共查询到20条相似文献,搜索用时 0 毫秒
1.
Knowles LL 《Journal of evolutionary biology》2004,17(1):1-10
In the newly emerging field of statistical phylogeography, consideration of the stochastic nature of genetic processes and explicit reference to theoretical expectations under various models has dramatically transformed how historical processes are studied. Rather than being restricted to ad hoc explanations for observed patterns of genetic variation, assessments about the underlying evolutionary processes are now based on statistical tests of various hypotheses, as well as estimates of the parameters specified by the models. A wide range of demographical and biogeographical processes can be accommodated by these new analytical approaches, providing biologically more realistic models. Because of these advances, statistical phylogeography can provide unprecedented insights about a species' history, including decisive information about the factors that shape patterns of genetic variation, species distributions, and speciation. However, to improve our understanding of such processes, a critical examination and appreciation of the inherent difficulties of historical inference and challenges specific to testing phylogeographical hypotheses are essential. As the field of statistical phylogeography continues to take shape many difficulties have been resolved. Nonetheless, careful attention to the complexities of testing historical hypotheses and further theoretical developments are essential to improving the accuracy of our conclusions about a species' history. 相似文献
2.
Phylogeography has become a powerful approach for elucidating contemporary geographical patterns of evolutionary subdivision within species and species complexes. A recent extension of this approach is the comparison of phylogeographic patterns of multiple co-distributed taxonomic groups, or 'comparative phylogeography.' Recent comparative phylogeographic studies have revealed pervasive and previously unrecognized biogeographic patterns which suggest that vicariance has played a more important role in the historical development of modern biotic assemblages than current taxonomy would indicate. Despite the utility of comparative phylogeography for uncovering such 'cryptic vicariance', this approach has yet to be embraced by some researchers as a valuable complement to other approaches to historical biogeography. We address here some of the common misconceptions surrounding comparative phylogeography, provide an example of this approach based on the boreal mammal fauna of North America, and argue that together with other approaches, comparative phylogeography can contribute importantly to our understanding of the relationship between earth history and biotic diversification. 相似文献
3.
A variety of research projects focus on genetic variation among and within maternal lineages as encompassed by mitochondrial DNA (mtDNA). While mtDNA often differs substantially between species, large differences may also be found within species. The evaluation of such divergent lineages, for example in intraspecific contact zones (hybrid zones), commonly involves sequencing numerous individuals. Large‐scale sequencing is both expensive and labour‐intensive. Based on sequences from 15 individuals, we devised a simple and quick polymerase chain reaction assay for identification of divergent mtDNA lineages in a secondary contact zone of the side‐blotched lizard (Uta stansburiana). The application uses lineage‐selective primers to amplify a lineage‐diagnostic product, and is based on each group of mtDNA haplotypes being a monophyletic assemblage of haplotypes sharing the same maternal ancestry, deeply divergent from the other group. The assay was tested on a larger sample (n = 147) of specimens from the contact zone, confirming its usefulness in quick and reliable identification of mtDNA lineages. This approach can be modified for other species, provided diagnostic lineage variation is available, and may also be performed in simple laboratory settings while conducting fieldwork. 相似文献
4.
Ree RH Moore BR Webb CO Donoghue MJ 《Evolution; international journal of organic evolution》2005,59(11):2299-2311
Abstract At a time when historical biogeography appears to be again expanding its scope after a period of focusing primarily on discerning area relationships using cladograms, new inference methods are needed to bring more kinds of data to bear on questions about the geographic history of lineages. Here we describe a likelihood framework for inferring the evolution of geographic range on phylogenies that models lineage dispersal and local extinction in a set of discrete areas as stochastic events in continuous time. Unlike existing methods for estimating ancestral areas, such as dispersal‐vicariance analysis, this approach incorporates information on the timing of both lineage divergences and the availability of connections between areas (dispersal routes). Monte Carlo methods are used to estimate branch‐specific transition probabilities for geographic ranges, enabling the likelihood of the data (observed species distributions) to be evaluated for a given phylogeny and parameterized paleogeographic model. We demonstrate how the method can be used to address two biogeographic questions: What were the ancestral geographic ranges on a phylogenetic tree? How were those ancestral ranges affected by speciation and inherited by the daughter lineages at cladogenesis events? For illustration we use hypothetical examples and an analysis of a Northern Hemisphere plant clade (Cercis), comparing and contrasting inferences to those obtained from dispersal‐vicariance analysis. Although the particular model we implement is somewhat simplistic, the framework itself is flexible and could readily be modified to incorporate additional sources of information and also be extended to address other aspects of historical biogeography. 相似文献
5.
Springer MS Meredith RW Janecka JE Murphy WJ 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1577):2478-2502
Palaeobiogeographic reconstructions are underpinned by phylogenies, divergence times and ancestral area reconstructions, which together yield ancestral area chronograms that provide a basis for proposing and testing hypotheses of dispersal and vicariance. Methods for area coding include multi-state coding with a single character, binary coding with multiple characters and string coding. Ancestral reconstruction methods are divided into parsimony versus Bayesian/likelihood approaches. We compared nine methods for reconstructing ancestral areas for placental mammals. Ambiguous reconstructions were a problem for all methods. Important differences resulted from coding areas based on the geographical ranges of extant species versus the geographical provenance of the oldest fossil for each lineage. Africa and South America were reconstructed as the ancestral areas for Afrotheria and Xenarthra, respectively. Most methods reconstructed Eurasia as the ancestral area for Boreoeutheria, Euarchontoglires and Laurasiatheria. The coincidence of molecular dates for the separation of Afrotheria and Xenarthra at approximately 100 Ma with the plate tectonic sundering of Africa and South America hints at the importance of vicariance in the early history of Placentalia. Dispersal has also been important including the origins of Madagascar's endemic mammal fauna. Further studies will benefit from increased taxon sampling and the application of new ancestral area reconstruction methods. 相似文献
6.
HIROHIKO TAKEUCHI HIDETOSHI OTA FLS HONG‐SHIK OH TSUTOMU HIKIDA 《Biological journal of the Linnean Society. Linnean Society of London》2012,105(2):395-408
We investigated intraspecific phylogenetic relationships in the natricine snake, Rhabdophis tigrinus. A partial sequence of mitochondrial cytochrome b gene (990 bp) was sequenced for 220 individuals from 112 populations. The phylogeny indicated monophyly of the Japanese populations against the continental and Taiwanese populations, sister relationships of the Japanese and continental populations, and monophyly of the whole species. The results strongly suggested substantial genetic divergences among population assemblages from those three regions. We thus consider both lateralis from the continent, which is often synonymized to R. tigrinus, and formosanus from Taiwan, which is usually regarded as a subspecies of the latter, as distinct full species based on the evolutionary species concept. In the Japanese populations, haplotypes were classified to in two major clades (I and II) that were parapatric to each other. Clade I consisted of three distinct subclades (I‐A, I‐B, and I‐C), of which the former two were parapatric with each other, whereas the latter was sympatric with each of the former two subclades. The geographical haplotype structure exhibited by the Japanese populations is likely to have resulted from a series of allopatric differentiations with rapid range extensions of resultant lineages, leading to secondary contact or further admixture of mitochondrial haplotype clades and subclades. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 395–408. 相似文献
7.
Gary Voelker 《Evolution; international journal of organic evolution》1999,53(5):1536-1552
Dispersal and vicariant hypotheses have for decades been at odds with each other, notwithstanding the fact that both are well-established natural processes with important histories in biogeographic analyses. Despite their importance, neither dispersal nor vicariant methodologies are problem-free. The now widely used molecular techniques for generating phylogenies have provided a mechanism by which both dispersal- and vicariance-driven speciation can be better tested via the application of molecular clocks; unfortunately, substantial problems can also exist in the employment of those clocks. To begin to assess the relative roles of dispersal and vicariance in the establishment of avifaunas, especially intercontinental avifaunas, I applied a test for clocklike behavior in molecular data, as well as a program that infers ancestral areas and dispersal events, to a phylogeny of a speciose, cosmopolitan avian genus (Anthus; Motacillidae). Daughter-lineages above just 25 of 40 nodes in the Anthus phylogeny are evolving in a clocklike manner and are thus dateable by a molecular clock. Dating the applicable nodes suggests that Anthus arose nearly 7 million yr ago, probably in eastern Asia, and that between 6 and 5 million yr ago, Anthus species were present in Africa, the Palearctic, and North and South America. Speciation rates have been high throughout the Pliocene and quite low during the Pleistocene; further evidence that the Pleistocene may have had little effect in generating modern species. Intercontinental movements since 5 million yr ago have been few and largely restricted to interchange between Eurasia and Africa. Species swarms on North America, Africa, and Eurasia (but not South America or Australia) are the product of multiple invasions, rather than being solely the result of within-continent speciation. Dispersal has clearly played an important role in the distribution of this group. 相似文献
8.
JOSEPH S. WILSON JAMES P. PITTS 《Biological journal of the Linnean Society. Linnean Society of London》2010,101(2):360-375
Understanding the history of diversification in the North American deserts has long been a goal of biogeographers and evolutionary biologists. Although it appears that a consensus is forming regarding the patterns of diversification in the Nearctic deserts in vertebrate taxa, little work has been done exploring the historical biogeography of widespread invertebrate taxa. Before a robust model of geobiotic change in the North American deserts can be proposed, it needs to be determined whether the same historical events affected vertebrate and invertebrate taxa in the same way. We explore the phylogeographic patterns in a widespread nocturnal wasp genus Dilophotopsis using two rDNA loci, the internal transcribed spacer regions 1 and 2 (ITS1 and ITS2). We use Bayesian phylogenetic analysis and haplotype network analysis to determine whether a consistent geographic pattern exists among species and populations within Dilophotopsis. We also used molecular dating techniques to estimate divergence dates of the major phylogenetic clades. Our analyses indicates that the species‐level divergences in Dilophotopsis occurred in the Neogene, and likely were driven by mountain building during the Miocene–Pliocene boundary (approximately 5 Mya) similar to the divergences in many vertebrate taxa. The population‐level divergences within species occurred during the Pleistocene (0.1–1.8 Mya). The present study shows that similar patterns of diversification exist in vertebrate and invertebrate taxa. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 360–375. 相似文献
9.
Galaxias maculatus is one of the world's most widely distributed freshwater fish. This species has a marine-tolerant juvenile phase, and a geographical range extending through much of the southern hemisphere. We conducted phylogeographic analyses of 163 control region haplotypes of G. maculatus, including samples from New Zealand (five locations), Tasmania (one location) and Chile (one location). A lack of genetic structure among New Zealand samples suggests that marine dispersal facilitates considerable gene flow on an intra-continental scale. The discovery of a Tasmanian-like haplotype in one of 144 New Zealand samples indicates that inter-continental marine dispersal occurs but is insufficient to prevent mitochondrial DNA differentiation among continents. The sister relationship of Tasmanian and New Zealand clades implies that marine dispersal is an important biogeographical mechanism for this species. However, a vicariant role in the divergence of eastern and western Pacific G. maculatus cannot be rejected. 相似文献
10.
Menglin Wang;Simon Hellemans;Aleš Buček;Taisuke Kanao;Jigyasa Arora;Crystal Clitheroe;Jean-Jacques Rafanomezantsoa;Brian L. Fisher;Rudolf Scheffrahn;David Sillam-Dussès;Yves Roisin;Jan Šobotník;Thomas Bourguignon; 《Ecography》2023,2023(7):e06463
Madagascar is home to many endemic plant and animal species owing to its ancient isolation from other landmasses. This unique fauna includes several lineages of termites, a group of insects known for their key role in organic matter decomposition in many terrestrial ecosystems. How and when termites colonised Madagascar remains unknown. In this study, we used 601 mitochondrial genomes, 93 of which were generated from Malagasy samples, to infer the global historical biogeography of Neoisoptera, a lineage containing more than 80% of described termite species. Our results indicate that Neoisoptera colonised Madagascar between 7 and 10 times independently during the Miocene, between 8.4 and 16.6 Ma (95% HPD: 6.1–19.9 Ma). This timing matches that of the colonization of Australia by Neoisoptera. Furthermore, the taxonomic composition of the Neoisopteran fauna of Madagascar and Australia are strikingly similar, with Madagascar harbouring an additional two lineages absent from Australia. Therefore, akin to Australia, Neoisoptera colonised Madagascar during the global expansion of grasslands, possibly helped by the ecological opportunities arising from the spread of this new biome. 相似文献
11.
Using the phylogeographic framework, we assessed the DNA sequence variation at the mitochondrial cytochrome b gene across the distribution range of the barbel Barbus barbus, a widely distributed European cyprinid. Reciprocal monophyly of non-Mediterranean European and Balkan/Anatolian populations is taken as evidence for a long-term barrier to gene flow, and interpreted as a consequence of survival of the species in two separate refugia during several later glacial cycles. Lack of profound genealogical divergence across Europe from western France to the northwestern Black Sea basin is consistent with recent colonization of this area from a single glacial refuge, which was probably located in the Danube River basin. This may have occurred in two steps: into the Western European river basins during the last interglacial, and throughout the Central European river basins after the last glacial. The populations from the Balkans and Anatolia apparently did not contribute mitochondrial DNA to the post-Pleistocene colonization of non-Mediterranean Europe. Lack of detectable variation within the Balkans/Anatolia is attributed mainly to recent expansion throughout these regions, facilitated by the freshwater conditions and seashore regression in the Black Sea during the Late Pleistocene and Early Holocene. 相似文献
12.
Ling Feng Daniela M. Takiya Sindhu M. Krishnankutty Christopher H. Dietrich Yalin Zhang 《Systematic Entomology》2024,49(2):314-329
Sharpshooters (Cicadellinae), a large subfamily of the Cicadellidae, exhibit a global distribution and a broad array of ecological preferences. To explore the phylogenetic relationships and roles of global historical, biotic and biogeographic processes in the diversification of sharpshooters, we analysed DNA sequence data from three mitochondrial and two nuclear genes for 243 taxa representing all Cicadellinae tribes, generic groups, regional faunas and data of geographic distributions of sharpshooter species compiled from online databases and available literature. The maximum likelihood (ML) and Bayesian inference (BI) analyses strongly support the monophyletic clade including Cicadellinae and Phereurininae. Divergence time estimates and biogeographic analyses suggest that sharpshooters originated in the Neotropical region or were more widespread in Gondwana during the Early Cretaceous and diversified through a combination of ancient vicariance and dispersal following the evolution of angiosperm-dominated habitats. The earliest divergence during the Cretaceous gave rise to Oriental and New World lineages, the latter of which subsequently dispersed into the Old World and gave rise to the diverse endemic fauna of Madagascar. The Oriental lineage shows high diversity and endemism in tropical Asia and the Pacific, with striking distributional discontinuities in Wallacea. These results suggest that a combination of environmental and evolutionary factors including continental-scale vicariance, long-distance dispersal and diversification of terrestrial microhabitats and host plants may explain the diversity of the modern sharpshooter fauna. 相似文献
13.
Ivonne J. Garzón-Orduña Daniel Rafael Miranda-Esquivel Mariano Donato 《Journal of Biogeography》2008,35(5):903-913
Aim To demonstrate that parsimony analysis of endemicity (PAE) is not analogous to a cladistic biogeographical analysis. Location We used six data sets from previously published studies from around the world. Methods In order to test the efficiency of PAE in recovering historical relationships among areas, we performed an empirical comparison of nodes recovered with PAE, primary Brooks parsimony analysis (BPA), and an event‐based method using three models (maximum codivergence, reconciled trees, and the default model of the treefitter program) for six data sets. We measured the performance of PAE in recovering historical area relationships by counting the number and examining the content of nodes recovered by PAE and by historical methods. The dispersal/vicariance ratio was calculated to assess the prevalence of dispersal or vicariance in each reconstruction and its relationship to the performance of PAE. Results Our results show that PAE recovers an average of 17.25% of historical nodes. PAE and BPA tend to provide similar results; however, in relation to the event‐based models, PAE performance was poor under all the tested scenarios. Although in some cases PAE reconstructions are more resolved than historical reconstructions, this does not necessarily mean that PAE produces more informative answers. These additional nodes correspond to unsupported statements that are based solely on the distributional data of taxa and not on their phylogenetic history. In other words, these nodes were not found by the historical methods, which take phylogenetics into account. The number of historical nodes recovered using PAE was in general negatively correlated with the dispersal/vicariance ratio. Main conclusions Our results show that PAE is unable to recover historical patterns and therefore does not fit into the current paradigm of historical biogeography. These findings raise doubts regarding conclusions derived from biogeographical studies that interpret PAE trees as area cladograms. We acknowledge that PAE aims to describe but does not explain the current distribution of organisms. It is therefore a useful tool in other biogeographical or ecological analyses for exploring the distribution of taxa or for establishing hypotheses of primary homology between areas. 相似文献
14.
River capture is a geomorphological process through which stream sections are displaced from one catchment to another, and it may represent a dominant facilitator of interdrainage transfer and cladogenesis in freshwater-limited taxa. However, few studies have been conducted in a manner to explicitly test the biological significance of river capture. Here we present a multispecies phylogeographical analysis to test whether the nonmigratory fish fauna of the Von River (South Island, New Zealand) is the product of a well-documented, Late Quaternary capture of a section of the Oreti River (Southland drainage). Specifically, we predict that nonmigratory fishes of the Von River will exhibit closer genetic affinities with those of Southland, rather than those of the Clutha system, into which the Von River presently drains. Mitochondrial DNA phylogeography (control region and cytochrome b sequence data) and analysis of nuclear orthologues of mtDNA sequences indicate that 'flathead'Galaxias of the Von River (n = 31, three sites) have greatest genetic affinities with those of Southland (Galaxias 'southern', n = 216, 38 sites), rather than with those of the Clutha River (Galaxias sp. 'D', n = 73, 32 sites). Likewise, Von River 'roundhead'Galaxias (n = 52, four sites) have greatest genetic affinities with those of Southland drainages (Galaxias gollumoides, n = 223, 58 sites), rather than with those of the Clutha River (Galaxias pullus, Galaxias anomalus, Galaxias gollumoides of the Nevis tributary; n = 68, 32 sites). These findings are consistent with our predictions that genetic affinities of the nonmigratory fish fauna in the Von River would reflect past, rather than present, drainage connections. Consequently, river capture is responsible for the nonmigratory fish fauna of the Von River. In a broader context, river capture has frequently influenced the distribution of genetic lineages among catchments in New Zealand freshwater-limited fish, and its biogeographical significance may have been underestimated in other regions. 相似文献
15.
LILIANA M. DÁVALOS 《Biological journal of the Linnean Society. Linnean Society of London》2004,81(3):373-394
Vicariance and dispersal hypotheses have been proposed over the last two hundred years to explain the distribution, diversity, and faunal composition of the Caribbean biota. Despite great advances in understanding the geological history of the region, recent biogeographical reviews have not used historical biogeographical methods. In this paper I review the taxonomy, distribution and phylogeny of all Cenozoic Caribbean non‐volant mammals and four bat lineages, and present reconciled trees for available phylogenies. Dates available from the fossil record and hypotheses of divergence based on molecular phylogenetic studies are also included in general assessments of fit between proposed geological models and Caribbean mammal diversification. The evidence posited in mammalian phylogenies does not add to the argument of dispersal vs. vicariance. One previously unidentified temporal pattern, the colonization of the Caribbean by South American mammals between the Palaeocene and the Middle Miocene, accounts for the distribution and phylogeny of the majority of lineages studied. Choloepodine and megalocnine sloths, hystricognath rodents, and primates all arrived during this window of colonization. Of these, megalocnine sloths, hystricognath rodents, Brachyphylla and allied bats, Stenodermatina bats, and primates fit the pattern of divergence from the mainland implied by the Gaarlandia hypothesis. Sloths, rodents and primates also roughly fit the timing of arrival to the Caribbean implied by Gaarlandia. The remaining taxa show contradictory dates of divergence according to molecular clock estimates, and no taxa fit the predicted timing and pattern of divergence among Antillean landmasses under the Gaarlandia model. Choloepodine sloths, murid rodents, insectivorans, mormoopids, and natalids show patterns of divergence from the mainland that are inconsistent with the Gaarlandia hypothesis and seem to require taxon‐specific biogeographical explanations. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 81 , 373–394. 相似文献
16.
17.
GARY VOELKER RAURI C. K. BOWIE BERYL WILSON CORNE ANDERSON 《Biological journal of the Linnean Society. Linnean Society of London》2012,106(1):180-190
Phylogenetic relationships among eight of nine Myrmecocichla chat species were inferred from DNA data. Bayesian posterior probabilities and maximum‐likelihood bootstrap percentages strongly supported most branches in the phylogeny. Based on these results, Myrmecocichla, as currently defined, is not monophyletic. The results indicated that Myrmecocichla albifrons is part of a Cercomela + Oenanthe clade, whereas Oenanthe monticola is shown to be a Myrmecocichla. In addition, Myrmecocichla arnotti is shown to be polyphyletic. Phylogenetic analyses support three Southern versus Eastern or Northern speciation events. The dating of these speciation events suggests that they correspond to periods when the Afrotropical forests were expanded to coastal Kenya, 3–5 Mya. This forest expansion thus served as a vicariant driver of speciation in the genus, a result consistent with speciation patterns in other arid‐adapted African bird genera. Our haplotype analysis within one of the most widespread and habitat diverse Myrmecocichla species (formicivora, a southern African endemic) showed little genetic variation. Along with speciation patterns shown for Myrmecocichla and other avian genera, this lack of standing variation would appear to support large, inter‐regional drivers of speciation as having the largest effect on the diversification of arid‐adapted Africa bird species, which is in stark contrast to other vertebrate lineages whose genetic structure often shows strong intra‐regional effects. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 180–190. 相似文献
18.
Luis A. Hurtado Mariana Mateos Gustavo Mattos Shuang Liu Pilar A. Haye Paulo C. Paiva 《Ecology and evolution》2016,6(21):7794-7808
Excirolana braziliensis is a coastal intertidal isopod with a broad distribution spanning the Atlantic and Pacific tropical and temperate coasts of the American continent. Two separate regional studies (one in Panama and one in Chile) revealed the presence of highly genetically divergent lineages, implying that this taxon constitutes a cryptic species complex. The relationships among the lineages found in these two different regions and in the rest of the distribution, however, remain unknown. To better understand the phylogeographic patterns of E. braziliensis, we conducted phylogenetic analyses of specimens from much of its entire range. We obtained DNA sequences for fragments of four mitochondrial genes (16S rDNA, 12S rDNA, COI, and Cytb) and also used publicly available sequences. We conducted maximum likelihood and Bayesian phylogenetic reconstruction methods. Phylogeographic patterns revealed the following: (1) new highly divergent lineages of E. braziliensis; (2) three instances of Atlantic–Pacific divergences, some of which appear to predate the closure of the Isthmus of Panama; (3) the distributional limit of highly divergent lineages found in Brazil coincides with the boundary between two major marine coastal provinces; (4) evidence of recent long‐distance dispersal in the Caribbean; and (5) populations in the Gulf of California have closer affinities with lineages further south in the Pacific, which contrasts with the closer affinity with the Caribbean reported for other intertidal organisms. The high levels of cryptic diversity detected also bring about challenges for the conservation of this isopod and its fragile environment, the sandy shores. Our findings underscore the importance of comprehensive geographic sampling for phylogeographic and taxonomical studies of broadly distributed putative species harboring extensive cryptic diversity. 相似文献
19.
Aim Cycads constitute an ancient plant group that is generally believed to disperse poorly. However, one group of cycads (subsection Rumphiae) is thought to have dispersed relatively recently from a Malesian source area westwards to East Africa and eastwards into the Pacific, using a floatation‐facilitating layer in their seeds. We use morphological and allozyme characters to investigate the relationships among the species within this group and to deduce whether the wide distribution was achieved by recent dispersal (as evidenced by high genetic similarity) or more distant vicariance events (high genetic differentiation). Location We examined specimens collected throughout the range of subsection Rumphiae, from East Africa through Southeast Asia to Tonga in the South‐west Pacific. Methods We investigated relationships within subsection Rumphiae of the genus Cycas by analysing 18 variable (11 informative) morphological characters and 22 allozyme loci for seven of the 10 species currently assigned to this taxon. Results Distinctive morphological characters are few and fail to resolve relationships within the group. Allozyme data show that species within this subsection are closely related and suggest that there are two groups within the subsection, one comprising Cycas thouarsii (East Africa) and C. edentata (the Philippines), and the other the remaining species (from Malesia and the Pacific). The Australian species C. silvestris is sister to subsection Rumphiae in the morphological analysis but is closely allied to C. rumphii (nested within the subsection) in the allozyme analysis, suggesting that Rumphiae may be paraphyletic and that characters thought to be taxonomically important may need to be re‐evaluated. Main conclusions Cycads within subsection Rumphiae are closely related, and the wide distribution of this group was probably achieved through relatively recent oceanic dispersal events. Separate events probably account for the dispersal of these cycads into the Pacific and to Africa. The origin and distribution of C. silvestris (Australia) could be explained by a dispersal event from New Guinea or may have resulted from a former land connection between Australia and New Guinea. 相似文献
20.
Caetano S Prado D Pennington RT Beck S Oliveira-Filho A Spichiger R Naciri Y 《Molecular ecology》2008,17(13):3147-3159
Today, the Seasonally Dry Tropical Forests (SDTF) of eastern South America occur as large, well-defined nuclei (e.g. Caatinga in the northeast) and as smaller enclaves within other vegetations (e.g. Cerrado and Chaco). In order to infer the way the present SDTF distribution was attained, the genetic structure of Astronium urundeuva, a tree confined to SDTF, was assessed using two chloroplast spacers and nine microsatellite loci. Five haplotypes were identified, whose distribution was spatially structured. The distribution of the two most common and divergent haplotypes suggested former vicariance and progressive divergence due to isolation. More recent range expansions of these two lineages subsequently occurred, leading to a secondary contact at the southern limit of the Caatinga SDTF nucleus. The multilocus-Bayesian approach using microsatellites consistently identified three groups of populations (Northeast, Central and Southwest). Isolation by distance was found in Northeast and Southwest groups whereas admixture was detected in the Central group, located at the transition between Caatinga and Cerrado domains. All together, the results support the existence of range expansions and secondary contact in the Central group. This study provides arguments that favour the existence of a previously more continuous formation of SDTF in eastern South America. 相似文献