首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The apoprotein of glucose oxidase from Aspergillus niger was reconstituted with specifically 15N- and 13C-enriched FAD derivatives and investigated by 15N- and 13C-NMR spectroscopy. On the basis of the 15N-NMR results it is suggested that, in the oxidized state of glucose oxidase, hydrogen bonds are formed to the N(3) and N(5) positions of the isoalloxazine system. The hydrogen bond to N(3) is more pronounced than that to N(5) as compared with the respective hydrogen bonds formed between FMN and water. The resonance position of N(10) indicates a small decrease in sp2 hybridization compared to free flavin in water. Apparently the isoalloxazine ring is not planar at this position in glucose oxidase. Additional hydrogen bonds at the carbonyl groups of the oxidized enzyme-bound FAD were derived from the 13C-NMR results. A strong downfield shift observed for the C(4a) resonance may be ascribed in part to the decrease in sp2 hybridization at the N(10) position and to the polarization of the carbonyl groups at C(2) and C(4). The polarization of the isoalloxazine ring in glucose oxidase is more similar to FMN in water than to that of tetraacetyl-riboflavin in apolar solvents. In the reduced enzyme the N(1) position is anionic at pH 5.6. The pKa is shifted to lower pH values by at least 1 owing to the interaction of the FAD with the apoprotein. As in the oxidized state of the enzyme, a hydrogen bond is also formed at the N(3) position of the reduced flavin. The N(5) and N(10) resonances of the enzyme-bound reduced FAD indicate a decrease in the sp2 character of these atoms as compared with that of reduced FMN in aqueous solution. Some of the 15N- and 13C-resonance positions of the enzyme-bound reduced cofactor are markedly pH-dependent. The pH dependence of the N(5) and C(10a) resonances indicates a decrease in sp2 hybridization of the N(5) atom with increasing pH of the enzyme solution.  相似文献   

2.
The apoenzyme of NADPH oxidoreductase, 'old yellow enzyme', was reconstituted with specifically 15N-labeled flavin mononucleotide and investigated by 15N NMR spectroscopy in the oxidized and reduced state. The results indicate that in the oxidized state a hydrogen bond is formed between the N(5) atom and the apoprotein. In addition, hydrogen bonds exist between the N(1) and N(3) atoms of FMN and the apoprotein. The resonance position of N(10) indicates that this atom is somewhat sp3-hybridized, i.e. lifted out of the molecular plane of the isoalloxazine ring system. In the reduced state the N(1) atom is negatively charged and the N(3) atom forms a hydrogen bond with the apoprotein. The N(10) atom in protein-bound FMN exhibits about the same hybridization state as in free anionic reduced FMN, i.e. it is located in the plane of the isoalloxazine ring. The chemical shift of the N(5) resonance indicates that this atom is almost completely sp3-hybridized. This interpretation can also be derived from the 15N(5)-1H coupling constant. Among the flavoproteins thus far studied by NMR techniques, old yellow enzyme is the only protein that shows a conformation of the reduced prosthetic group with the N(5) atom lifted out of the molecular plane. The isoelectric focussing properties of old yellow enzyme and a new easy method for the preparation of the apoprotein are also reported.  相似文献   

3.
Sequence-specific 1H and 13C NMR assignments have been made for residues that form the five-stranded parallel beta-sheet and the flavin mononucleotide (FMN) binding site of oxidized Anabaena 7120 flavodoxin. Interstrand nuclear Overhauser enhancements (NOEs) indicate that the beta-sheet arrangement is similar to that observed in the crystal structure of the 70% homologous long-chain flavodoxin from Anacystis nidulans [Smith et al. (1983) J. Mol. Biol. 165, 737-755]. A total of 62 NOEs were identified: 8 between protons of bound FMN, 29 between protons of the protein in the flavin binding site, and 25 between protons of bound FMN and protons of the protein. These constraints were used to determine the localized solution structure of the FMN binding site. The electronic environment and conformation of the protein-bound flavin isoalloxazine ring were investigated by determining 13C chemical shifts, one-bond 13C-13C and 15N-1H coupling constants, and three-bond 13C-1H coupling constants. The carbonyl edge of the flavin ring was found to be slightly polarized. The xylene ring was found to be nonplanar. Tyrosine 94, located adjacent to the flavin isoalloxazine ring, was shown to have a hindered aromatic ring flip rate.  相似文献   

4.
A new procedure was devised for reversibly removing the flavin from flavocytochrome b2. It allowed reconstitution with selectively enriched 13C- and 15N-labelled FMN for an NMR analysis of the chemical shifts of the enriched positions as well as that of 31P. From these measurements, it was possible to deduce information about the hydrogen-bonding pattern of FMN in the protein, the hybridization states of the nitrogen atoms and (in part) the pi-electron distribution. The carbonyl groups at C(2) and C(4) and the nitrogen atoms N(1) and N(5) form hydrogen bonds to the apoenzyme in both redox states. Nevertheless, according to 15N-chemical shifts, the bond from the protein to N(3) is very weak in both redox states, whereas that to N(5) is strong for the oxidized state, and is weakened upon flavin reduction. On the other hand, the 13C-NMR results indicate that the C(2) and C(4) carbonyl oxygens form stronger hydrogen bonds with the enzyme than most other flavoproteins in both redox states. From coupling constant measurements it is shown that the N(3) proton is not solvent accessible. Although no N-H coupling constant could be measured for N(5) in the reduced state due to lack of resolution, N(5) is clearly protonated in flavocytochrome b2 as in all other known flavoproteins. With respect to N(10), it is more sp3-hybridized in the oxidized state than in free FMN, whereas the other nitrogen atoms show a nearly planar structure. In the reduced state, N(5) and N(10) in bound FMN are both more sp3-hybridized than in free FMN, but N(5) exhibits a higher degree of sp3-hybridization than N(10), which is only slightly shifted out of the isoalloxazine plane. In addition, two-electron reduction of the enzyme leads to anion formation on N(1), as indicated by its 15N-chemical shift of N(1) and characteristic upfield shifts of the resonances of C(2), C(4) and C(4a) compared to the oxidized state, as observed for most flavoproteins. 31P-NMR measurements show that the phosphate geometry has changed in enzyme bound FMN compared to the free flavin in water, indicating a strong interaction of the phosphate group with the apoenzyme.  相似文献   

5.
The interaction between the apoprotein of 6-hydroxy-L-nicotine oxidase from Arthrobacter oxidans and the prosthetic group FAD has been investigated by 13C, 15N, and 31P NMR techniques. The FAD prosthetic group was selectively enriched in 13C and 15N isotopes by adding isotopically labeled riboflavin derivatives to the growth medium of riboflavin-requiring mutant cells. In the oxidized state the chemical shift of the C(7) and C(8) atoms indicates that the xylene moiety of the isoalloxazine ring is embedded in a hydrophobic environment. The polarization of the isoalloxazine ring as a whole is, however, much more comparable to that of free flavin in a polar and protic environment than to free flavin in an apolar environment. The polarization of the ring system can be ascribed to strong hydrogen bonds between the apoprotein and the two carbonyl groups. The binding of the competitive inhibitor, 6-hydroxy-D-nicotine, influences the resonances of the C(4a) and the N(5) atoms strongly. It is suggested that these shifts are due to a strong hydrogen-bonding interaction between the N(5) atom and the inhibitor. On reduction all resonances, except those of the C(10a) and the N(1) atoms, shift upfield, indicating the increased electron density in the ring system. In the dithionite-reduced enzyme, the ring system is bent at the N(5) position. Due to the bending of the N(5) atom and the sp2 hybridized N(10) atom, electron density from the N(10) atom is reallocated at the C(4) carbonyl group. In contrast, in the substrate-reduced enzyme the N(5) atom is almost completely sp2 hybridized, yielding a rather planar isoalloxazine ring.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Murray TA  Foster MP  Swenson RP 《Biochemistry》2003,42(8):2317-2327
A mechanism has been proposed for the binding of flavin mononucleotide (FMN) and riboflavin to the apoflavodoxin from Desulfovibrio vulgaris [Murray, T. A., and Swenson, R. P. (2003) Biochemistry 42, 2307-2316]. In this model, the binding of the flavin isoalloxazine ring is dependent on the presence of a phosphate moiety in the phosphate-binding subsite, suggesting a cooperative interaction between that region and the ring-binding subsite. In the absence of inorganic phosphate, FMN can bind through the initial association of its 5'-phosphate group in the phosphate-binding subsite followed by insertion of the flavin ring. Because riboflavin lacks the 5'-phosphate group, it is unable to bind to this apoprotein in the absence of inorganic phosphate in solution. However, inorganic phosphate can enhance the rate of ring binding by occupying the phosphate-binding subsite. In this paper, NMR, near-UV circular dichroism (CD), and fluorescence spectroscopy provide evidence for a phosphate-induced conformational change within the isoalloxazine ring-binding subsite. Phosphate-dependent changes in the chemical shifts of 22 amide groups were observed in (1)H-(15)N HSQC NMR spectra. The majority of these groups are proximal to the phosphate-binding subsite or the loops that constitute the isoalloxazine ring-binding site. Also, a phosphate-dependent change in the environment or position of the Trp60 side chain was apparent in the NMR data and was confirmed by associated changes in the near-UV CD and tryptophan fluorescence spectra when compared to the spectra of the W60A mutant. These data suggest that phosphate, either the 5'-phosphate of the FMN or inorganic phosphate from solution, facilitates the movement of the side chain of Trp60 out of the isoalloxazine ring-binding site and other associated conformational changes, creating a population of apoflavodoxin that is capable of binding the isoalloxazine ring. This conformational switch may explain why some apoflavodoxins cannot bind riboflavin and also supports the "aromatic gate" model proposed from the crystal structure of the Anabaena apoflavodoxin [Genzor, C. G., Perales-Alcon, A., Sancho, J., and Romero, A. (1996) Nat. Struct. Biol. 3, 329-332].  相似文献   

7.
Desulfovibrio vulgaris apoflavodoxin has been reconstituted with 15N and 13C-enriched riboflavin 5'-phosphate. For the first time all carbon atoms of the isoalloxazine ring of the protein-bound prosthetic group have been investigated. The reconstituted protein was studied in the oxidized and in the two-electron-reduced state. The results are interpreted in terms of specific interactions between the apoprotein and the prosthetic group, and the chemical structure of protein-bound FMN. In the oxidized state weak hydrogen bonds exist between the apoprotein and the N(5), N(3) and O(4 alpha) atoms of FMN. The N(1) and O(2 alpha) atoms of FMN form strong hydrogen bonds. The isoalloxazine ring of FMN is strongly polarized and the N(10) atom shows an increased sp2 hybridisation compared to that of free FMN in aqueous solution. The N(3)-H group is not accessible to bulk solvent, as deduced from the coupling constant of the N(3)-H group. In the reduced state the hydrogen bond pattern is similar to that in the oxidized state and in addition a strong hydrogen bond is observed between the N(5)-H group of FMN and the apoprotein. The reduced prosthetic group possesses a coplanar structure and is ionized. The N(3)-H and N(5)-H groups are not accessible to solvent water. Two-electron reduction of the protein leads to a large electron density increase in the benzene subnucleus of bound FMN compared to that in free FMN. The results are discussed in relation to the published crystallographic data on the protein.  相似文献   

8.
The flavodoxins from Megasphaera elsdenii, Clostridium MP, and Azotobacter vinelandii were studied by 13C, 15N, and 31P NMR techniques by using various selectivity enriched oxidized riboflavin 5'-phosphate (FMN) derivatives. It is shown that the pi electron distribution in protein-bound flavin differs from that of free flavin and depends also on the apoflavoprotein used. In the oxidized state Clostridium MP and M. elsdenii flavodoxins are very similar with respect to specific hydrogen bond interaction between FMN and the apoprotein and the electronic structure of flavin. A. vinelandii flavodoxin differs from these flavodoxins in both respects, but it also differs from Desulfovibrio vulgaris flavodoxin. The similarities between A. vinelandii and D. vulgaris flavodoxins are greater than the similarities with the other two flavodoxins. The differences in the pi electron distribution in the FMN of reduced flavodoxins from A. vinelandii and D. vulgaris are even greater, but the hydrogen bond patterns between the reduced flavins and the apoflavodoxins are very similar. In the reduced state all flavodoxins studied contain an ionized prosthetic group and the isoalloxazine ring is in a planar conformation. The results are compared with existing three-dimensional data and discussed with respect to the various possible mesomeric structures in protein-bound FMN. The results are also discussed in light of the proposed hypothesis that specific hydrogen bonding to the protein-bound flavin determines the specific biological activity of a particular flavoprotein.  相似文献   

9.
Dihydroxyanthraquinone (DHAQ) and ametantrone (anthraquinone) are two new anthracenedione antineoplastic agents which were found by proton NMR spectroscopy to self-associate in aqueous media. Self-association was consistent with a bimolecular model, with average association constant values of 3400 and 2900 m?1 determined for DHAQ and ametantrone, respectively. Both anthracenediones interacted with the flavin nucleotides FMN and FAD to produce concentration-dependent upfield shifts of the flavin isoalloxazine ring proton signals, as observed by proton NMR spectroscopy. Average association constant values obtained for FMN-DHAQ, FAD-DHAQ, FMN-metantrone, and FAD-ametantrone complexation were 5100, 2600, 4300, and 1600 m?1, respectively. Optical difference spectroscopy confirmed FMN-DHAQ complexation, which resulted in a hyperchromic, bathochromic shift of the DHAQ spectrum following addition of FMN. These results were consistent with the formation of a ππ bimolecular ring-stacking complex. Information obtained on anthracenedione self-association and complexation with flavins may be of consequence in the interpretation of anthracenedione-DNA binding data and flavoprotein-mediated anthracenedione metabolic activation.  相似文献   

10.
Porphobilinogen synthase (PBGS) catalyzes the asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). Despite the 280,000-dalton size of PBGS, much can be learned about the reaction mechanism through 13C and 15N NMR. To our knowledge, these studies represent the largest protein complex for which individual nuclei have been characterized by 13C or 15N NMR. Here we extend our 13C NMR studies to PBGS complexes with [3,3-2H2,3-13C]ALA and report 15N NMR studies of [15N]ALA bound to PBGS. As in our previous 13C NMR studies, observation of enzyme-bound 15N-labeled species was facilitated by deuteration at nitrogens that are attached to slowly exchanging hydrogens. For holo-PBGS at neutral pH, the NMR spectra reflect the structure of the enzyme-bound product porphobilinogen (PBG), whose chemical shifts are uniformly consistent with deprotonation of the amino group whose solution pKa is 11. Despite this local environment, the protons of the amino group are in rapid exchange with solvent (kexchange greater than 10(2) s-1). For methyl methanethiosulfonate (MMTS) modified PBGS, the NMR spectra reflect the chemistry of an enzyme-bound Schiff base intermediate that is formed between C4 of ALA and an active-site lysine. The 13C chemical shift of [3,3-2H2,3-13C]ALA confirms that the Schiff base is an imine of E stereochemistry. By comparison to model imines formed between [15N]ALA and hydrazine or hydroxylamine, the 15N chemical shift of the enzyme-bound Schiff base suggests that the free amino group is an environment resembling partial deprotonation; again the protons are in rapid exchange with solvent. Deprotonation of the amino group would facilitate formation of a Schiff base between the amino group of the enzyme-bound Schiff base and C4 of the second ALA substrate. This is the first evidence supporting carbon-nitrogen bond formation as the initial site of interaction between the two substrate molecules.  相似文献   

11.
In order to describe the detailed conformation of the oxidized flavodoxin from a eukaryotic red alga, Chondrus crispus, the crystal structure has been refined by a restrained least-squares method. The crystallographic R factor is 0.168 for 13,899 reflections with F greater than 2 sigma F between 6.0 and 1.8 A resolution. The refined model includes 173 amino acid residues, flavin mononucleotide (FMN) and 110 water molecules. The root-mean-square deviation in bond lengths from ideal values is 0.015 A, and the mean co-ordinate error is estimated to be 0.2 A. The FMN is located at the periphery of the molecule. The orientation of the isoalloxazine ring is such that the C-7 and C-8 methyl groups are exposed to solvent and the pyrimidine moiety is buried in the protein. Three peptide segments, T8-T13, T55-T58 and D94-C103, are involved in FMN binding. The first segment of T8-T13 enfolds the phosphate group of the FMN. The three oxygen atoms in the phosphate group form extensive hydrogen bonds with amide groups of the main chain and the O gamma atoms of the side-chains in this segment. T55 O and W56 N epsilon 1 in the second segment form hydrogen bonds with O-2 in the ribityl moiety and one of the oxygen atoms in the phosphate group, respectively. The O gamma H of T58 forms a hydrogen bond with the N-5 atom in the isoalloxazine ring, which is expected to be protonated in the semiquinone form. The third segment is in contact with the isoalloxazine ring. It appears that the hydrogen bond acceptor of the NH of Asp94 in the third segment is O-2 rather than N-1 in the isoalloxazine ring. The isoalloxazine ring is flanked by the side-chains of Trp56 and Tyr98; it forms an angle of 38 degrees with the indole ring of Trp56 and is almost parallel to the benzene ring of Tyr98. The environment of the phosphate group is conserved as in other flavodoxins whereas that of the isoalloxazine ring differs. The relationship between the hydrogen bond to the N-5 in the ring and the redox potential for the oxidized/semiquinone couple is discussed.  相似文献   

12.
1. Dinitrophenylation of 2 +/- 0.2mol of residues/mol of enzyme-bound FMN resulted in the complete inactivation of the flavoenzyme L-lactate oxidase. 2. Hydrolysates of the inactivated enzyme contained 1mol each of Nim-Dnp-histidine (abbreviation: Dnp-,2,4-dinitrophenyl-; Nim indicates that either of the N atoms in the imidazole ring is substituted) and epsilon-Dnp-lysine/mol of FMN. 3. Competitive inhibitors decreased the extent of inactivation to a 10% loss of activity, and dinitrophenylation was decreased from 2 to approx. 0.5mol/mol of FMN. Only Nim-Dnp-histidine was detected in the hydrolysates. 4. Although the dinitrophenylated enzyme did not possess enzyme activitiy, L-lactate reduced approx. 50% of the enzyme-bound flavin slowly (0.6min-1), and approx. 50% of the flavin in the modified enzyme-bound flavin slowly (0.6min-1), and approx. 50% of the flavin in the modified enzyme formed a complex with bisulphite. 6. The modified enzyme (2mol of Dnp/mol of FMN) was unable to bind substrate analogues and competitive inhibitors.  相似文献   

13.
Thioredoxin reductase (TrxR) from Escherichia coli, the mutant proteins E159Y and C138S, and the mutant protein C138S treated with phenylmercuric acetate were reconstituted with [U-(13)C(17),U-(15)N(4)]FAD and analysed, in their oxidized and reduced states, by (13)C-, (15)N- and (31)P-NMR spectroscopy. The enzymes studied showed very similar (31)P-NMR spectra in the oxidized state, consisting of two peaks at -9.8 and -11.5 p.p.m. In the reduced state, the two peaks merge into one apparent peak (at -9.8 p.p.m.). The data are compared with published (31)P-NMR data of enzymes closely related to TrxR. (13)C and (15)N-NMR chemical shifts of TrxR and the mutant proteins in the oxidized state provided information about the electronic structure of the protein-bound cofactor and its interactions with the apoproteins. Strong hydrogen bonds exist between protein-bound flavin and the apoproteins at C(2)O, C(4)O, N(1) and N(5). The N(10) atoms in the enzymes are slightly out of the molecular plane of the flavin. Of the ribityl carbon atoms C(10alpha,gamma,delta) are the most affected upon binding to the apoprotein and the large downfield shift of the C(10gamma) atom indicates strong hydrogen bonding with the apoprotein. The hydrogen bonding pattern observed is in excellent agreement with X-ray data, except for the N(1) and the N(3) atoms where a reversed situation was observed. Some chemical shifts observed in C138S deviate considerably from those of the other enzymes. From this it is concluded that C138S is in the FO conformation and the others are in the FR conformation, supporting published data. In the reduced state, strong hydrogen bonding interactions are observed between C(2)O and C(4)O and the apoprotein. As revealed by the (15)N chemical shifts and the N(5)H coupling constant the N(5) and the N(10) atom are highly sp(3) hybridized. The calculation of the endocyclic angles for the N(5) and the N(10) atoms shows the angles to be approximately 109 degrees, in perfect agreement with X-ray data showing that the flavin assumes a bent conformation along the N(10)/N(5) axis of the flavin. In contrast, the N(1) is highly sp(2) hybridized and is protonated, i.e. in the neutral state. Upon reduction of the enzymes, the (13)C chemical shifts of some atoms of the ribityl side chain undergo considerable changes also indicating conformational rearrangements of the side-chain interactions with the apoproteins. The chemical shifts between native TrxR and C138S are now rather similar and differ from those of the two other mutant proteins. This strongly indicates that the former enzymes are in the FO conformation and the other two are in the FR conformation. The data are discussed briefly in the context of published NMR data obtained with a variety of flavoproteins.  相似文献   

14.
Murray TA  Swenson RP 《Biochemistry》2003,42(8):2307-2316
The pathway(s) by which the flavin cofactor binds to the apoflavoprotein is the subject of some debate. The crystal and NMR structures of several different flavodoxins have provided some insight, although there is disagreement about the location of the initial interaction between the flavin mononucleotide (FMN) and the apoflavodoxin and the degree of protein conformational change associated with cofactor binding [Genzor, C. G., Perales-Alcon, A., Sancho, J., and Romero, A. (1996) Nat. Struct. Biol. 3, 329-332; Steensma, E., and van Mierlo, C. P. M. (1998) J. Mol. Biol. 282, 653-666]. Binding kinetics using stopped-flow spectrofluorimetry and phosphate competition studies were used to develop a model for flavin binding to the flavodoxin from Desulfovibrio vulgaris. In the presence of phosphate, the time course of fluorescence quenching associated with FMN binding to apoflavodoxin was biphasic, whereas riboflavin, which lacks the 5'-phosphate group of FMN, displayed monophasic binding kinetics. When the concentration of phosphate in solution was increased, the FMN binding rates of the two phases behaved differently; the rate of one phase decreased, while the rate of the other increased. A similar increase in the single phase associated with riboflavin binding was also observed. This has led to the following model. The binding of the flavin isoalloxazine ring to its subsite is dependent on the presence of a phosphate group in the phosphate-binding subsite. When phosphate is in the buffer solution, FMN can bind in either of two ways: by the initial insertion of the 5'-phosphate group followed by ring binding or, when inorganic phosphate from solution is bound, the insertion of the isoalloxazine ring first. Riboflavin, which lacks the phosphate moiety of FMN, binds only in the presence of inorganic phosphate, presumably due to the binding of this group in the phosphate-binding subsite. These results suggest that cooperative interactions exist between the phosphate subsite and the ring-binding region in the D. vulgaris flavodoxin that are necessary for isoalloxazine ring binding.  相似文献   

15.
The influence of the amino acid residues surrounding the flavin ring in the flavodoxin of the cyanobacterium Anabaena PCC 7119 on the electron spin density distribution of the flavin semiquinone was examined in mutants of the key residues Trp(57) and Tyr(94) at the FMN binding site. Neutral semiquinone radicals of the proteins were obtained by photoreduction and examined by electron-nuclear double resonance (ENDOR) and hyperfine sublevel correlation (HYSCORE) spectroscopies. Significant differences in electron density distribution were observed in the flavodoxin mutants Trp(57) --> Ala and Tyr(94) --> Ala. The results indicate that the presence of a bulky residue (either aromatic or aliphatic) at position 57, as compared with an alanine, decreases the electron spin density in the nuclei of the benzene flavin ring, whereas an aromatic residue at position 94 increases the electron spin density at positions N(5) and C(6) of the flavin ring. The influence of the FMN ribityl and phosphate on the flavin semiquinone was determined by reconstituting apoflavodoxin samples with riboflavin and with lumiflavin. The coupling parameters of the different nuclei of the isoalloxazine group, as detected by ENDOR and HYSCORE, were very similar to those of the native flavodoxin. This indicates that the protein conformation around the flavin ring and the electron density distribution in the semiquinone form are not influenced by the phosphate and the ribityl of FMN.  相似文献   

16.
S Ghisla  S T Olson  V Massey  J M Lhoste 《Biochemistry》1979,18(21):4733-4742
The Zn-dependent flavoenzyme D-lactate dehydrogenase from Megasphaera elsdenii is irreversibly inactivated by the D form of the suicide substrate 2-hydroxy-3-butynoic acid. The process of inactivation involves formation of a new pink chromophore, which can be released in intact form from the protein and which was purified to homogeneity by affinity chromatography. Inactivation involves covalent addition of the suicide substrate to the flavin coenzyme. The optical spectra indicate an elongation of the flavin chromophore, and the chemical reactivity suggests a derivative of reduced flavin. The structure of this adduct was deduced from Fourier transform NMR, from the chemical properties, and from comparison with appropriate models, which were synthesized chemically. This structure involves the covalent linkage of the acetylenic inhibitor to positions N(5) and C(6) of the flavin coenzyme via carbon atoms 2 and 4 of the inhibitor to form an additional fused aromatic ring. The pink adduct can be reconverted to an isoalloxazine chromophore by reduction with borohydride and subsequent reoxidation with oxygen. This new isoalloxazine has the spectral properties of an isoflavin, and it is proposed to carry the moiety of the inactivator molecule as substituent at position C(6). The structure of the pink chromophore representing a cyclic adduct to the flavin positions N(5) and C(6) is compared to that of the adduct obtained from L-lactate oxidase from Mycobacterium smegmatis and the L form of the same inhibitor [C(4a)--N(5) cyclic adduct; Schonbrunn, A., Abeles, R. H., Walsh, C. T., Ghisla, S., Ogata, H., and Massey, V. (1976) Biochemistry 15, 1978]. This comparison allows deductions about the relative orientation of substrate, coenzyme, and active center functional groups in the two enzymes.  相似文献   

17.
Isaias Lans  Susana Frago  Milagros Medina 《BBA》2012,1817(12):2118-2127
The chemical versatility of flavin cofactors within the flavoprotein environment allows them to play main roles in the bioenergetics of all type of organisms, particularly in energy transformation processes such as photosynthesis or oxidative phosphorylation. Despite the large diversity of properties shown by flavoproteins and of the biological processes in which they are involved, only two flavin cofactors, FMN and FAD (both derived from the 7,8-dimethyl-10-(1′-D-ribityl)-isoalloxazine), are usually found in these proteins. Using theoretical and experimental approaches we have carried out an evaluation of the effects introduced upon substituting the 7- and/or 8-methyls of the isoalloxazine ring in the chemical and oxido-reduction properties of the different atoms of the ring on free flavins and on the photosynthetic Anabaena Flavodoxin (a flavoprotein that replaces Ferredoxin as electron carrier from Photosystem I to Ferredoxin-NADP+ reductase). In Anabaena Flavodoxin both the protein environment and the redox state contribute to modulate the chemical reactivity of the isoalloxazine ring. Anabaena apoflavodoxin is shown to be designed to stabilise/destabilise each one of the FMN redox states (but not of the analogues produced upon substitution of the 7- and/or 8-methyls groups) in the adequate proportions to provide Flavodoxin with the particular properties required for the functions in which it is involved in vivo. The 7- and/or 8-methyl groups of the ixoalloxazine can be discarded as the gate for electrons exchange in Anabaena Fld, but a key role in this process is envisaged for the C6 atom of the flavin and the backbone atoms of Asn58.  相似文献   

18.
p-Hydroxybenzoate hydroxylase from Pseudomonas fluorescens and salicylate hydroxylase from Pseudomonas putida have been reconstituted with 13C- and 15N-enriched FAD. The protein preparations were studied by 13C-NMR, 15N-NMR and 31P-NMR techniques in the oxidized and in the two-electron-reduced states. The chemical shift values are compared with those of free flavin in water or chloroform. It is shown that the pi electron distribution in oxidized free p-hydroxybenzoate hydroxylase is comparable to free flavin in water, and it is therefore suggested that the flavin ring is solvent accessible. Addition of substrate has a strong effect on several resonances, e.g. C2 and N5, which indicates that the flavin ring becomes shielded from solvent and also that a conformational change occurs involving the positive pole of an alpha-helix microdipole. In the reduced state, the flavin in p-hydroxybenzoate hydroxylase is bound in the anionic form, i.e. carrying a negative charge at N1. The flavin is bound in a more planar configuration than when free in solution. Upon binding of substrate the resonances of N1, C10a and N10 shift upfield. It is suggested that these upfield shifts are the result of a conformational change similar, but not identical, to the one observed in the oxidized state. The 13C chemical shifts of FAD bound to apo(salicylate hydroxylase) indicate that in the oxidized state the flavin ring is also fairly solvent accessible in the free enzyme. Addition of substrate has a strong effect on the hydrogen bond formed with O4 alpha. It is suggested that this is due to the exclusion of water from the active site by the binding of substrate. In the reduced state, the flavin is anionic. Addition of substrate forces the flavin ring to adopt a more planar configuration, i.e. a sp2-hybridized N5 atom and a slightly sp3-hybridized N10 atom. The NMR results are discussed in relation to the reaction catalyzed by the enzymes.  相似文献   

19.
Trimethylamine dehydrogenase (TMADH) is an iron-sulfur flavoprotein that catalyzes the oxidative demethylation of trimethylamine to form dimethylamine and formaldehyde. It contains a unique flavin, in the form of a 6-S-cysteinyl FMN, which is bent by approximately 25 degrees along the N5-N10 axis of the flavin isoalloxazine ring. This unusual conformation is thought to modulate the properties of the flavin to facilitate catalysis, and has been postulated to be the result of covalent linkage to Cys-30 at the flavin C6 atom. We report here the crystal structures of recombinant wild-type and the C30A mutant TMADH enzymes, both determined at 2.2 A resolution. Combined crystallographic and NMR studies reveal the presence of inorganic phosphate in the FMN binding site in the deflavo fraction of both recombinant wild-type and C30A proteins. The presence of tightly bound inorganic phosphate in the recombinant enzymes explains the inability to reconstitute the deflavo forms of the recombinant wild-type and C30A enzymes that are generated in vivo. The active site structure and flavin conformation in C30A TMADH are identical to those in recombinant and native TMADH, thus revealing that, contrary to expectation, the 6-S-cysteinyl FMN link is not responsible for the 25 degrees butterfly bending along the N5-N10 axis of the flavin in TMADH. Computational quantum chemistry studies strongly support the proposed role of the butterfly bend in modulating the redox properties of the flavin. Solution studies reveal major differences in the kinetic behavior of the wild-type and C30A proteins. Computational studies reveal a hitherto, unrecognized, contribution made by the S(gamma) atom of Cys-30 to substrate binding, and a role for Cys-30 in the optimal geometrical alignment of substrate with the 6-S-cysteinyl FMN in the enzyme active site.  相似文献   

20.
The interaction between the prosthetic group 6,7-dimethyl-8-(1'-D-ribityl)lumazine and the lumazine apoproteins from two marine bioluminescent bacteria, one from a relatively thermophilic species, Photobacterium leiognathi, and the other from a psychrophilic species, Photobacterium phosphoreum, was studied by 13C and 15N NMR using various selectively enriched derivatives. It is shown that the electron distribution in the protein-bound 6,7-dimethyl-8-ribityllumazine differs from that of free 6,7-dimethyl-8-ribityllumazine in buffer. The 13C and 15N chemical shifts indicate that the protein-bound 6,7-dimethyl-8-ribityllumazine is embedded in a polar environment and that the ring system is strongly polarized. It is concluded that the two carbonyl groups play an important role in the polarization of the molecule. The N(3)-H group is not accessible to bulk solvent. The N(8) atom is sp2 hybridized and has delta+ character. Nuclear Overhauser effect studies indicate that the 6,7-dimethyl-8-ribityllumazine ring is rigidly bound with no internal mobility. The NMR results indicate that the interaction between the ring system and the two apoproteins is almost the same.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号