent mechanism.  相似文献   

3.
The effect of prostaglandin F2alpha (PGF2alpha) on glucose transport in differentiated 3T3-L1 adipocytes was examined. Whereas PGF2alpha had little influence on insulin-stimulated 2-deoxyglucose uptake, it increased basal glucose uptake in a time- and dose-dependent manner, reaching maximum at approximately 8 h. The long-term effect of PGF2alpha on glucose transport was inhibited by both cycloheximide and actinomycin D. In concord, while the content of GLUT4 protein was not altered, immunoblot and Northern blot analyses revealed that both GLUT1 protein and mRNA levels were increased by exposure of cells to PGF2alpha. The effect of PGF2alpha on glucose uptake was inhibited by GF109203X, a selective protein kinase C (PKC) inhibitor. In addition, in cells depleted of diacylglycerol-sensitive PKC by prolonged treatment with 4beta-phorbol 12beta-myristate 13alpha-acetate (PMA), the stimulatory effects of PGF2alpha on glucose transport and GLUT1 mRNA accumulation were both inhibited. In accord, PMA was shown to stimulate GLUT1 mRNA accumulation. To further investigate if PKC may be activated by PGF2alpha, we tested several diacylglycerol-sensitive PKC isozymes and found that PGF2alpha was able to activate PKCepsilon. Taken together, these results indicate that PGF2alpha may enhance glucose transport in 3T3-L1 adipocytes by stimulating GLUT1 expression via a PKC-dependent mechanism.  相似文献   

4.
5.
6.
Facilitated glucose transport across plasma membranes is mediated by a family of transporters (GLUT1-GLUT5) that have different tissue distributions and Km values for transport. It has been shown that insulin stimulates glucose transport in fat and muscle tissues by causing the redistribution of one of these proteins (GLUT4) from inside the cell to the plasma membrane. Previous studies have shown that agents that change cAMP levels are able to modulate glucose transport in fat cells. The aim of this study was to investigate the mechanisms responsible for modulation of glucose transport by cAMP. 2-Deoxyglucose transport and insulin-regulatable glucose transporter (GLUT4) immunoreactivity in plasma and low density microsomal membranes were measured in adipocytes incubated for 30 min with insulin or dibutyryl-cAMP (Bt2cAMP). Low concentrations of Bt2cAMP (10 microM) increased 2-deoxyglucose uptake by translocating GLUT4 from low density microsomal membranes to the plasma membranes. Bt2cAMP at 1000 microM inhibited glucose transport below basal but further increased translocation of GLUT4. The effect of Bt2cAMP on translocation was additive to that of 7 nM insulin. We conclude that in rat adipocytes, Bt2cAMP acutely translocates GLUT4 but inhibits its activity to transport glucose.  相似文献   

7.
We have previously shown that glucose utilization and glucose transport were impaired in the brain of rats made deficient in n-3 polyunsaturated fatty acids (PUFA). The present study examines whether n-3 PUFA affect the expression of glucose transporter GLUT1 and glucose transport activity in the endothelial cells of the blood-brain barrier. GLUT1 expression in the cerebral cortex microvessels of rats fed different amounts of n-3 PUFA (low vs. adequate vs. high) was studied. In parallel, the glucose uptake was measured in primary cultures of rat brain endothelial cells (RBEC) exposed to supplemental long chain n-3 PUFA, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, or to arachidonic acid (AA). Western immunoblotting analysis showed that endothelial GLUT1 significantly decreased (-23%) in the n-3 PUFA-deficient microvessels compared to control ones, whereas it increased (+35%) in the microvessels of rats fed the high n-3 PUFA diet. In addition, binding of cytochalasin B indicated that the maximum binding to GLUT1 (Bmax) was reduced in deficient rats. Incubation of RBEC with 15 microM DHA induced the membrane DHA to increase at a level approaching that of cerebral microvessels isolated from rats fed the high n-3 diet. Supplementation of RBEC with DHA or EPA increased the [(3)H]-3-O-methylglucose uptake (reflecting the basal glucose transport) by 35% and 50%, respectively, while AA had no effect. In conclusion, we suggest that n-3 PUFA can modulate the brain glucose transport in endothelial cells of the blood-brain barrier, possibly via changes in GLUT1 protein expression and activity.  相似文献   

8.
We have previously shown that glucose utilization and glucose transport were impaired in the brain of rats made deficient in n-3 polyunsaturated fatty acids (PUFA). The present study examines whether n-3 PUFA affect the expression of glucose transporter GLUT1 and glucose transport activity in the endothelial cells of the blood–brain barrier. GLUT1 expression in the cerebral cortex microvessels of rats fed different amounts of n-3 PUFA (low vs. adequate vs. high) was studied. In parallel, the glucose uptake was measured in primary cultures of rat brain endothelial cells (RBEC) exposed to supplemental long chain n-3 PUFA, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, or to arachidonic acid (AA). Western immunoblotting analysis showed that endothelial GLUT1 significantly decreased (−23%) in the n-3 PUFA-deficient microvessels compared to control ones, whereas it increased (+35%) in the microvessels of rats fed the high n-3 PUFA diet. In addition, binding of cytochalasin B indicated that the maximum binding to GLUT1 (Bmax) was reduced in deficient rats. Incubation of RBEC with 15 μM DHA induced the membrane DHA to increase at a level approaching that of cerebral microvessels isolated from rats fed the high n-3 diet. Supplementation of RBEC with DHA or EPA increased the [3H]-3-O-methylglucose uptake (reflecting the basal glucose transport) by 35% and 50%, respectively, while AA had no effect. In conclusion, we suggest that n-3 PUFA can modulate the brain glucose transport in endothelial cells of the blood–brain barrier, possibly via changes in GLUT1 protein expression and activity.  相似文献   

9.
Intracellular ascorbic acid is able to modulate neuronal glucose utilization between resting and activity periods. We have previously demonstrated that intracellular ascorbic acid inhibits deoxyglucose transport in primary cultures of cortical and hippocampal neurons and in HEK293 cells. The same effect was not seen in astrocytes. Since this observation was valid only for cells expressing glucose transporter 3 (GLUT3), we evaluated the importance of this transporter on the inhibitory effect of ascorbic acid on glucose transport. Intracellular ascorbic acid was able to inhibit (3)H-deoxyglucose transport only in astrocytes expressing GLUT3-EGFP. In C6 glioma cells and primary cultures of cortical neurons, which natively express GLUT3, the same inhibitory effect on (3)H-deoxyglucose transport and fluorescent hexose 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) was observed. Finally, knocking down the native expression of GLUT3 in primary cultured neurons and C6 cells using shRNA was sufficient to abolish the ascorbic acid-dependent inhibitory effect on uptake of glucose analogs. Uptake assays using real-time confocal microscopy demonstrated that ascorbic acid effect abrogation on 2-NBDG uptake in cultured neurons. Therefore, ascorbic acid would seem to function as a metabolic switch inhibiting glucose transport in neurons under glutamatergic synaptic activity through direct or indirect inhibition of GLUT3.  相似文献   

10.
We investigated the effect of agents which raise intracellular cyclic AMP (cAMP) and protein kinase C activators on the production of plasminogen activator inhibitor type-2 (PAI-2) by cultured human promyelocytic leukemia cell line, PL-21. As previously reported, PMA, a protein kinase C activator, showed a strong stimulating effect on the PAI-2 production. 1-oleoyl-2-acetyl-sn-glycerol (OAG), another synthetic protein kinase C activator, also showed a stimulating effect, which was, however, much less than that of PMA. The agents which raise intracellular cAMP, dibutyryl cAMP, 8-bromo cAMP, prostaglandin E1, and 3-isobutyl-1-methyl-xanthine, little increased the PAI-2 production when tested alone, but showed significant synergistic effects with PMA or OAG. The synergistic effect between PMA and dibutyryl cAMP was further verified by SDS-PAGE followed by immunoblotting using a monoclonal antibody against the PAI-2. It is interesting that the up-regulation of PAI-2 by cAMP and the synergistic effect with PKC activators forms a contrast to the previous reported bi-directional regulation of endothelial PAI-1 secretion by PKC activator and cAMP.  相似文献   

11.
This study was conducted to evaluate the chronic effects of eicosapentaenoic acid (EPA) on fatty acid and glucose metabolism in human skeletal muscle cells. Uptake of [14C]oleate was increased >2-fold after preincubation of myotubes with 0.6 mM EPA for 24 h, and incorporation into various lipid classes showed that cellular triacylgycerol (TAG) and phospholipids were increased 2- to 3-fold compared with control cells. After exposure to oleic acid (OA), TAG was increased 2-fold. Insulin (100 nM) further increased the incorporation of [14C]oleate into all lipid classes for EPA-treated myotubes. Fatty acid beta-oxidation was unchanged, and complete oxidation (CO2) decreased in EPA-treated cells. Basal glucose transport and oxidation (CO2) were increased 2-fold after EPA, and insulin (100 nM) stimulated glucose transport and oxidation similarly in control and EPA-treated myotubes, whereas these responses to insulin were abolished after OA treatment. Lower concentrations of EPA (0.1 mM) also increased fatty acid and glucose uptake. CD36/FAT (fatty acid transporter) mRNA expression was increased after EPA and OA treatment compared with control cells. Moreover, GLUT1 expression was increased 2.5-fold by EPA, whereas GLUT4 expression was unchanged, and activities of the mitogen-activated protein kinase p38 and extracellular signal-regulated kinase were decreased after treatment with OA compared with EPA. Together, our data show that chronic exposure of myotubes to EPA promotes increased uptake and oxidation of glucose despite a markedly increased fatty acid uptake and synthesis of complex lipids.  相似文献   

12.
We have previously shown that glucose utilization and glucose transport were impaired in the brain of rats made deficient in n-3 polyunsaturated fatty acids (PUFA). The present study examines whether n-3 PUFA affect the expression of glucose transporter GLUT1 and glucose transport activity in the endothelial cells of the blood–brain barrier. GLUT1 expression in the cerebral cortex microvessels of rats fed different amounts of n-3 PUFA (low vs. adequate vs. high) was studied. In parallel, the glucose uptake was measured in primary cultures of rat brain endothelial cells (RBEC) exposed to supplemental long chain n-3 PUFA, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, or to arachidonic acid (AA). Western immunoblotting analysis showed that endothelial GLUT1 significantly decreased (−23%) in the n-3 PUFA-deficient microvessels compared to control ones, whereas it increased (+35%) in the microvessels of rats fed the high n-3 PUFA diet. In addition, binding of cytochalasin B indicated that the maximum binding to GLUT1 (Bmax) was reduced in deficient rats. Incubation of RBEC with 15 μM DHA induced the membrane DHA to increase at a level approaching that of cerebral microvessels isolated from rats fed the high n-3 diet. Supplementation of RBEC with DHA or EPA increased the [3H]-3-O-methylglucose uptake (reflecting the basal glucose transport) by 35% and 50%, respectively, while AA had no effect. In conclusion, we suggest that n-3 PUFA can modulate the brain glucose transport in endothelial cells of the blood–brain barrier, possibly via changes in GLUT1 protein expression and activity.  相似文献   

13.
Methylene blue (MB), a common cell stain, has been shown to inhibit nitric oxide synthase and guanylate cyclase, which has led to the recent use of MB in nitric oxide signaling studies. This study documents the effects of MB on 2-deoxyglucose (2DG) uptake in L929 fibroblast cells where uptake is controlled by a single glucose transporter, GLUT 1. MB significantly activates cytochalasin B-inhibitable glucose transport in a dose dependent fashion within 10 min. A maximal stimulation of up to 800% was achieved by 50 microM MB after a 45-min exposure. The Vmax of transport increased without a change in the Km, which was accomplished without a significant change in the GLUT 1 content. The reduced form of MB, did not stimulate 2DG uptake and potassium ferricyanide, an extracellular redox agent, prevented both the staining and stimulatory effects of MB suggesting MB is reduced at the cell surface before it enters L929 cells. Phenylarsine oxide did not block cell staining as noted in other cells lines, but it did inhibit both basal and MB-stimulated 2DG uptake. Likewise, methyl-beta-cyclodextrin, an agent used to remove membrane cholesterol, blocked both the staining and stimulatory effects of MB. The AMP analog, AICAR, inhibited rather than activated basal 2DG uptake, and it did not alter MB-stimulated uptake suggesting that AMP kinase activation is not critical to the MB effect. Wortmannin, an inhibitor of PI kinase, had no effect on MB-stimulated 2DG uptake. These data provide additional insight into the acute regulation of GLUT 1 transport activity in L929 cells.  相似文献   

14.
The possible role of cAMP and/or arachidonic acid (and metabolites) in the stimulation of glucose transport elicited by bradykinin in Swiss 3T3 fibroblasts was investigated with particular attention to the part of this effect inhibitable by pertussis toxin. Application of the membrane permeant cAMP analog 8-BrcAMP modified neither basal nor stimulated transport observed after bradykinin, insulin, or the combination of the two, indicating that [cAMP]i fluctuations are probably not involved. In contrast, arachidonic acid, which is released by the cells exposed to bradykinin, was able to markedly stimulate glucose transport, however, only at relatively high concentrations (EC50 approximately 30 microM). The stimulation by arachidonic acid was insensitive to pertussis toxin and was largely inhibited by both the cyclooxygenase blocking drug, indomethacin, and the [Ca2+]i clamping at the resting level (by ionomycin administered in a Ca2(+)-free incubation medium). Neither of the last treatments affected the glucose transport activated by bradykinin to a great extent. Moreover, the bradykinin-induced arachidonic acid release was unaffected by pertussis toxin and markedly inhibited by two treatments ineffective on glucose transport, the blockade of [Ca2+]i increases elicited by the peptide and the administration of the phospholipase A2 blocker, quinacrine. These results exclude that glucose transport stimulation by bradykinin is mediated intracellularly via arachidonic acid release. Since the involvement of Ca2+ and diacylglycerol can also be ruled out by present and previous results, this effect of the peptide appears to be independent of the generation of known second messengers and might be triggered by the direct interaction of a pertussis toxin-sensitive G protein with the glucose transporter in the plane of the plasma membrane.  相似文献   

15.
We recently proposed that arachidonic acid serves as a second messenger within granulosa cells from the largest preovulatory follicle of the hen. The present studies were conducted to determine whether the inhibitory effects of arachidonic acid on LH-induced cAMP accumulation and on the ability of cells to convert 25-hydroxycholesterol to progesterone are mediated via the protein kinase C pathway. Furthermore, we determined the effects of arachidonic acid on plasminogen activator activity in granulosa cells. In the first experiment, the putative protein kinase C inhibitor, staurosporine, completely reversed the inhibitory effects of phorbol 12-myristate 13-acetate (PMA) on LH-promoted cAMP formation, but failed to overcome the inhibitory effects of arachidonic acid. Prolonged pretreatment (18 h) with 1.6 microM PMA depleted granulosa cells of both cytosolic and membrane-associated protein kinase C, and subsequently attenuated the inhibitory effects of PMA on LH-induced progesterone production; however, such depletion did not alter the inhibitory effects of phospholipase A2 (PLA2; an agent that increases intracellular levels of arachidonic acid). PMA, but not arachidonic acid, caused a rapid (within 2 min) translocation of protein kinase C from the cytosol to the membrane (a characteristic of agents that activate protein kinase C). Finally, both arachidonic acid and PLA2 inhibit plasminogen activator (PA) activity in a dose-dependent fashion, whereas activation of protein kinase C with PMA stimulates PA activity. Taken together, the data suggest that the effects of arachidonic acid in granulosa cells can occur independently of protein kinase C activation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Insulin stimulates glucose transport in adipocytes and muscle cells by triggering redistribution of the GLUT4 glucose transporter from an intracellular perinuclear location to the cell surface. Recent reports have shown that the microtubule-depolymerizing agent nocodazole inhibits insulin-stimulated glucose transport, implicating an important role for microtubules in this process. In the present study we show that 2 microm nocodazole completely depolymerized microtubules in 3T3-L1 adipocytes, as determined morphologically and biochemically, resulting in dispersal of the perinuclear GLUT4 compartment and the Golgi apparatus. However, 2 microm nocodazole did not significantly effect either the kinetics or magnitude of insulin-stimulated glucose transport. Consistent with previous studies, higher concentrations of nocodazole (10-33 microm) significantly inhibited basal and insulin-stimulated glucose uptake in adipocytes. This effect was not likely the result of microtubule depolymerization because in the presence of taxol, which blocked nocodazole-induced depolymerization of microtubules as well as the dispersal of the perinuclear GLUT4 compartment, the inhibitory effect of 10-33 microm nocodazole on insulin-stimulated glucose uptake prevailed. Despite the decrease in insulin-stimulated glucose transport with 33 microm nocodazole we did not observe inhibition of insulin-stimulated GLUT4 translocation to the cell surface under these conditions. Consistent with a direct effect of nocodazole on glucose transporter function we observed a rapid inhibitory effect of nocodazole on glucose transport activity when added to either 3T3-L1 adipocytes or to Chinese hamster ovary cells at 4 degrees C. These studies reveal a new and unexpected effect of nocodazole in mammalian cells which appears to occur independently of its microtubule-depolymerizing effects.  相似文献   

17.
The protein-modifying agent arsenite stimulates glucose uptake in 3T3-L1 adipocytes. In the current study we have analysed the signalling pathways that contribute to this response. By subcellular fractionation we observed that arsenite, like insulin, induces translocation of the GLUT1 and GLUT4 glucose transporters from the low-density membrane fraction to the plasma membrane. Arsenite did not activate early steps of the insulin receptor (IR)-signalling pathway and the response was insensitive to inhibition of phosphatidylinositol-3'-kinase (PI-3') kinase by wortmannin. These findings indicate that the 'classical' IR-IR substrate-PI-3' kinase pathway, that is essential for insulin-induced GLUT4 translocation, is not activated by arsenite. However, arsenite-treatment did induce tyrosine-phosphorylation of c-Cbl. Furthermore, treatment of the cells with the tyrosine kinase inhibitor, tyrphostin A25, abolished arsenite-induced glucose uptake, suggesting that the induction of a tyrosine kinase by arsenite is essential for glucose uptake. Both arsenite and insulin-induced glucose uptake were inhibited partially by the p38 MAP kinase inhibitor, SB203580. This compound had no effect on the magnitude of translocation of glucose transporters indicating that the level of glucose transport is determined by additional factors. Arsenite- and insulin-induced glucose uptake responded in a remarkably similar dose-dependent fashion to a range of pharmacological- and peptide-inhibitors for atypical PKC-lambda, a downstream target of PI-3' kinase signalling in insulin-induced glucose uptake. These data show that in 3T3-L1 adipocytes both arsenite- and insulin-induced signalling pathways project towards a similar cellular response, namely GLUT1 and GLUT4 translocation and glucose uptake. This response to arsenite is not functionally linked to early steps of the IR-IRS-PI-3' kinase pathway, but does coincide with c-Cbl phosphorylation, basal levels of PKC-lambda activity and p38 MAPK activation.  相似文献   

18.
The chicken erythroblast cell line, HD3, has high glucose transport activity which is lost upon differentiation to the red cell phenotype. HD3 cells, when incubated under conditions where maturation occurs, show substantial loss of GLUT1 and GLUT3 mRNAs. To assess whether cAMP or cellular protein phosphorylation affected GLUT mRNA and protein, the HD3 cells were incubated in the presence of different phosphatase inhibitors. Treatment of HD3 cells with the phosphatase inhibitors okadaic acid, vanadate or with 3-isobutyl-1-methyl-xanthine induced glucose transport and GLUT mRNAs. This suggests that phosphorylation events enhance glucose transport and that their reduction may be involved in the decrease in glucose transport that occurs upon HD3 cells differentiation.  相似文献   

19.
The mechanism via which diacylglycerol-sensitive protein kinase Cs (PKCs) stimulate glucose transport in insulin-sensitive tissues is poorly defined. Phorbol esters, such as phorbol-12-myristate-13-acetate (PMA), are potent activators of conventional and novel PKCs. Addition of PMA increases the rate of glucose uptake in many different cell systems. We attempted to investigate the mechanism via which PMA stimulates glucose transport in 3T3-L1 adipocytes in more detail. We observed a good correlation between the rate of disappearance of PKCbetaII during prolonged PMA treatment and the increase in glucose uptake. Moreover, inhibition of PKCbetaII with a specific myristoylated PKCbetaC2-4 peptide inhibitor significantly increased the rate of glucose transport. Western blot analysis demonstrated that both PMA treatment and incubation with the myristoylated PKCbetaC2-4 pseudosubstrate resulted in more glucose transporter (GLUT)-1 but not GLUT-4 at the plasma membrane. To our knowledge, we are the first to demonstrate that inactivation of PKC, most likely PKCbetaII, elevates glucose uptake in 3T3-L1 adipocytes. The observation that PKCbetaII influences the rate of glucose uptake through manipulation of GLUT-1 expression levels at the plasma membrane might reveal a yet unidentified regulatory mechanism involved in glucose homeostasis.  相似文献   

20.
Effects of prolonged metabolic (glucose deprivation) and hormonal [insulin-like growth factor I (IGF-I)] challenge on regulation of glucose transporter (GLUT) expression, glucose transport rate and possible signaling pathways involved were studied in the neuroendocrine chromaffin cell. The results show that bovine chromaffin cells express both GLUT1 and GLUT3. Glucose deprivation and IGF-I activation led to an elevation of GLUT1 and GLUT3 mRNA, the strongest effect being that of IGF-I on GLUT3 mRNA. Both types of stimulus increased the GLUT1 protein content in a cycloheximide (CHX)-sensitive manner, and the glucose transport rate was elevated by 3- to 4-fold after 48 h under both experimental conditions. IGF-I-induced glucose uptake was totally suppressed by CHX. In contrast, only approximately 50% of transport activation in glucose-deprived cells was sensitive to the protein synthesis inhibitor. Specific inhibitors of mTOR/FRAP and p38 MAPK each partially blocked IGF-I-stimulated glucose transport, but had no effect on transport rate in glucose-deprived cells. The results are consistent with IGF-I-activated transport being completely dependent on new GLUT protein synthesis while the enhanced transport in glucose-deprived cells was partially achieved independent of new synthesis of proteins, suggesting a mechanism relying on preexisting transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号