首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary Sodium balance in the green turtle,Chelonia mydas, has been investigated in both seawater and freshwater. In seawater the unidirectional Na efflux is 131 M · 100 g–1 · h–1, over 90% of which is via the head region and less than 5% each is via the cloaca and the integument. After 17 days in freshwater the efflux of Na has declined by 97% and the majority is via the cloaca. The integumental efflux in freshwater is less than that in seawater indicating that a change in skin permeability, trans-skin electrical potential or pattern of blood flow has taken place. Although there are indications that Na is actively extracted from freshwater by the green turtle, this species faces a net loss of Na of the medium and the blood Na concentration falls significantly. When transferred from seawater to freshwater the turtle's orbital salt gland is turned off within 25 h after transfer. The salt gland does not become functional until 400 h after transfer from freshwater to seawater.  相似文献   

2.
1.  We investigated potassium (K) transport in vitro across four major segments of the avian intestine. In normal fed birds, the most proximal segment, the duodenum, had very low unidirectional rates of K transport (Jms 6.7 nEq·cm–2·hr–1; Jsm 7.7 nEq·cm–2·hr–1). The jejunum had the greatest unidirectional K flux of the segments studied (Jms 36.6 and Jsm 85.5 nEq·cm–2·hr–1), and this segment showed a net K secretion (48.9 nEq·cm–2·hr–1). The ileum had a significantly lower Jms (16.5 nEq·cm–2·hr–1) than did the jejunum, and this segment also showed a net K secretion (28 nEq·cm–2·hr–1). Potassium transport across the mucosal surface of the colon was very low (Jms 7.7 nEq·cm–2·hr–1) while the Jsm flux was relatively large, giving a net K secretion of 45.7 nEq·cm–2·hr–1.
2.  When tissues were bathed in solutions having approximately normal in vivo K concentrations on both sides of the membranes and open circuit PD (to simulate in vivo conditions), the jejunum was the only segment that showed a net K absorption (83 nEq·cm–2·hr–1).
3.  When birds were fed a low K diet for 2 weeks, the colon showed the greatest response with Jms for K increasing 12 fold over control.
4.  From these studies we conclude that in normal birds the duodenum appears to be relatively impermeable to K and does not appear to play a significant role in K transport. However, the jejunum by virtue of its relatively greater permeability to K, the total length of jejunum comprising the intestine (66%), and the in vivo K gradients, seems to be most important in K absorption in the normal bird. The ileum and colon were major sites of K secretion in vitro and appear to be most important in intestinal regulation of K transport in response to changes in the dietary K load.
  相似文献   

3.
Summary The action of poly-l-lysine (PLL) on Na and Cl transport across freshwater fish gills was studied. Low concentrations (10–6M) were added to the external medium for brief periods (1–5 min), then removed. During the next 20 min there was a rapid net loss of Na (117±17 Equiv[100 g]–1 hr–1) and Cl (129±17 Equiv[100 g]–1 hr–1). Both values are an order of magnitude larger than unidirectional effluxes in control fish. The efflux of both ions decreased to control values within 60 min after application and removal of PLL. In contrast, unidirectional influxes (J in Cl andJ in Na ) were inhibited by about 40% and showed no sign of returning to the original rates for 3 hr. Thus, PLL has two independent actions, causing a large increase in gill permeability which is reversible within an hour and a partial inhibition of influx which showed no sign of reversing for 2–3 hr. When PLL was applied for a longer period (60 min, the results were qualitatively similar but the permeability change was larger and persisted longer. These effects were compared with those of the small organic amines, amiloride and methyl-l-lysine. The latter inhibitedJ in Na , but there was no other similarity to PLL. Neither affected sodium efflux, nor did they have any effect on Cl movements, in or out, across the gill. Inhibition ofJ in Na , was rapidly and completely reversible, amd amiloride was shown to act by competing with Na for an entry site.  相似文献   

4.
Summary Sodium or chloride efflux and transepithelial potentials (TEP) were measured in crabs exposed to seawater concentrations ranging from 150 to 25% SW. In crabs acclimated to 150% SW the Na+ efflux (3.8 mmol/h·100 g) was significantly higher than the Cl efflux (2.1 mmol/h·100 g), but both fluxes decreased to about 0.6 mmol/h·100 g in crabs from 50 or 25% SW. The TEP varied linearly from –1 mV (blood negative) in 150% SW, to –11 mV in 25% SW. In 150 and 100% SW the calculated components of the ion fluxes (i.e., diffusive, urinary, active uptake or extrusion) added up to less than one-half of the isotopically measured values. In 50 and 25% SW the measured effluxes were fully accounted for by their calculated components. In crabs transferred from 150% SW to low-Na 150% SW (=TRIS ASW), the Na+ efflux decreased abruptly, from 3.7 to 0.6 mmol/h; the Cl efflux decreased much less, from 1.9 to 1.5 mmol/h. A large fraction of the Na+ (or Cl) fluxes in crabs from concentrated SW meets the criteria for exchange diffusion, which decreases or disappears as the external concentration of each ion is lowered. This suggests that changes of the permeability to ions, in response to alterations of environmental salinity, may not constitute an important adaptive strategy in this species.Abbreviations SW seawater - TEP transepithelial potential - TRIS ASW artificial seawater 150%  相似文献   

5.
Summary Renal clearance studies were performed in European starlings (Sturnus vulgaris) in order to determine the extent of ureteral sodium excretion under control conditions and during an acute, hyperosmotic salt stress. These experiments also estimated the contribution of the lower intestine (colon and cloaca) to postrenal solute reabsorption by making both cloacal and ureteral urine collections in the same birds. A comparison of ureteral vs cloacal excretion rates found significantly higher sodium (9.09±1.30 vs 1.03±0.38 Eq·kg–1·min–1) and chloride (4.15±0.56 vs 1.00±0.38 Eq·kg–1·min–1) excretion rates during the ureteral collections. Fractional excretion of sodium was also significantly higher during ureteral collections, but this value did not exceed 1% of the filtered sodium load during either collection series. Urine flow rate was significantly higher during cloacal collections, suggesting osmotic back-flux of water across the cloacal wall. Infusion of a 1M NaCl solution resulted in rapid increases in glomerular filtration rate (GFR), urine flow rate, and urine osmolality. Fractional sodium and water reabsorption decreased by 11% and 4%, respectively. Glomerular counts and size distribution profiles, measured by in vivo alcian blue labelling, provided no evidence for a reduction in the number of filtering glomeruli during hyperosmotic saline loading. We conclude that renal sodium excretion rates for the starling are similar to those seen in other avian species and in mammals. These studies also provide direct evidence for postrenal modification of urine in this species, even under conditions of continuous flow. Acute hyperosmotic salt stress can, under some conditions, cause increased rather than decreased GFR, indicating multiple regulatory pathways. Finally, there was no evidence in these studies for glomerular shutdown in response to salt loading.  相似文献   

6.
A modified Rotating Biological Contactor (RBC) was used for the treatability studies of synthetic tapioca wastewaters. The RBC used was a four stage laboratory model and the discs were modified by attaching porous nechlon sheets to enhance biofilm area. Synthetic tapioca wastewaters were prepared with influent concentrations from 927 to 3600 mg/l of COD. Three hydraulic loads were used in the range of 0.03 to 0.09 m3·m–2·d–1 and the organic loads used were in the range of 28 to 306 g COD· m–2·d–1. The percentage COD removal were in the range from 97.4 to 68. RBC was operated at a rotating speed of 18 rpm which was found to be the optimal rotating speed. Biokinetic coefficients based on Kornegay and Hudson models were obtained using linear analysis. Also, a mathematical model was proposed using regression analysis.List of Symbols A m2 total surface area of discs - d m active depth of microbial film onany rotating disc - K s mg ·l–1 saturation constant - P mg·m–2·–1 area capacity - Q l·d–1 hydraulic flow rate - q m3·m–2·d–1 hydraulic loading rate - S 0 mg·l–1 influent substrate concentration - S e mg·l–1 effluent substrate concentration - w rpm rotational speed - V m3 volume of the reactor - X f mg·l–1 active biomass per unit volume ofattached growth - X s mg·l–1 active biomass per unit volume ofsuspended growth - X mg·l–1 active biomass per unit volume - Y s yield coefficient for attachedgrowth - Y A yield coefficient for suspendedgrowth - Y yield coefficient, mass of biomass/mass of substrate removed Greek Symbols hr mean hydraulic detention time - (max)A d–1 maximum specific growth rate forattached growth - (max)s d–1 maximum specific growth rate forsuspended growth - max d–1 maximum specific growth rate - d–1 specific growth rate - v mg·l–1·hr–1 maximum volumetric substrateutilization rate coefficient  相似文献   

7.
Summary Ionic and respiratory parameters of large rainbow trout were measured during freshwater to seawater transfer. Branchial Cl efflux increased immediately on transfer and urine excretion of Cl increased after 14 h. Branchial Na+ efflux however did not start to build up until 4–5 h after transfer and there was no increase in urinary Na+ excretion. These differences are discussed.The acid/base balance showed no major changes but arterial fell greatly on transfer but by 5 h had returned to 82% of the normal level. After 24 h arterial had decreased markedly again and this continued to the end of the experiment. On seawater transfer oxygen consumption fell gradually for 5 h and then rapidly increased back to the freshwater value. Possible explanations of these observations are discussed in relation to gill morphology and function during the transfer period.  相似文献   

8.
Summary A kinetic analysis of anion self-exchange in human red blood cells, in the presence of an irreversible inhibitor, is presented and applied to the study of the inactivation of sulfate transport by three isothiocyanates: 3-isothiocyano-1,5-naphthalenedisulfonic acid, disodium salt (INDS), 1-isothiocyano-4-naphthalene sulfonic acid, sodium salt, monohydrate (INS), and 1-isothiocyano-4-benzenesulfonic acid, sodium salt, monohydrate (IBS). The time dependence of the inhibition of sulfate transport by the isothiocyanates used could be described by a single exponential and could be shown to contain a reversible and an irreversible component. In each case a portion of sulfate efflux was found to be resistant to inactivation. The residual portion of the sulfate efflux varied with inhibition: 4% for INS, 16% for INDS, and 34% for IBS. INS showed the largest reversible inhibitory effect (12% of the flux remaining at 0.2mm inhibitor concentration), while INDS showed the weakest effect (92% of the flux remaining at 0.3mm inhibitor concentration). IBS had the highest rate of inactivation while INDS had the lowest. The kinetic analysis further suggests that all three isothiocyanates bind reversibly to an inhibitory site on the membrane before they bind covalently, and therefore irreversibly, to the same site on the membrane. The equilibrium constant for the dissociation of the reversibly-bound complex,K i, and the rate of irreversible inactivation after all membrane sites are reversibly bound,k max, have been computed for all three inhibitors: INDS (K i=420m,k max=5.04 hr–1), INS (K i=148 m,k max=6.48 hr–1), and IBS (K i=208 m,k max=8.11 hr–1).  相似文献   

9.
Isolated posterior gills of shore crabs,Carcinus maenas, previously acclimated for at least 1 month to brackish water of 10 S, were connected with an artificial hemolymph circulation by means of thin polyethylene tubings. Gills were symmetrically perfused and bathed with 50 % sea water. Transepithelial potential differences (PDs) and fluxes of sodium between medium and blood were measured under control conditions and following reductions of PDs by means of 5 mM internal (blood side) ouabain, 0.5 mM internal and external (bathing medium) NaCN or by exhaustion of energy reserves along with a prolonged perfusion period of more than 9 h. In these experiments22Na was used as tracer. Each of the three modes of reducing transepithelial potential differences resulted in a decrease in sodium influxes from 500–1000 µmoles g–1 h–1 to 250–400 µmoles g–1 h–1. The findings suggest that sodium influx, which normally greatly exceeds efflux, was diminished by its active component. The remaining non-inhibitable influx equals efflux values. Our findings thus indicate that efflux is completely passive, while influx has — beside a passive component of efflux magnitudes — an additional active portion which is much larger than the passive component. Since ouabain is a specific inhibitor of the Na-K-ATPase, our results confirm previous findings (Siebers et al., 1985) that the basolaterally located Na-K-ATPase generates the transepithelial potential difference in the gills, which is inside negative by about 6–12 mV. Inhibition of the active portion of sodium influx by internal ouabain along with reduced PDs suggests that transepithelial PDs generated by the branchial sodium pump are the driving force for active sodium uptake in hyperregulating brackish water crabs.  相似文献   

10.
The effects of light intensity, oxygen concentration, and pH on the rates of photosynthesis and net excretion by metalimnetic phytoplankton populations of Little Crooked Lake, Indiana, were studied. Photosynthetic rates increased from 1.42 to 3.14 mg C·mg–1 chlorophylla·hour–1 within a range of light intensities from 65 to 150E·m–2·sec–1, whereas net excretion remained constant at 0.05 mg C·mg–1 chlorophylla·hour–1. Bacteria assimilated approximately 50% of the carbon released by the phytoplankton under these conditions. Excreted carbon (organic compounds either assimilated by bacteria or dissolved in the lake water) was produced by phytoplankton at rates of 0.02–0.15 mg C·mg–1 chlorophylla·hour–1. These rates were 6%–13% of the photosynthetic rates of the phytoplankton. Both total excretion of carbon and bacterial assimilation of excreted carbon increased at high light intensities whereas net excretion remained fairly constant. Elevated oxygen concentrations in samples incubated at 150E· m–2·sec–1 decreased rates of both photosynthesis and net excretion. The photosynthetic rate increased from 3.0 to 5.0 mg C·mg–1 chlorophylla· hour–1 as the pH was raised from 7.5 to 8.8. Net excretion within this range decreased slightly. Calculation of total primary production using a numerical model showed that whereas 225.8 g C·m–2 was photosynthetically fixed between 12 May and 24 August 1982, a maximum of about 9.3 g C·m–2 was released extracellularly.  相似文献   

11.
Summary We have investigated the effect of a purified preparation of Charybdotoxin (CTX) on the Ca-activated K+ (Ca–K) channel of human red cells (RBC). Cytosolic Ca2+ was increased either by ATP depletion or by the Ca ionophore A23187 and incubation in Na+ media containing CaCl2. The Ca–K efflux activated by metabolic depletion was partially (77%) inhibited from 15.8±2.4 mmol/liter cell · hr, to 3.7±1.0 mmol/liter cell · hr by 6nm CTX (n=3). The kinetic of Ca–K efflux was studied by increasing cell ionized Ca2+ using A23187 (60 mol/liter cell), and buffering with EGTA or citrate; initial rates of net K+ efflux (90 mmol/liter cell K+) into Na+ medium containing glucose, ouabain, bumetanide at pH 7.4 were measured. Ca–K efflux increased in a sigmoidal fashion (n of Hill 1.8) when Ca2+ was raised, with aK m of 0.37 m and saturating between 2 and 10 m Ca2+. Ca–K efflux was partially blocked (71±7.8%, mean ±sd,n=17) by CTX with high affinity (IC500.8nm), a finding suggesting that is a high affinity ligand of Ca–K channels. CTX also blocked 72% of the Ca-activated K+ efflux into 75mm K+ medium, which counteracted membrane hyperpolarization, cell acidification and cell shrinkage produced by opening of the K+ channel in Na+ media. CTX did not block Valinomycin-activated K+ efflux into Na+ or K+ medium and therefore it does not inhibit K+ movement coupled to anion conductive permeability.TheV max, but not theK m–Ca of Ca–K efflux showed large individual differences varying between 4.8 and 15.8 mmol/liter cell · min (FU). In red cells with Hb A,V max was 9.36±3.0 FU (mean ±sd,n=17). TheV max of the CTX-sensitive, Ca–K efflux was 6.27±2.5 FU (range 3.4 to 16.4 FU) in Hb A red cells and it was not significantly different in Hb S (6.75±3.2 FU,n=8). Since there is larger fraction of reticulocytes in Hb S red cells, this finding indicates that cell age might not be an important determinant of theV max of Ca–K+ efflux.Estimation of the number of CTX-sensitive Ca-activated K+ channels per cell indicate that there are 1 to 3 channels/per cell either in Hb A or Hb S red cells. The CTX-insensitive K+ efflux (2.7±0.9 FU) may reflect the activity of a different channel, nonspecific changes in permeability or coupling to an anion conductive pathway.  相似文献   

12.
Summary Ion flux relations in the unicellular marine algaAcetabularia have been investigated by uptake and washout kinetics of radioactive tracers (22Na+,42K+,36Cl and86Rb+) in normal cells and in cell segments with altered compartmentation (depleted of vacuole or of cytoplasm). Some flux experiments were supplemented by simultaneous electrophysiological recordings. The main results and conclusions about the steady-state relations are: the plasmalemma is the dominating barrier for translocation of K+ with influx and efflux of about 100 nmol·m–2·sec–1×K+ passes three- to sevenfold more easily than Rb+ does. Under normal conditions, Cl (the substrate of the electrogenic pump, which dominates the electrical properties of the plasmalemma in the resting state) shows two efflux components of about 17 and 2 mol·m–2·sec–1, and a cytoplasmic as well as vacuolar [Cl] of about 420mm ([Cl] o =529mm). At 4°C, when the pump is inhibited, both influx and efflux, as well as the cellular [Cl], are significantly reduced. Na+ ([Na+] i : about 70mm, [Na+] o : 461mm), which is of minor electrophysiological relevance compared to K+, exhibits rapid and virtually temperature-insensitive (electroneutral) exchange (two components with about 2 and 0.2 mol·m–2·sec–1 for influx and efflux). Some results with Na+ and Cl are inconsistent with conventional (noncyclic) compartmentation models: (i) equilibration of the vacuole (with the external medium) can be faster than equilibration of the cytoplasm, (ii) absurd concentration values result when calculated by conventional compartmental analysis, and (iii) large amounts of ions can be released from the cell without changes in the electrical potential of the cytoplasm. These observations can be explained by the particular compartmentation of normalAcetabularia cells (as known by electron micrographs) with about 1 part cytoplasm, 5 parts central vacuole, and 5 parts vacuolar vesicles. These vesicles communicate directly with the central vacuole, with the cytoplasm and with the external medium.  相似文献   

13.
Summary Phosphate efflux was measured as the fractional rate of loss of radioactivity from rabbit vagus loaded with radiophosphate. The effects of changes in extracellular calcium and of lanthanum have been investigated. In Locke solution with normal, 0.9mm, calcium and without phosphate, the fractional rate of loss was 1.62×10–3 min–1 at 120 min after the beginning of the washing period and fell slowly (9% hr–1) during washing from 2 to 6 hr. Addition of calcium to the Locke solution produced a transient increase followed by a reversible maintained increase in phosphate efflux. The latter was 40 and 75% above efflux in normal calcium for 20 and 50mm calcium, respectively. Removal of calcium, with or without addition of EGTA, produced only a transient increase in phosphate efflux, with no subsequent maintained change. Addition of low concentrations of lanthanum produced a reversible inhibition of phosphate efflux. Half-maximal inhibition was at 3.5 m lanthanum and appeared to be due to binding of lanthanum to more than one, probably two, sites. Measurements of inhibition by lanthanum at different calcium concentrations did not indicate any competition between calcium and lanthanum. It is suggested that at least a part of phosphate efflux depends on internal calcium and that lanthanum acts by preventing release of phosphate from the phosphate transport mechanism.  相似文献   

14.
Biochemical and biophysical parameters, including D1-protein turnover, chlorophyll fluorescence, oxygen evolution activity and zeaxanthin formation were measured in the marine seagrassZostera capricorni (Aschers) in response to limiting (100 mol·m–2·–1), saturating (350 mol·m–2·s–1) or photoinhibitory (1100 mol·m–2·s–1) irradiances. Synthesis of D1 was maximal at 350 mol·m–2·s–1 which was also the irradiance at which the rate of photosynthetic O2 evolution was maximal. Degradation of D1 was saturated at 350 mol·m–2·s–1. The rate of D1 synthesis at 1100 mol·m–2·s–1 was very similar to that at 350 mol·m–2·s–1 for the first 90 min but then declined. At limiting or saturating irradiance little change was observed in the ratio of variable to maximal fluorescence (Fv/Fm) measured after dark adaptation of the leaves, while significant photoinhibition occurred at 1100 mol·m–2·s–1. The proportion of zeaxanthin in the total xanthophyll pool increased with increasing irradiance, indicative of the presence of a photoprotective xanthophyll cycle in this seagrass. These results are consistent with a high level of regulatory D1 turnover inZostera under non-photoinhibitory irradiance conditions, as has been found previously for terrestrial plants.We would like to thank Professor Peter Böger (Department of Plant Biochemistry, University of Konstanz, Germany) for the kind gift of D1 antibodies. This work was partly supported by a University of Queensland Enabling Grant to CC.  相似文献   

15.
The long term shear effects on a hybridoma cell line were studied by the simulation of a hollow fiber perfusion system. Various mechanical/environmental stress conditions were applied and steady state concentrations of live, dead and lysed cells were measured or calculated in a continuous culture. From mathematical modeling, it is shown that inclusion of a lysed cell index (LCI) renders a better fit to the material balance equation at steady state. The specific cell death rate increased with increasing shear force as expected only when the LCI was included. Without the inclusion of the LCI, the calculated specific cell growth rates are about 25–60% of the value when included. The results reported may lend some insight to design improvements since most perfusion devices add shear stresses to the cells in the reactor.List of Symbols b ml/hr continuous culture flow rate - D hr–1 dilution rate (b/V) - m g glucose/109 cells/hr specific maintenance coefficient - S 0 g/l feed substrate concentration - S g/l reactor substrate concentration - t hr time - V ml reactor volume - X + cells/ml live cell concentration - X cells/ml dead cell concentration - X 0 cells/ml lysed cell concentration - Y x/s 109 cells/g glucose cell/substrate yield coefficient - hr–1 specific growth rate - hr–1 specific death rate - hr–1 specific lysis rate - hr–1 specific lysis rate for simultaneous death and lysis  相似文献   

16.
Thylakoids isolated from cells of the red alga Porphyridium cruentum exhibit an increased PS I activity on a chlorophyll basis with increasing growth irradiance, even though the stoichiometry of Photosystems I and II in such cells shows little change (Cunningham et al. (1989) Plant Physiol 91: 1179–1187). PS I activity was 26% greater in thylakoids of cells acclimated at 280 mol photons · m–2 · s–1 (VHL) than in cells acclimated at 10 mol photons · m–2 · s–1 (LL), indicating a change in the light absorbance capacity of PS I. Upon isolating PS I holocomplexes from VHL cells it was found that they contained 132±9 Chl/P700 while those obtained from LL cells had 165±4 Chl/P700. Examination of the polypeptide composition of PS I holocomplexes on SDS-PAGE showed a notable decrease of three polypeptides (19.5, 21.0 and 22 kDa) in VHL-complexes relative to LL-complexes. These polypeptides belong to a novel LHC I complex, recently discovered in red algae (Wolfe et al. (1994a) Nature 367: 566–568), that lacks Chl b and includes at least six different polypeptides. We suggest that the decrease in PS I Chl antenna size observed with increasing irradiance is attributable to changes occurring in the LHC I-antenna complex. Evidence for a Chl-binding antenna complex associated with PS II core complexes is lacking at this point. LHC II-type polypeptides were not observed in functionally active PS II preparations (Wolfe et al. (1994b) Biochimica Biophysica Acta 1188: 357–366), nor did we detect polypeptides that showed immunocross-reactivity with LHC II specific antisera (made to Chlamydomonas and Euglena LHC II).Abbreviations Bis-Tris bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane - DCPIP 2,6-dichlorophenol indophenol - -dm dodecyl--d-maltoside - HL high light of 150 mol photons · m–2 · s–1 - LGB lower green band - LHC I light-harvesting complex of PS I - LHC II light-harvesting complex of PS II - LL low light of 10 mol photons · m–2 · s–1 - ML medium light of 50 mol photons · m–2 · s–1 - MES 2-(N-morpholino) ethanesulfonic acid - P700 reaction center of PS I - PFD photon flux density - Trizma tris(hydroxymethyl)aminomethane - UGB upper green band - VHL very high light of 280 mol photons · m–2 · s–1  相似文献   

17.
Summary Sodium and water balance ofDytiscus verticalis in fresh water were investigated under three feeding regimes: unfed, and fed a diet either low or high in sodium chloride. Unfed sodium influx was 0.13 and sodium efflux was 0.74 moles/100 gwm·h. These values are low in comparison with most freshwater animals. The electrical potential difference across the integument in artificial soft water (ASW) was about 150 mV smaller than the potential necessary to maintain sodium balance in the absence of active transport. However, sodium influx did not show saturation kinetics over an external concentration range of 91 to 1725 M. Unfed beetles failed to arrest net sodium loss to baths that were initially distilled water or ASW, even when bath sodium concentrations reached 75–298 M. The long-term rate of net sodium loss ranged from 0.61 to 4.4 moles/100 gwm·h for four sets of animals. Beetles decreased sodium efflux during a period of fasting. During subsequent feeding, beetles fed a high sodium diet (HSD) increased sodium efflux while beetles fed a low sodium diet (LSD) maintained low rates of sodium efflux. HSD fed beetles increased body sodium and hemolymph sodium concentration, and expanded extracellular fluid, relative to LSD fed beetles. Thus beetles cannot achieve sodium balance in fresh water without dietary sodium input, although they are able to regulate sodium loss.Abbreviations gwm grams wet mass - ASW artificial soft water - DW distilled water - HSD high sodium diet - LSD low sodium diet - ECF extracellular fluid volume  相似文献   

18.
Summary The lachrymal salt glands ofChelonia mydas were functional when hatchlings emerged from the nest. Osmotic concentrations up to 720 mosmol kg–1 were recorded in spontaneously produced tears (salt gland secretions). When injected with a Na+ load (1500–2700 mol (100 g)–1) newly emerged hatchlings produced tears ranging in osmotic concentration from 1000–1900 mosmol kg–1 with Na+ secretion rates from single glands of 200–475 mol (100 g·h)–1. In these circumstances the rate of sodium excretion, via the salt glands, was equivalent to the sodium content of 0.2 to 0.5 ml of sea water per hour. Since the apparent drinking rate of hatchlings within the first two days of entering sea water was approximately 0.5 to 1.7 ml per day, the excretion of Na+ imbibed by drinking is well within the secretory capacity of the lachrymal salt glands.In feeding hatchlings extraordinarily high Na+ secretion rates were induced by Na+ loading. Hatchlings which were loaded with Na+ by injection (1500–5400 mol (100 g)–1) produced tears having osmotic concentrations between 1500 and >2000 mosmol kg–1. The Na+ secretion rates from single glands were 750–4185 mol (100 g·h)–1 with extremely high short term rates of 10700 mol (100 g·h)–1 (50 mol min–1 for 28 g hatchlings).In terms of gland mass the highest long term secretion rate translates into 21 mmol of Na+ per gram of salt gland per hour and is the highest secretion rate yet recorded for a reptilian salt gland. This rate is almost three times the highest rate recorded for sea snakes (8 mmol g·h–1) and is similar to rates commonly observed in avian salt glands (25 mmol g·h–1).Secretion by the lachrymal salt glands was initiated by increased blood concentrations of Na+ or K+, K+ being as effective as Na+ but with the composition of the teras being virtually unchanged compared to tears from Na+ stimulated hatchlings. Preliminary experiments indicated that secretion was not initiated by increased Cl concentration in the blood or by increased volume or osmotic concentration of the blood.Abbreviation O.P. osmotic pressure  相似文献   

19.
Tryptamine levels have been determined in mouse brain regions and spinal cord and in rat spinal cord. They were; caudate nucleus 2.5 ng·g–1, hypothalamus <0.5 ng·g–1, hippocampus <0.7 ng·g–1, olfactory bulb <0.7 ng·g–1, olfactory tubercles <0.6 ng·g–1, brain stem <0.4 ng·g–1, cerebellum <1.0 ng·g–1, and the rest 0.9 ng·g–1. The mouse whole brain was found to have 0.5 ng·g–1, the mouse spinal cord 0.3 ng·g–1, and the rat spinal cord 0.3 ng·g–1. These concentrations increased rapidly to 22.8 ng·g–1, 14.2 ng·g–1, and 6.6 ng·g–1 respectively at 1 hr after 200 mg·kg–1 pargyline. The turnover rates and half lives of tryptamine in the mouse brain and spinal cord and rat spinal cord were estimated to be 0.14 nmol·g–1·h–1 and 0.9 min; 0.054 nmol·g–1·h–1 and 1.5 min and 0.04 nmol·g–1·h–1 and 1.6 min respectively. The aromaticl-aminoacid decarboxylase inhibitors NSD 1034 and NSD 1055 reduced synthesis of tryptamine in controls and pargyline pretreated animals. Tryptophan increased the concentrations of mouse striatal tryptamine and 5-hydroxytryptamine and brain stem 5-hydroxyindole acetic acid.p-Chlorophenylalanine reduced formation of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid but did not change that of tryptamine.  相似文献   

20.
The growth of the anaerobic acetogenic bacterium Acetobacterium woodii DSM 1030 was investigated in fructose-limited chemostat cultures. A defined medium was developed which contained fructose, mineral salts, cysteine · HCl and Ca pantothenate (1 mg · 1–1) supplied in a vitamin supplement. Growth at high dilution rates was dependent on the presence of CO2 in the gas phase. The max was found to be 0.16 h–1 and the fructose maintenance requirement was 0.1 to 0.13 mmol fructose · (g dry wt)–1 · h–1. A growth yield of 61 g dry wt · (mol fructose)–1, corrected for the cell maintenance requirement and for incorporation of fructose carbon into cell biomass, was determined from the fructose consumption. A corresponding growth yield of 69 g dry wt · (mol fructose)–1 was calculated from the acetate production assuming that fructose fermentation was homoacetogenic. A YATP of 12.2 to 13.8 g dry wt · (mol ATP)–1 was calculated from these growth yields using a value of 5 mol ATP · (mol fructose)–1 as an estimate of the amount of ATP synthesised from fructose fermentation. The addition of yeast extract (0.5 g · 1–1) to the medium did not influence the max or cell yield. After prolonged growth under fructose-limited conditions the requirement of the culture for CO2 in the gas phase was reduced.Abbreviations YE yeast extract - IC inorganic carbon - D fermenter dilution rate : h–1 - MX maintenance requirement for X: mmol X · (g dry wt)–1 · h–1 - X may be fructose (Fruct), fructose consumed in energy metabolism (Fruct [E]), acetate (Ac) - ATP CO2, NH inf4 sup+ or Pi - qX specific rate of utilisation or consumption of X: mmol X · (g dry wt)–1 · h–1 - V fermenter volume: litre - rC · Cell, fermenter cell carbon production: mmol C · h–1 - YX yield of cells on X: g dry wt · (mol X)–1 - Y infx supmax the yield corrected for cell maintenance: g dry wt · (mol X)–1 - SATP stoichiometry of ATP synthesis from fructose: mol ATP · (mol frucose)–1 - x cell concentration: g dry wt · 1–1 - specific growth rate : h–1 - max maximum specific growth rate: h–1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号