首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Meiosis is a specialized type of cell division leading to the production of gametes. During meiotic prophase I, homologous chromosomes interact with each other and form bivalents (pairs of homologous chromosomes). Three major meiotic processes--chromosome pairing, synapsis and recombination--are involved in the formation of bivalents. Many recent reports have uncovered complex networks of interactions between these processes. Chromosome pairing is largely dependent on the initiation and progression of recombination in fungi, mammals and plants, but not in Caenorhabditis elegans or Drosophila. Synapsis and recombination are also tightly linked. Understanding the coordination between chromosome pairing, synapsis and recombination lends insight into many poorly explained aspects of meiosis, such as the nature of chromosome homology recognition.  相似文献   

2.
The pairing of homologous chromosomes and the intimate synapsis of the paired homologs by the synaptonemal complex (SC) are essential for subsequent meiotic processes including recombination and chromosome segregation. Here we show that the centromere clustering plays an important role in initiating homolog synapsis during meiosis in Drosophila females. Although centromeres are not clustered prior to the onset of meiosis, all four pairs of centromeres are actively clustered into one or two masses during early meiotic prophase. Within the 16-cell cyst, centromeric clustering appears to define the first step in the initiation of synapsis. Clustering is restricted to the nuclei that form the SC and is dependent on all known SC proteins. Surprisingly, both centromeric clusters and the SC components associated with them persist long after the disassembly of the euchromatic SC at the end of pachytene. The initiation of homologous recombination through the formation of programmed double-strand breaks (DSBs) is not required for either the formation or the maintenance of the centromeric clusters. Our data support a view in which the SC-mediated clustering at the centromeres is the initiating event for meiotic synapsis.  相似文献   

3.
Accurate chromosome segregation during meiosis requires that homologous chromosomes pair and become physically connected so that they can orient properly on the meiosis I spindle. These connections are formed by homologous recombination closely integrated with the development of meiosis-specific, higher-order chromosome structures. The yeast Pch2 protein has emerged as an important factor with roles in both recombination and chromosome structure formation, but recent analysis suggested that TRIP13, the mouse Pch2 ortholog, is not required for the same processes. Using distinct Trip13 alleles with moderate and severe impairment of TRIP13 function, we report here that TRIP13 is required for proper synaptonemal complex formation, such that autosomal bivalents in Trip13-deficient meiocytes frequently displayed pericentric synaptic forks and other defects. In males, TRIP13 is required for efficient synapsis of the sex chromosomes and for sex body formation. Furthermore, the numbers of crossovers and chiasmata are reduced in the absence of TRIP13, and their distribution along the chromosomes is altered, suggesting a role for TRIP13 in aspects of crossover formation and/or control. Recombination defects are evident very early in meiotic prophase, soon after DSB formation. These findings provide evidence for evolutionarily conserved functions for TRIP13/Pch2 in both recombination and formation of higher order chromosome structures, and they support the hypothesis that TRIP13/Pch2 participates in coordinating these key aspects of meiotic chromosome behavior.  相似文献   

4.
Walker MY  Hawley RS 《Chromosoma》2000,109(1-2):3-9
Homologous chromosomes initially undergo weak alignments that bring homologous sequences into register during meiosis. These alignments can be facilitated by two types of mechanisms: interstitial homology searches and telomere-telomere alignments. As prophase (and chromatin compaction) proceeds, these initial pairings or alignments need to be stabilized. In at least some organisms, such as Saccharomyces cerevisiae and S. pombe, these pairings can apparently be maintained by the creation of recombination intermediates. In contrast, synapsis during zygotene may be able to facilitate and/or maintain chromosome pairing even in the absence of exchange in several higher organisms. It thus seems possible that the synaptonemal complex plays a role both in maintaining homolog adhesion during meiotic prophase and, more speculatively, in facilitating meiotic exchange. Received: 15 November 1999; in revised form: 17 January 2000 / Accepted: 18 January 2000  相似文献   

5.
During meiosis, DNA replication is followed by two successive rounds of chromosome segregation (meiosis I and II), which give rise to genetically diverse haploid gametes. The prophase of the first meiotic division is highly regulated and alignment and synapsis of the homologous chromosomes during this stage are mediated by the synaptonemal complex. Incorrect assembly of the synaptonemal complex results in cell death, impaired meiotic recombination and aneuploidy. Oocytes with meiotic defects often survive the first meiotic prophase and give rise to aneuploid gametes. Similarly affected spermatocytes, on the other hand, almost always undergo apoptosis at a male-specific meiotic checkpoint, located specifically at epithelial stage IV during spermatogenesis. Many examples of this stage IV-specific arrest have been described for several genetic mouse models in which DNA repair or meiotic recombination are abrogated. Interestingly, in C. elegans, meiotic recombination and synapsis are monitored by two separate checkpoint pathways. Therefore we studied spermatogenesis in several knockout mice (Sycp1(-/-), Sycp3(-/-), Smc1beta(-/-) and Sycp3/Sycp1 and Sycp3/Smc1beta double-knockouts) that are specifically defective in meiotic pairing and synapsis. Like for recombination defects, we found that all these genotypes also specifically arrest at epithelial stage IV. It seems that the epithelial stage IV checkpoint eliminates spermatocytes that fail a certain quality check, being either synapsis or DNA damage related.  相似文献   

6.
During meiosis, most organisms ensure that homologous chromosomes undergo at least one exchange of DNA, or crossover, to link chromosomes together and accomplish proper segregation. How each chromosome receives a minimum of one crossover is unknown. During early meiosis in Caenorhabditis elegans and many other species, chromosomes adopt a polarized organization within the nucleus, which normally disappears upon completion of homolog synapsis. Mutations that impair synapsis even between a single pair of chromosomes in C. elegans delay this nuclear reorganization. We quantified this delay by developing a classification scheme for discrete stages of meiosis. Immunofluorescence localization of RAD-51 protein revealed that delayed meiotic cells also contained persistent recombination intermediates. Through genetic analysis, we found that this cytological delay in meiotic progression requires double-strand breaks and the function of the crossover-promoting heteroduplex HIM-14 (Msh4) and MSH-5. Failure of X chromosome synapsis also resulted in impaired crossover control on autosomes, which may result from greater numbers and persistence of recombination intermediates in the delayed nuclei. We conclude that maturation of recombination events on chromosomes promotes meiotic progression, and is coupled to the regulation of crossover number and placement. Our results have broad implications for the interpretation of meiotic mutants, as we have shown that asynapsis of a single chromosome pair can exert global effects on meiotic progression and recombination frequency.  相似文献   

7.
The behavior of meiotic chromosomes differs in several respects from that of their mitotic counterparts, resulting in the generation of genetically distinct haploid cells. This has been attributed in part to a meiosis-specific chromatin-associated protein structure, the synaptonemal complex. This complex consist of two parallel axial elements, each one associated with a pair of sister chromatids, and a transverse filament located between the synapsed homologous chromosomes. Recently, a different protein structure, the cohesin complex, was shown to be associated with meiotic chromosomes and to be required for chromosome segregation. To explore the functions of the two different protein structures, the synaptonemal complex and the cohesin complex, in mammalian male meiotic cells, we have analyzed how absence of the axial element affects early meiotic chromosome behavior. We find that the synaptonemal complex protein 3 (SCP3) is a main determinant of axial-element assembly and is required for attachment of this structure to meiotic chromosomes, whereas SCP2 helps shape the in vivo structure of the axial element. We also show that formation of a cohesin-containing chromosomal core in meiotic nuclei does not require SCP3 or SCP2. Our results also suggest that the cohesin core recruits recombination proteins and promotes synapsis between homologous chromosomes in the absence of an axial element. A model for early meiotic chromosome pairing and synapsis is proposed.  相似文献   

8.
BACKGROUND: In budding yeast, Sgs1 is the sole member of the RecQ family of DNA helicases. Like the human Bloom syndrome helicase (BLM), Sgs1 functions during both vegetative growth and meiosis. The sgs1 null mutant sporulates poorly and displays reduced spore viability. RESULTS: We have identified novel functions for Sgs1 in meiosis. Loss of Sgs1 increases the number of axial associations, which are connections between homologous chromosomes that serve as initiation sites for synaptonemal complex formation. In addition, mutation of SGS1 increases the number of synapsis initiation complexes and increases the rate of chromosome synapsis. Loss of Sgs1 also increases the number of meiotic crossovers without changing the frequency of gene conversion. The sgs1 defect in sporulation is due to checkpoint-induced arrest/delay at the pachytene stage of meiotic prophase. A non-null allele of SGS1 that specifically deletes the helicase domain is defective in the newly described meiotic functions of Sgs1, but wild-type for most vegetative functions and for spore formation. CONCLUSIONS: We have shown that the helicase domain of Sgs1 serves as a negative regulator of meiotic interchromosomal interactions. The activity of the wild-type Sgs1 protein reduces the numbers of axial associations, synapsis initiation complexes, and crossovers, and decreases the rate of chromosome synapsis. Our data argue strongly that axial associations marked by synapsis initiation complexes correspond to sites of reciprocal exchange. We propose that the Sgs1 helicase prevents a subset of recombination intermediates from becoming crossovers, and this distinction is made at an early stage in meiotic prophase.  相似文献   

9.
REC8 is a key component of the meiotic cohesin complex. During meiosis, cohesin is required for the establishment and maintenance of sister-chromatid cohesion, for the formation of the synaptonemal complex, and for recombination between homologous chromosomes. We show that REC8 has an essential role in mammalian meiosis, in that Rec8 null mice of both sexes have germ cell failure and are sterile. In the absence of REC8, early chromosome pairing events appear normal, but synapsis occurs in a novel fashion: between sister chromatids. This implies that a major role for REC8 in mammalian meiosis is to limit synapsis to between homologous chromosomes. In all other eukaryotic species studied to date, REC8 phenotypes have been restricted to meiosis. Unexpectedly, Rec8 null mice are born in sub-Mendelian frequencies and fail to thrive. These findings illuminate hitherto unknown REC8 functions in chromosome dynamics during mammalian meiosis and possibly in somatic development.  相似文献   

10.
The nematode C. elegans is a classic study object of developmental biology and genetics, which is particularly suitable for studying the molecular bases of meiosis. Developing meiocytes are located in the threadlike gonads of C. elegans in linear gradient order of the stages of meiosis, which facilitates studying the order of intracellular events during meiosis. C. elegans has polycentric chromosomes. This causes a special order of events during meiosis, and as a consequence, meiosis in C. elegance differs from canonical meiosis of most eukaryotes. In the meiotic prophase I, all chromosomes carry single protein “pairing centers.” They are responsible for joining homologous chromosomes in pairs. This initiates the formation of synaptonemal complexes (SCs). Programmed double-stranded DNA breaks appear after initiation of the SC assembly, and they give rise to meiotic recombination. The initiation of meiotic recombination after the chromosome pairing distinguishes the C. elegans meiotic pattern from those in the absolute majority of eukaryotes studied. C. elegans has strict crossing over interference, which allows for the formation of one chiasma per bivalent. In the late prophase I, the polycentric centromeres are remodeled, one of the chromosome ends acquires a cuplike kinetochore, and during two meiotic divisions, chromosomes behave as monocentric. The study of meiosis in C. elegans allows for separate investigation of synapsis and recombination of homologous chromosomes and provides material for studying the evolution of meiosis.  相似文献   

11.
Prior to the meiotic divisions, dynamic chromosome reorganizations including pairing, synapsis, and recombination of maternal and paternal chromosome pairs must occur in a highly regulated fashion during meiotic prophase. How chromosomes identify each other''s homology and exclusively pair and synapse with their homologous partners, while rejecting illegitimate synapsis with non-homologous chromosomes, remains obscure. In addition, how the levels of recombination initiation and crossover formation are regulated so that sufficient, but not deleterious, levels of DNA breaks are made and processed into crossovers is not understood well. We show that in Caenorhabditis elegans, the highly conserved Serine/Threonine protein phosphatase PP4 homolog, PPH-4.1, is required independently to carry out four separate functions involving meiotic chromosome dynamics: (1) synapsis-independent chromosome pairing, (2) restriction of synapsis to homologous chromosomes, (3) programmed DNA double-strand break initiation, and (4) crossover formation. Using quantitative imaging of mutant strains, including super-resolution (3D-SIM) microscopy of chromosomes and the synaptonemal complex, we show that independently-arising defects in each of these processes in the absence of PPH-4.1 activity ultimately lead to meiotic nondisjunction and embryonic lethality. Interestingly, we find that defects in double-strand break initiation and crossover formation, but not pairing or synapsis, become even more severe in the germlines of older mutant animals, indicating an increased dependence on PPH-4.1 with increasing maternal age. Our results demonstrate that PPH-4.1 plays multiple, independent roles in meiotic prophase chromosome dynamics and maintaining meiotic competence in aging germlines. PP4''s high degree of conservation suggests it may be a universal regulator of meiotic prophase chromosome dynamics.  相似文献   

12.
The RecA homolog, RAD51, performs a central role in catalyzing the DNA strand exchange event of meiotic recombination. During meiosis, RAD51 complexes develop on pairing chromosomes and then most disappear upon synapsis. In the maize meiotic mutant desynaptic2 (dsy2), homologous chromosome pairing and recombination are reduced by ~70% in male meiosis. Fluorescent in situ hybridization studies demonstrate that a normal telomere bouquet develops but the pairing of a representative gene locus is still only 25%. Chromosome synapsis is aberrant as exemplified by unsynapsed regions of the chromosomes. In the mutant, we observed unusual RAD51 structures during chromosome pairing. Instead of spherical single and double RAD51 structures, we saw long thin filaments that extended along or around a single chromosome or stretched between two widely separated chromosomes. Mapping with simple sequence repeat (SSR) markers places the dsy2 gene to near the centromere on chromosome 5, therefore it is not an allele of rad51. Thus, the normal dsy2 gene product is required for both homologous chromosome synapsis and proper RAD51 filament behavior when chromosomes pair. Edited by: P. Moens  相似文献   

13.
R Chatterjee  G Jenkins 《Génome》1993,36(1):131-138
Electron microscopy of whole-mount surface-spread synaptonemal complex complements and conventional light microscopy of chromosomes at first metaphase of meiosis were used to compare the relative frequencies of pairing configurations at the two stages in inbred autotetraploid rye (Secale cereale L.). Statistical tests showed significantly fewer multivalents at first metaphase than expectations based on random initiation of synapsis at each telomeric site within each group of four homologues. Direct observations of synaptic behaviour of chromosomes showed that this deviation is due primarily to a preponderance of bivalents during zygotene and pachytene. It is also the result of a significant drop in multivalent frequency from meiotic prophase to metaphase I, which is attributable both to a lack of chiasmata with which to consolidate multivalents and inhibition of chiasma formation in synaptonemal complex segments of multivalents that are nonhomologous.  相似文献   

14.
During first meiotic prophase, homologous chromosomes are held together by the synaptonemal complex, a tripartite proteinaceous structure that extends along the entire length of meiotic bivalents. While this feature is applicable for autosomes, sex chromosomes often escape from this rule. Many species present sex chromosomes that differ between them in their morphology, length, and gene content. Moreover, in some species, sex chromosomes appear in a single dose in one of the sexes. In all of these cases, the behavior of sex chromosomes during meiosis is conspicuously affected, and this includes the assembly and dynamics of the synaptonemal complex. We review in this study the structure of the synaptonemal complex in the sex chromosomes of three groups of organisms, namely: mammals, orthopterans, and hemipterans, which present different patterns of sex chromosome structure and behavior. Of special interest is the analysis of the organization of the axial/lateral elements of the synaptonemal complex in relation to other axial structures organized along meiotic chromosomes, mainly the cohesin axis. The differences found in the behavior of both axial structures reveal that while the organization of a cohesin axis along sex chromosomes is a conserved feature in most organisms and it shows very little morphological variations, the axial/lateral elements of the synaptonemal complex present a wide range of structural modifications on these chromosomes.Electronic Supplementary Material Supplementary material is available for this article at The synaptonemal complex—50 years  相似文献   

15.
16.
Genetic control of chromosome synapsis in yeast meiosis   总被引:17,自引:0,他引:17  
Both meiosis-specific and general recombination functions, recruited from the mitotic cell cycle, are required for elevated levels of recombination and for chromosome synapsis (assembly of the synaptonemal complex) during yeast meiosis. The meiosis-specific SPO11 gene (previously shown to be required for meiotic recombination) has been isolated and shown to be essential for synaptonemal complex formation but not for DNA metabolism during the vegetative cell cycle. In contrast, the RAD52 gene is required for mitotic and meiotic recombination but not for synaptonemal complex assembly. These data suggest that the synaptonemal complex may be necessary but is clearly not sufficient for meiotic recombination. Cytological analysis of spread meiotic nuclei demonstrates that chromosome behavior in yeast is comparable with that observed in larger eukaryotes. These spread preparations support the immunocytological localization of specific proteins in meiotic nuclei. This combination of genetic, molecular cloning, and cytological approaches in a single experimental system provides a means of addressing the role of specific gene products and nuclear structures in meiotic chromosome behavior.  相似文献   

17.
The synaptonemal complex (SC) promotes fusion of the homologous chromosomes (synapsis) and crossover recombination events during meiosis. The SC displays an extensive structural conservation between species; however, a few organisms lack SC and execute meiotic process in a SC-independent manner. To clarify the SC function in mammals, we have generated a mutant mouse strain (Sycp1(-/-)Sycp3(-/-), here called SC-null) in which all known SC proteins have been displaced from meiotic chromosomes. While transmission electron microscopy failed to identify any remnants of the SC in SC-null spermatocytes, neither formation of the cohesion axes nor attachment of the chromosomes to the nuclear membrane was perturbed. Furthermore, the meiotic chromosomes in SC-null meiocytes achieved pre-synaptic pairing, underwent early homologous recombination events and sustained a residual crossover formation. In contrast, in SC-null meiocytes synapsis and MLH1-MLH3-dependent crossovers maturation were abolished, whereas the structural integrity of chromosomes was drastically impaired. The variable consequences that SC inactivation has on the meiotic process in different organisms, together with the absence of SC in some unrelated species, imply that the SC could have originated independently in different taxonomic groups.  相似文献   

18.
Ideas about the mechanisms that regulate chromosome pairing, recombination, and segregation during meiosis have gained in molecular detail over the last few years. The purpose of this article is to survey briefly the shifts in paradigms and experiments that have generated new perspectives. It has never been very clear what it is that brings together the homologous chromosomes at meiotic prophase. For a while it appeared that the synaptonemal complex might be the nuclear organelle responsible for synapsis, but the supporting evidence has not been entirely convincing. Whatever the mechanism, it has always been assumed that homologous synapsis creates the opportunity for homologous DNA sequences to initiate recombination. At present, alternative ideas are developing. Attractive is the concept that double strand DNA repair mechanisms, that find and use the undamaged homologue for repair, have evolved into a meiotic mechanism for the recognition and pairing of homologous sequences. Subsequent intimate synapsis of homologous chromosomes in the context of the synaptonemal complex may serve later functions in the regulation of interference and segregation at first anaphase. A number of areas that are being tested at present and some that may be investigated in the future are discussed at the end of the review.  相似文献   

19.
The reciprocal exchange of genetic information between homologous chromosomes during meiotic recombination is essential to secure balanced chromosome segregation and to promote genetic diversity. The chromosomal position and frequency of reciprocal genetic exchange shapes the efficiency of breeding programmes and influences crop improvement under a changing climate. In large genome cereals, such as wheat and barley, crossovers are consistently restricted to subtelomeric chromosomal regions, thus preventing favourable allele combinations being formed within a considerable proportion of the genome, including interstitial and pericentromeric chromatin. Understanding the key elements driving crossover designation is therefore essential to broaden the regions available for crossovers. Here, we followed early meiotic chromatin dynamism in cereals through the visualisation of a homologous barley chromosome arm pair stably transferred into the wheat genetic background. By capturing the dynamics of a single chromosome arm at the same time as detecting the undergoing events of meiotic recombination and synapsis, we showed that subtelomeric chromatin of homologues synchronously transitions to an open chromatin structure during recombination initiation. By contrast, pericentromeric and interstitial regions preserved their closed chromatin organisation and become unpackaged only later, concomitant with initiation of recombinatorial repair and the initial assembly of the synaptonemal complex. Our results raise the possibility that the closed pericentromeric chromatin structure in cereals may influence the fate decision during recombination initiation, as well as the spatial development of synapsis, and may also explain the suppression of crossover events in the proximity of the centromeres.  相似文献   

20.
Reduction in ploidy to generate haploid gametes during sexual reproduction is accomplished by the specialized cell division program of meiosis. Pairing between homologous chromosomes and assembly of the synaptonemal complex at their interface (synapsis) represent intermediate steps in the meiotic program that are essential to form crossover recombination-based linkages between homologs, which in turn enable segregation of the homologs to opposite poles at the meiosis I division. Here, we challenge the mechanisms of pairing and synapsis during C. elegans meiosis by disrupting the normal 1∶1 correspondence between homologs through karyotype manipulation. Using a combination of cytological tools, including S-phase labeling to specifically identify X chromosome territories in highly synchronous cohorts of nuclei and 3D rendering to visualize meiotic chromosome structures and organization, our analysis of trisomic (triplo-X) and polyploid meiosis provides insight into the principles governing pairing and synapsis and how the meiotic program is “wired” to maximize successful sexual reproduction. We show that chromosomes sort into homologous groups regardless of chromosome number, then preferentially achieve pairwise synapsis during a period of active chromosome mobilization. Further, comparisons of synapsis configurations in triplo-X germ cells that are proficient or defective for initiating recombination suggest a role for recombination in restricting chromosomal interactions to a pairwise state. Increased numbers of homologs prolong markers of the chromosome mobilization phase and/or boost germline apoptosis, consistent with triggering quality control mechanisms that promote resolution of synapsis problems and/or cull meiocytes containing synapsis defects. However, we also uncover evidence for the existence of mechanisms that “mask” defects, thus allowing resumption of prophase progression and survival of germ cells despite some asynapsis. We propose that coupling of saturable masking mechanisms with stringent quality controls maximizes meiotic success by making progression and survival dependent on achieving a level of synapsis sufficient for crossover formation without requiring perfect synapsis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号