首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To identify candidate genes for poor sperm morphology, we have screened for genes expressed during spermiogenesis. We identified 10 new members of the cysteine-rich perinuclear theca (CYPT) family showing that this family contains at least 15 members, which also includes the casein kinase II target genes. Based on similarity the CYPT sequences could be divided into two groups, Cypt1-10 and the novel members Cypt12-15. The 5'-end of the CYPT family is highly similar to exon1A and part of the first intron of Zfy2. Seven CYPT genes mapped to the X chromosome; six contained an intron and one was intron-less. One CYPT gene mapped to chromosome 3 and one mapped to chromosome 9 which were both intron-less. The upstream region of the CYPT family and Zfy2 genes is conserved. For some the conservation extended over a large region, however, only about 150 nucleotides is conserved among all CYPT members and Zfy2. Nevertheless, the short conserved promoter leads to essentially identical expression profiles for the CYPT family members and Zfy2, which was clearly different from the profile of Zfy1. Expression of the CYPT family and Zfy2 preceded the expression of other spermatid-specific genes such as the transition proteins and the protamines. In situ hybridization revealed a low expression in pachytene spermatocytes from stages IX-X followed by a strong upregulation in spermatids from stage VI with maximum expression in spermatids in stages VII-VIII. The CYPT family may function in the remodeling of the spermatid nucleus before condensation of the DNA.  相似文献   

2.
Multigenicity is one of the features of cancer/testis-associated genes. In the present study we analyzed the number and expression of genes of the SPANX(CTp11) family of cancer/testis-associated genes. Genomic database analysis, next to the four previously described SPANX genes, revealed the presence of a novel gene: SPANXE. Moreover, we detected an allelic variant of SPANXB resulting in one amino acid substitution in the encoded protein: SPANXB'. Most SPANX genes are present on contig NT_011574 located at Xq26.3-Xq27.1. Based on expressed sequence tag databases and RT-PCR analysis three additional novel SPANX sequences were identified, though not represented so far in the human genome sequence. Sequence alignments justify a subdivision of this gene family based on the absence (SPANXA-likes) or presence (SPANXB) of an 18 base pair sequence stretch in the open reading frame. The alignments also reveal an unusually high level (99%) of intron homology. Furthermore, the nucleotide variations in the open reading frame almost all lead to amino acid substitutions. Southern blot and database analyses indicate that SPANX sequences are exclusively present in primates. With RT-PCR analysis on human sperm cell precursors and tumor cell lines most family members could be detected. SPANXB was only found in sperm cell precursors and could not be detected in the tumor cell lines tested. Overall SPANXA was the most frequently expressed SPANX variant in melanoma and glioblastoma cell lines.  相似文献   

3.
Intronless genes can arise by germline retrotransposition of a cDNA originating as mRNA from an intron-containing source gene. Previously, we described several members of a family of intronless mammalian genes encoding a novel class of zinc-finger proteins, including one that shows imprinted expression and one that escapes X-inactivation. We report here the identification and characterization of the Makorin ring finger protein 1 gene (MKRN1), a highly transcribed, intron-containing source for this family of genes. Phylogenetic analyses clearly indicate that the MKRN1 gene is the ancestral founder of this gene family. We have identified MKRN1 orthologs from human, mouse, wallaby, chicken, fruitfly, and nematode, underscoring the age and conservation of this gene. The MKRN gene family encodes putative ribonucleoproteins with a distinctive array of zinc-finger motifs, including two to four C(3)H zinc-fingers, an unusual Cys/His arrangement that may represent a novel zinc-finger structure, and a highly conserved RING zinc-finger. To date, we have identified nine MKRN family loci distributed throughout the human genome. The human and mouse MKRN1 loci map to a conserved syntenic group near the T-cell receptor beta cluster (TCRB) in chromosome 7q34-q35 and chromosome 6A, respectively. MKRN1 is widely transcribed in mammals, with high levels in murine embryonic nervous system and adult testis. The ancient origin of MKRN1, high degree of conservation, and expression pattern suggest important developmental and functional roles for this gene and its expressed family members.  相似文献   

4.
Cancer/testis antigens (CTA) are expressed in cancers and testis or placenta only and, therefore are considered promising targets for cancer immunotherapy and diagnosis. One family of CTA is the MAGEA family which comprises 13 members and was shown to be expressed synchronously with members from the CSAG (TRAG-3) family of CTA. The MAGEA genes are arranged in 4 subclusters located on the X chromosome. Subcluster III exposes a remarkable gene organization with an inverted repeat (IR) DNA structure of a triplicated couplet of a MAGEA gene and a CSAG gene. Analyzing the mRNA expression pattern of all genes of the MAGEA and CSAG family of cancer/testis genes, we show that the MAGEA and CSAG genes encoded in the large IR are expressed coordinately and independent from the MAGEAs encoded outside the IR. These results reinforce our hypothesis that the large MAGEA/CSAG-IR DNA structure has an impact on the regulation of gene expression.  相似文献   

5.
The gene of tissue kallikrein and closely related genes constitute the glandular kallikrein (GK) gene family. The number of members varies between species, ranging from three human to 25 murine. Recently, the gene family was extended with 12 new members, KLK4-KLK15, that were identified adjacent to the classical GK genes on human chromosome 19. In this report, the structure and phylogeny of the mouse GK gene locus are described. A comparison of the human and murine loci shows that the locations of the tissue kallikrein gene and KLK4-KLK15 are conserved. The region between the tissue kallikrein gene and KLK15, devoid of genes in human, is expanded and contains 23 classical GK genes in mouse. Downstream of KLK15, where the genes encoding PSA and hK2 are located in human, mouse carries the pseudogene PsimGK25. Phylogenetic analyses show that classical GK genes emerged after the separation of the primate and rodent lineages, forming a subgroup within the newly extended GK family.  相似文献   

6.
Stefins or Type 1 cystatins belong to a large, evolutionarily conserved protein superfamily, the members of which inhibit the papain-like cysteine proteinases. We report here on the molecular cloning and chromosomal localization of three newly identified members of the murine stefin gene family. These genes, designated herein as mouse stefins 1, 2, and 3, were isolated on the basis of their relatively increased expression in moth-eaten viable compared to normal congenic mouse bone marrow cells. The open reading frames of the stefin cDNAs encode proteins of approximately 11.5 kDa that show between 50 and 92% identity to sequences of stefins isolated from various other species. Data from Southern analysis suggest that the murine stefin gene family encompasses at least 6 and possibly 10-20 members, all of which appear to be clustered in the genome. Analysis of interspecific backcross mice indicates that the genes encoding the three mouse stefins all map to mouse chromosome 16, a localization that is consistent with the recent assignment of the human stefin A gene to a region of conserved homology between human chromosome 3q and the proximal region of mouse chromosome 16.  相似文献   

7.
The aldolase genes represent an ancient gene family with tissue-specific isozymic forms expressed only in vertebrates. The chromosomal locations of the aldolase genes provide insight into their tissue-specific and developmentally regulated expression and evolution. DNA probes for the human aldolase-A and -C genes and for an aldolase pseudogene were used to quantify and map the aldolase loci in the haploid human genome. Genomic hybridization of restriction fragments determined that all the aldolase genes exist in single copy in the haploid human genome. Spot-blot analysis of sorted chromosomes mapped human aldolase A to chromosome 16, aldolase C to chromosome 17, the pseudogene to chromosome 10; it previously had mapped the aldolase-B gene to chromosome 9. All loci are unlinked and located on to two pairs of morphologically similar chromosomes, a situation consistent with tetraploidization during isozymic and vertebrate evolution. Sequence comparisons of expressed and flanking regions support this conclusion. These locations on similar chromosome pairs correctly predicted that the aldolase pseudogene arose when sequences from the aldolase-A gene were inserted into the homologous aldolase location on chromosome 10.  相似文献   

8.
Abstract The sequencing of a genome is the first stage of its complete characterization. Subsequent work seeks to utilize available sequence data to gain a better understanding of the genes which are found within a genome. Gene families comprise large portions of the genomes of higher vertebrates, and the available genomic data allow for a reappraisal of gene family evolution. This reappraisal will clarify relatedness within and between gene families. One such family, the α-actinin gene family, is part of the spectrin superfamily. There are four known loci, which encode α-actinins 1, 2, 3, and 4. Of the eight domains in α-actinin, the actin-binding domain is the most highly conserved. Here we present evidence gained through phylogenetic analyses of the highly conserved actin-binding domain that α-actinin 2 was the first of the four α-actinins to arise by gene duplication, followed by the divergence of α-actinin 3 and then α-actinins 1 and 4. Resolution of the gene tree for this gene family has allowed us to reclassify several α-actinins which were previously given names inconsistent with the most widely accepted nomenclature for this gene family. This reclassification clarifies previous discrepancies in the public databases as well as in the literature, thus eliminating confusion caused by continued misclassification of members of the α-actinin gene family. In addition, the topology found for this gene family undermines the 2R hypothesis theory of two rounds of genome duplication early in vertebrate evolution.  相似文献   

9.
The three members of the mammalian fringe gene family, Manic fringe (Mfng), Radical fringe (Rfng), and Lunatic fringe (Lfng), were identified on the basis of their similarity to Drosophila fringe (fng) and their participation in the evolutionarily conserved Notch receptor signaling pathway. Fringe genes encode pioneer secretory proteins with weak similarity to glycosyltransferases. Both expression patterns and functional studies support an important role for Fringe genes in patterning during embryonic development and an association with cellular transformation. We have now further characterized the expression and determined the chromosomal localization and genomic structure of the mouse Mfng, Rfng, and Lfng genes; the genomic structure and conceptual open reading frame of the human RFNG gene; and the refined chromosomal localization of the three human fringe genes. The mouse Fringe genes are expressed in the embryo and in adult tissues. The mouse and human Fringe family members map to three different chromosomes in regions of conserved synteny: Mfng maps to mouse Chr 15, and MFNG maps to human Chr 22q13.1 in the region of two cancer-associated loci; Lfng maps to mouse Chr 5, and LFNG maps to human Chr 7p22; Rfng maps to mouse Chr 11, and RFNG maps to human Chr 17q25 in the minimal region for a familial psoriasis susceptibility locus. Characterization of the genomic loci of the Fringe gene family members reveals a conserved genomic organization of 8 exons. Comparative analysis of mammalian Fringe genomic organization suggests that the first exon is evolutionarily labile and that the Fringe genes have a genomic structure distinct from those of previously characterized glycosyltransferases. Received: 19 February 1999 / Accepted: 22 February 1999  相似文献   

10.
Genome organization and characteristics of soybean microRNAs   总被引:3,自引:0,他引:3  
  相似文献   

11.
Here we report the identification of 10 human, 1 murine, and 2 rat ORFs, all of which represent additional members of the DUB/USP17 family of deubiquitinating enzymes. In addition, we demonstrate that this family constitutes part of a tandemly repeated sequence conserved throughout humans, mice, and rats. Furthermore, upon examination of the known family members we have found that the multiple genes observed, in contrast to other gene families, have arisen due to the independent expansion of an ancestral sequence within each species. This premise is further strengthened by the observation that the murine and rat genes span two exons while their human counterparts have one. These observations, in conjunction with previous work demonstrating that the DUB/USP17's are cytokine inducible and that they regulate both cell growth and survival, suggest that the DUB/USP17's are a large highly conserved family of genes that may play an important role in controlling cell fate.  相似文献   

12.
Gap junctions serve for direct intercellular communication by docking of two hemichannels in adjacent cells thereby forming conduits between the cytoplasmic compartments of adjacent cells. Connexin genes code for subunit proteins of gap junction channels and are members of large gene families in mammals. So far, 17 connexin (Cx) genes have been described and characterized in the murine genome. For most of them, orthologues in the human genome have been found (see White and Paul 1999; Manthey et al. 1999; Teubner et al. 2001; S?hl et al. 2001). We have recently performed searches for connexin genes in murine and human gene libraries available at EMBL/Heidelberg, NCBI and the Celera company that have increased the number of identified connexins to 19 in mouse and 20 in humans. For one mouse connexin gene and two human connexin genes we did not find orthologues in the other genome. Here we present a short overview on distinct connexin genes which we found in the mouse and human genome and which may include all members of this gene family, if no further connexin gene will be discovered in the remaining non-sequenced parts (about 1-5%) of the genomes.  相似文献   

13.
The evolution, inheritance and recombination rate of genes located in the pseudoautosomal region 1 (PAR1) is exceptional within the human genome. Pseudoautosomal genes are identical on X and Y chromosomes and are not inherited in a sex linked manner. Due to an obligatory recombination event in male meiosis, pseudoautosomal genes are exchanged frequently between X and Y chromosomes. During the isolation, characterization and sequencing of a novel gene PPP2R3L, which was classified by sequence homology as a novel member of the protein phosphatase regulatory subunit families, it became apparent that cosmids of different origin harboring this gene are highly polymorphic between individuals, both at the nucleotide level and in the number.  相似文献   

14.
A substantial proportion of human genes contain tissue-specifically DNA-methylated regions (TDMRs). However, little is known about the evolutionary conservation of differentially methylated loci, how they evolve, and the signals that regulate them. We have studied TDMR conservation in the PLG and TBX gene families and in 32 pseudogene–parental gene pairs. Among the members of the recently evolved PLG gene family, 5′-UTR methylation is conserved and inversely correlated with the cognate gene expression, indicating as well a conserved regulatory role of DNA methylation. Conversely, many genes of the much older TBX family display complementary tissue-specific methylation, suggesting an epigenetic complementation in the evolution of this gene family. Similar to gene families, unprocessed pseudogenes arose from gene duplications and we found TDMR conservation in some pseudogene–parental gene pairs displaying short evolutionary distances. However, for the majority of unprocessed pseudogenes and for all processed pseudogenes examined, we found that tissue-specific methylation arose de novo after gene duplication.  相似文献   

15.
Natural history and functional divergence of protein tyrosine kinases   总被引:3,自引:0,他引:3  
Gu J  Gu X 《Gene》2003,317(1-2):49-57
Cellular signaling is important for many biological processes including growth, differentiation, adhesion, motility and apoptosis. The protein tyrosine kinase (PTK) supergene family is the key mediator in cellular signaling in metazoans, directly associated with a variety of human diseases. All PTKs contain a highly conserved catalytic kinase domain, in spite of variable multi-domain structures. Within each PTK gene family, members exhibit functional divergence in substrate-specificity or temporal/tissue-specific expression, although their primary function is conserved. After conducting phylogenetic analysis on major PTK gene families, we found that the expanding of each PTK family was likely caused by gene or genome duplication event(s) that occurred before the emergence of teleosts but after the vertebrate-amphioxus split. We further investigated the evolutionary pattern of functional divergence after gene duplication in those gene families. Our results show that site-specific shifted evolutionary rate (altered functional constraint) is a common pattern in PTK gene family evolution.  相似文献   

16.
The sperm protein associated with nucleus in the X chromosome (SPANX) genes cluster at Xq27 in two subfamilies, SPANX-A/D and SPANX-N. SPANX-A/D is specific for hominoids and is fairly well characterized. The SPANX-N gave rise to SPANX-A/D in the hominoid lineage approximately 7 MYA. Given the proposed role of SPANX genes in spermatogenesis, we have extended studies to SPANX-N gene evolution, variation, regulation of expression, and intra-sperm localization. By immunofluorescence analysis, SPANX-N proteins are localized in post-meiotic spermatids exclusively, like SPANX-A/D. But in contrast to SPANX-A/D, SPANX-N are found in all ejaculated spermatozoa rather than only in a subpopulation, are localized in the acrosome rather than in the nuclear envelope, and are expressed at a low level in several nongametogenic adult tissues as well as many cancers. Presence of a binding site for CTCF and its testis-specific paralogue BORIS in the SPANX promoters suggests, by analogy to MAGE-A1 and NY-ESO-1, that their activation in spermatogenesis is mediated by the programmed replacement of CTCF by BORIS. Based on the relative density of CpG, the more extended expression of SPANX-N compared to SPANX-A/D in nongametogenic tissues is likely attributed to differences in promoter methylation. Our findings suggest that the recent duplication of SPANX genes in hominoids was accompanied by different localization of SPANX-N proteins in post-meiotic sperm and additional expression in several nongonadal tissues. This suggests a corresponding functional diversification of SPANX gene families in hominoids. SPANX proteins thus provide unique targets to investigate their roles in the function of spermatozoa, selected malignancies, and for SPANX-N, in other tissues as well.  相似文献   

17.
Hu S  Wang H  Knisely AA  Reddy S  Kovacevic D  Liu Z  Hoffman SM 《Genetica》2008,133(2):215-226
The evolution of gene families can be best understood by studying the modern organization and functions of family members, and by comparing parallel families in different species. In this study, the CYP2ABFGST gene cluster has been characterized in rat and compared to the syntenic clusters in mouse and human, providing an interesting example of gene family evolution. In the rat, 18 loci from six subfamilies have been identified by specifically amplifying and sequencing gene fragments from cloned DNA, and have been exactly placed on chromosome 1. The overall organization of the gene cluster in rat is relatively simple, with genes from each subfamily in tandem, and is more similar to the mouse than to the human cluster. We have reconstructed the probable structure of the CYP2ABFGST cluster in the common ancestor of primates and rodents, and inferred a model of the evolution of this gene cluster in the three species. Numerous nontandem and block duplications, inversions, and translocations have occurred entirely inside the cluster, indicating that pairing between duplicate genes is keeping the rearrangements within the cluster region. The initial tandem duplication of a CYP2 gene in an early mammalian ancestor has made this region particularly subject to such localized rearrangements. Even if duplicated genes do not have a large-scale effect on chromosomal rearrangements, on a local level clustered gene families may have contributed significantly to the genomic complexity of modern mammals.  相似文献   

18.
19.
Summary Various rodent and primate DNAs exhibit a stronger intra- than interspecies cross-hybridization with probes derived from the N-terminal domain exons of human and rat carcinoembryonic antigen (CEA)-like genes. Southern analyses also reveal that the human and rat CEA gene families are of similar complexity. We counted at least 10 different genes per human haploid genome. In the rat, approximately seven to nine different N-terminal domain exons that presumably represent different genes appear to be present. We were able to assign the corresponding genomic restriction endonuclease fragments to already isolated CEA gene family members of both human and rat. Highly similar subgroups, as found within the human CEA gene family, seem to be absent from the rat genome. Hybridization with an intron probe from the human nonspecific cross-reacting antigen (NCA) gene and analysis of DNA sequence data indicate the conservation of noncoding regions among CEA-like genes within primates, implicating that whole gene units may have been duplicated. With the help of a computer program and by calculating the rate of synonymous substitutions, evolutionary trees have been derived. From this, we propose that an independent parallel evolution, leading to different CEA gene families, must have taken place in, at least, the primate and rodent orders.  相似文献   

20.
The Arabidopsis thaliana genome sequencing project has revealed that multigene families, such as those generated by genome duplications, are more abundant among plant genomes than among animal genomes. To gain insight into the evolutionary implications of the multigene families in higher plants, we examined the XTH gene family, a group of genes encoding xyloglucan endotransglucosylase/hydrolase, which are responsible for cell-wall construction in plants. Expression analysis of all members (33 genes) of this family, using quantitative real-time RT-PCR, revealed that most members exhibit distinct expression profiles in terms of tissue specificity and responses to hormonal signals, with some members exhibiting similar expression patterns. By comparing the flanking sequences of individual genes, we identified four sets of large-segment duplications and two sets of solitary gene duplications. In each set of gene duplicates, long nucleotide sequences, ranging from one to two hundred base pairs, are conserved. Furthermore, gene duplicates exhibit similar organ-specific expression profiles. These facts allowed us to predict putative cis-regulatory regions, particularly those responsible for cell-wall construction, and hence for morphogenesis, that are specific for certain organs or tissues in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号