首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The density of great tit Parus major L. and blue tit Parus caeruleus L. was artificially increased by placing nest-box colonies for these species in the vicinity of the nests of breeding tawny owls during 1993–1997. Bird prey composition in the owl nests, the proportion of parents disappearing from the breeding tit populations and the reproductive performance of the widowed parents were analysed. The frequency of predation on tits by tawny owls was greater in areas where tit density had been artificially increased. Owls preyed more on tits during the feeding period of owlets than during the incubation period and more in years when snow covered the ground during the incubation period than when it did not. Mortality due to predation was male biased and more females lost their mates in populations breeding near tawny owl nests. Reproductive performance of the widowed parents was lower and their body weights were lighter at the end of the nestling period than those found in birds rearing youngs with their mates. Predation by owls increased the between-year turnover in the breeding tit population: widowed parents did not return to the nesting site for the next breeding season.  相似文献   

2.
Summary Density and breeding success of the great tit Parus major, blue tit Parus caeruleus and collared flycatcher Ficedula albicollis were studied in nest box colony in oak forest over a period of 19 years.Intraspecific density dependent clutch size reduction was found with blue tit and great tit. In interspecific relation the high density of blue tits reduced the clutch size of great tits.In the hatching period neither intraspecific nor interspecific density dependence were showed between the tits when the third competitive species, collared flycatcher was present. The collared flycatcher significantly reduced the hatching success of both tit species and the number of fledglings of great tit.The effects of the great tits and combined density of the great and blue tits on the hatching failure and number of fledglings of collared flycatcher were found when the density of the tits was high. There were not significant relationships to the single density of blue tits.The temporal variability of the competition of the three bird species is discussed.  相似文献   

3.
The temporal mismatch hypothesis suggests that fitness is related to the degree of temporal synchrony between the energetic needs of the offspring and their food supply. The hypothesis has been a basis in studying the influence of climate warming on nature. This study enhances the knowledge on prevalence of temporal mismatches and their consequences in boreal populations, and questions the role of the temporal mismatch hypothesis as the principal explanation for the evolution of timing of breeding. To test this, we examined if synchrony with caterpillar prey or timing of breeding per se better explains reproductive output in North European parid populations. We compared responses of temperate-origin species, the great tit (Parus major) and the blue tit (Cyanistes caeruleus), and a boreal species, the willow tit (Poecile montanus). We found that phenologies of caterpillars and great tits, but not of blue tits, have advanced during the past decades. Phenologies correlated with spring temperatures that may function as cues about the timing of the food peak for great and blue tits. The breeding of great and blue tits and their caterpillar food remained synchronous. Synchrony explained breeding success better than timing of breeding alone. However, the synchrony effect arose only in certain conditions, such as with high caterpillar abundances or high breeding densities. Breeding before good synchrony seems advantageous at high latitudes, especially in the willow tit. Thus, the temporal mismatch hypothesis appears insufficient in explaining the evolution of timing of breeding.  相似文献   

4.
Twenty-one individuals each of the species great tits (Parus major), blue tits (Parus caeruleus), marsh tits (Parus palustris), blackbirds (Turdus merula), songthrushes (Turdus philomelos), tree sparrows (Passer montanus) and house sparrows (Passer domesticus) were conditioned to a keypeck response by means of food reinforcement. The site where the reward was given was then changed. The number of reinforcements were then counted until the keypeck response followed immediately (within 10 seconds) on three successive occasions, and a comparison was made between species. Of the species studied the blackbird needed significantly fewer instances of reinforcement in order to re-establish an immediate keypeck response. A significant difference was also seen between the performance of the great tit and marsh tit, as well as between the blue tit and the marsh tit. No significant difference was found between the performance of the house sparrow and the tree sparrow.  相似文献   

5.
During the breeding season, great tits show aggression to protect their nest from intra‐ and interspecific intruders. Aggression is a labile trait that can be plastically expressed as a result of individual differences (e.g., personality), seasonal gradients in the costs and benefits of aggression, or other environmental components (e.g., number of competitors). Competitors may try to take over great tit nests, because the number of suitable nesting sites is limited, and great tits may guard high quality territories. Taking over a great tit nest may be especially fruitful in early phenological stages (egg laying) when great tits frequent their nests less often. However, great tits may compensate for this vulnerability by being more aggressive toward intruders during early nesting stages, a pattern that has already been established in an intraspecific context. Previous studies have shown that interspecific intruders were most likely to die from great tit aggression during great tit egg laying, suggesting great tits may also be more aggressive during this phase in an interspecific context. Here, I tested this hypothesis with simulated territorial intrusions in great tit territories using taxidermized blue tits Cyanistes caeruleus (hereafter called blue tit models). Great tit aggression (number of calls and approach distance toward blue tit model) was assayed during egg laying, incubation, and chick rearing in the breeding season of 2014. Although sample size was low due to a high fraction of non‐responders (n = 44 out of 89 assays across 26 out of 35 individuals), I found that great tits showed a seasonal decline in aggressiveness, which is congruent with intraspecific results on this study species. I discuss my findings in the context of differential adjustment to climate change between interspecific competitors.  相似文献   

6.
Failure to recognize conspecifics in social interactions such as mate choice and aggressive encounters will often result in reduced fitness. Studies on mate choice show that the ability to recognize conspecifics as mates is not universally present at birth, but often needs to be learned. In contrast, little is known about the ontogeny of intrasexual species recognition. To test whether learning influences the recognition of sexual rivals, we compared the aggressive response towards intruders of interspecifically cross-fostered individuals and controls reared by conspecific parents. We simulated territorial intrusion by presenting either a caged individual or playback song near the nest of breeding pairs of great tits, Parus major, and blue tits, P. caeruleus. Great tits reared by blue tit parents responded much more to blue tit stimuli than did great tit controls, and furthermore showed stronger responses to blue tit stimuli than to those of their own species. Blue tits reared by great tits responded much more to great tit stimuli than did blue tit controls. In contrast, blue tits cross-fostered to coal tits, P. ater, did not respond more to coal tits than did blue tit controls. There was a species difference in the response to conspecifics: blue tits cross-fostered to great tits responded more to conspecifics than did cross-fostered great tits. The results were similar for males and females. We conclude that learning influences intrasexual species recognition in these tits. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

7.
Increasing evidence suggests that climate change has consequences on avian breeding phenology. Here, variations in laying date and clutch size of great tit Parus major and blue tit Parus caeruleus within and between breeding populations through the western Palaearctic are examined in relation to climatic fluctuations, measured by the winter North Atlantic Oscillation (NAO) index. Within and across breeding sites, laying date was related to winter‐NAO index such that great and blue tit females lay earlier after warmer, moister winters (positive values of winter NAO‐index). The present study shows that for most populations there is an advancement of laying date, but the rate of change with respect to NAO significantly differed geographically across the western Palaearctic and did not differ between species. However, clutch size of great and blue tits was not affected by climatic fluctuations, presumably because the whole season is being shifted, but not in relation to food supplies. These combined analyses for the two species controlled for potentially confounding variables such as latitude, longitude, elevation and habitat of each study site.  相似文献   

8.
In seasonal environments variation in food abundance in the non‐breeding season is thought to affect songbird population dynamics. In a unique tit‐sea buckthorn berry system we can estimate the berry abundance and both the tit consumption and population dynamics. Six hundred nest boxes were available to great and blue tits Cyanistes caeruleus for breeding in spring and roosting in winter. We followed the dynamics including the recapture histories of individually marked great tits from 2008 to 2014. In each year we estimated 1) the winter sea buckthorn berry availability, 2) an index of berry consumption in December based on the colour of the faeces of roosting birds, 3) the number of breeding great and blue tits, 4) both recapture probability and the return rate of the great tits and 5) immigration rates. December berry abundance positively predicted the number of breeding pairs of both species in the subsequent season and great tit return rates in the second half of the winter. There was support for a sex specific berry effect on the adult return rate in the great tit: female return rate was associated less strongly to berry abundance than male return rate. This skewed the sex ratio of the local breeders in the following breeding season. Intriguingly, annual berry consumption in December was not related to berry abundance, and individuals consuming more berries tended to have slightly lower return rates. Reproductive rate was not related to berry abundance. There was hardly support for a relation between immigration rates of first year breeders and berry abundance. Taken together these results imply that berry stock not only affected population size but also the population composition through sex specific exchange with the surroundings. Since population density covaried with berry abundance, density dependent effects provide an alternative explanation for the patterns observed.  相似文献   

9.
Brood sex ratio was studied in 88 families of Parus caeruleus (blue tit) and 95 families of P. major (great tit) in deciduous and mixed forest habitats differing in food availability. As a food specialist, the blue tit is expected to be more sensitive to the nutritional differences between the habitats than a food generalist such as the great tit. A shift of brood sex ratio towards males was detected for great tits in the high quality habitat, but there was no significant impact of parental condition or the number of nestlings. In contrast, brood sex ratio of blue tits was not affected by habitat quality. In blue tits, male condition correlated positively with a male-biased sex ratio. Habitat quality, however, affected the body mass differences of male and female blue tit siblings, and nestlings developed differently. The low quality habitat had a negative effect on the sexual dimorphism of siblings in male-biased broods, and the condition of offspring was bad. Nevertheless, sexual dimorphism cannot explain the differences between great and blue tits with respect to the correlation of sex ratio and individual condition.  相似文献   

10.
In patchy forest areas, the size of the forest patch where birds breed has a strong influence on their breeding success. However, the proximate effects contributing to lowering the breeding success in small forest patches remain unclear; and a shortage of crucial resources in those forest patches has been suggested to account in some degree for this failure. With the aim to further investigate this issue, we have monitored the breeding cycle of blue and great tits in three ‘large’ forest patches (ranging between 26.5 and 29.6 ha) and twelve ‘small’ forest patches (ranging between 1.1 and 2.1 ha) in a Mediterranean area in central Spain, during three years (2011–2013). We also recorded the nestling diet inside the nest-boxes with the aid of handy-cams. Only males significantly differed between forest patch size categories; being on average younger and with better body condition in small patches for great and blue tits respectively. Reproductive traits did not vary between forest patch size categories, but the body condition of blue tit nestlings and the size of great tit nestlings did, being significantly better and larger respectively in large forest patches. The recruitment rate of blue tit nestlings was also higher in large patches. Regarding nestling diet, blue tits did not differ but great tits did, delivering a larger amount of caterpillars in large forest patches. Most variation in the reproductive traits occurred between years, probably due to annual differences in environmental conditions. This study suggests that food supply could be limiting the breeding success of birds above all in small patches, but also in large patches under particular environmental conditions.  相似文献   

11.
Climate change could affect resource competition between resident and migratory bird species by changing the interval between their onsets of breeding or by altering their population densities. We studied interspecific nest-hole competition between resident great tits and migrant pied flycatchers in South-Western Finland over the past five decades (1953-2005). We found that appearance of fatal take-over trials, the cases where a pied flycatcher tried to take over a great tit nest but was killed by the tit, increased with a reduced interspecific laying date interval and with increasing densities of both tits and flycatchers. The probability of pied flycatchers taking over great tit nests increased with the density of pied flycatchers. Laying dates of the great tit and pied flycatcher are affected by the temperatures of different time periods, and divergent changes in these temperatures could consequently modify their competitive interactions. Densities are a result of reproductive success and survival, which can be affected by separate climatic factors in the resident great tit and trans-Saharan migrant pied flycatcher. On these bases we conclude that climate change has a great potential to alter the competitive balance between these two species.  相似文献   

12.
Food availability influences multiple stages of the breeding cycle of birds, and supplementary feeding has helped in its understanding. Most supplementation studies have reported advancements of laying, whilst others, albeit less numerous, have also demonstrated fitness benefits such as larger clutches, shorter incubation periods, and greater hatching success. Relatively few studies, however, have investigated the effects of supplementary feeding for protracted periods across multiple stages of the breeding cycle. These effects are important to understand since long-term food supplementation of birds is recommended in urban habitats and is used as a tool to increase reproductive output in endangered species. Here, we compare the breeding phenology and productivity of blue tits Cyanistes caeruleus and great tits Parus major breeding in food-supplemented and non-supplemented blocks in a broadleaf woodland in central England over three seasons (2006–2008). Supplementation was provided continuously from several weeks pre-laying until hatching, and had multiple significant effects. Most notably, supplementation reduced brood size significantly in both species, by half a chick or more at hatching (after controlling for year and hatching date). Reduced brood sizes in supplemented pairs were driven by significantly smaller clutches in both species and, in blue tits, significantly lower hatching success. These are novel and concerning findings of food supplementation. As expected, supplementary feeding advanced laying and shortened incubation periods significantly in both species. We discuss the striking parallels between our findings and patterns in blue and great tit reproduction in urban habitats, and conclude that supplementary feeding may not always enhance the breeding productivity of birds.  相似文献   

13.
To evaluate the importance of tree leafing for the start of laying and clutch size of birds, we compared the breeding phenology of great tits Parus major and blue tits P. caeruleus between one coastal and two inland sites in the same geographical region. Because of the cooling influence of the sea, trees at the coastal site were known to initiate budburst about a week later than at the inland sites. During 5 years, breeding by the tits and the leaf phenology of birch Betula pendula , and oak Quercus robur were monitored. The leaf phenology of birch and oak explained a significant part of the between-year variation in the start of egg laying in blue and great tits, respectively. The tits started laying earlier at the sites with an early budburst, i.e. normally inland. However, leaf phenology was not an absolute cue to the start of laying, since blue tits laid earlier relative to leafing at the inland site than at the coastal site, and both tit species laid eggs earlier relative to leafing during late springs. In neither species was clutch size affected by leafing phenology. However, great tit females at the coastal site consistently produced fewer eggs than did those at the inland site. No such difference was found in the blue tits. Although leafing phenology may predict the start of laying in tits, other factors also influence its timing. These factors might include other cues, or differing life-history trade-offs depending on site or general climatic factors during the spring.  相似文献   

14.
Optimal foraging theory suggests that avian parents should prefer the most energetically efficient (largest) prey items when delivering food to offspring at a central place. However, during periods of high demand, selectivity of prey may decline, leading to the delivery of smaller and/or less nutritious items. We compared foraging trade‐offs between great tits (Parus major) which had a wider feeding niche than blue tits (Cyanistes caeruleus). We also compared the foraging efficiency of cross‐fostered young, which had learned the spatial foraging niche and prey size of the foreign species, to that of control conspecifics. Mean delivery rates did not differ between control and cross‐fostered parents of either species but as delivery rates increased, prey size declined for both species and both treatment groups. However, across the range of increasing delivery rates, parents were able to increase the total biomass of prey delivered. Cross‐fostering did not alter the proportion of different prey taxa in the diet, but cross‐fostered birds shifted the size of the prey taken to that of their foster species. Consistent with their broader feeding niche, great tits, but not blue tits, incorporated more unpalatable items (flies) as delivery rates increased. Although great tits foraged less efficiently in the blue tit niche, paradoxically, blue tits seem to deliver more prey biomass when foraging in the great tit niche.  相似文献   

15.
Variation in climatic conditions is an important driving force of ecological processes. Populations are under selection to respond to climatic changes with respect to phenology of the annual cycle (e.g. breeding, migration) and life‐history. As teleconnections can reflect climate on a global scale, the responses of terrestrial animals are often investigated in relation to the El Niño‐Southern Oscillation and North Atlantic Oscillation. However, investigation of other teleconnections and local climate is often neglected. In this study, we examined over a 33‐year period the relationships between four teleconnections (El Niño‐Southern Oscillation, North Atlantic Oscillation, Arctic Oscillation, East Atlantic Pattern), local weather parameters (temperature and precipitation) and reproduction in great tits Parus major and blue tits Cyanistes caeruleus in the Carpathian Basin, Hungary. Furthermore, we explored how annual variations in the timing of food availability were correlated with breeding performance. In both species, annual laying date was negatively associated with the Arctic Oscillation. The date of peak abundance of caterpillars was negatively associated with local temperatures in December–January, while laying date was negatively related to January–March temperature. We found that date of peak abundance of caterpillars and laying date of great tits advanced, while in blue tits clutch size decreased over the decades but laying date did not advance. The results suggest that weather conditions during the months that preceded the breeding season, as well as temporally more distant winter conditions, were connected to breeding date. Our results highlight that phenological synchronization to food availability was different between the two tit species, namely it was disrupted in blue tits only. Additionally, the results suggest that in order to find the climatic drivers of the phenological changes of organisms, we should analyze a broader range of global meteorological parameters.  相似文献   

16.
Morphological resemblance of the common cuckoo Cuculus canorus to the Eurasian sparrowhawk Accipiter nisus has been regarded as an example of predator mimicry. Common hosts could distinguish parasites as the result of coevolution, while rare hosts or non‐hosts may mistake cuckoos for hawks because rare hosts or non‐hosts behave similarly when faced with these two species. Birds usually produce alarm calls in addition to showing behavioral responses when in danger. However, previous studies of identification by rare hosts or non‐hosts of sparrowhawks usually lacked experimental evidence of alarm calls. Great tits Parus major, a rare cuckoo host, perform similar behaviors and usually produce alarm calls in response to sparrowhawks and common cuckoos. Here, we tested whether great tits could distinguish common cuckoo from sparrowhawk based on analysis of their alarm calls and the effects of playback of alarm calls on conspecific behavior. Previous studies showed that great tits have a complex communication system that conveys information about predators, and they could perform different kinds of response behavior to different alarm calls. If great tits have not made the ability to distinguish between common cuckoo and sparrowhawk, then their acoustic responses to these two species and their response behaviors in playback experiments should be similar. Specimens of a common cuckoo (parasite), a sparrowhawk (predator) and an Oriental turtle dove Streptopelia orientalis (harmless control) were used to elicit and subsequently record the response behavior and alarm calls of great tits. There was no significant difference in behavioral response among great tits when exposed to the dummy of cuckoo, sparrowhawk and dove. In contrast, they differed significantly in alarm calls. Great tits produced more notes per call that contained increasing D‐type and decreasing I‐type notes when responding to sparrowhawk as compared to cuckoo or dove. In playback experiments, we found that great tits responded more strongly to great tit hawk than to great tit cuckoo or great tit dove alarm calls. Our study suggests that great tits are able to distinguish sparrowhawks from common cuckoos and convey relevant information in alarm calls by adjusting the number and combinations of notes of a single call type.  相似文献   

17.
The main purpose of this study was to link morphological differences between great tit ( Parus major ), willow tit ( P. montanus ) and coal tit ( P. ater ) and their rate of energy acquisition and choice of diet in order to explore the potential for competitive relations between them more directly. Handling times were measured in the laboratory by presenting mealworms of different sizes to the birds. Great tits were more efficient in handling large prey than were the smaller-bodied willow- and coal tits; for small prey sizes the coal tit was the least efficient species. Using the ratio of prey mass to the handling time value, a utility function for each species was constructed. These results suggests a potential for a segregation of the species on the food axis. However, results from the prey choice experiment show that despite considerable differences in functional morphology between the three species they do not differ significantly in the range of prey size exploited. My results suggest that the alleged importance of prey size partitioning is not likely to play the major role for the coexistence of these coniferous forests tits.  相似文献   

18.
Social dominance influences the outcome of competitive interactionsover limited resources, and may hence be important for individualfitness. Theory thus predicts that its heritability will below and that non-genetic determinants of dominance should prevail.In this field experiment we reciprocally cross-fostered greattits (Parus major) to blue tits (Parus caeruleus) to investigatethe impact of early social experience on dominance status incompetition over food during winter. Controlling for potentialeffects of age, size, sex and site-related dominance, we showthat cross-fostered birds of both species were subdominant toconspecific immigrants, while controls originating from unmanipulatedbroods were dominant to conspecific immigrants. Furthermore,blue tits reared by blue tit parents but with at least one greattit broodmate had lower dominance status relative to conspecificimmigrants than did controls. Although great tits generallydominated blue tits, cross-fostered birds of both species initiatedmarginally more fights against the other species than did theirrespective controls, suggesting faulty species recognition.Since both social parents and broodmates strongly influencethe dominance behavior of offspring later in life, we concludethat social conditions experienced at an early age are crucialfor the determination of subsequent social dominance.  相似文献   

19.
We investigated the possible causes of the evolution of sexual size and shape dimorphism in the great tit (Parus major) by using two different approaches. First, we used the equilibrium approach, i.e. analysing current selection to see whether it was possible to find directional selection in the direction of the dimorphism, or stabilising selection maintaining dimorphism at its current level. Second, we used the historical approach, i.e. putting the degree of dimorphism in a phylogenetic perspective to analyse what kind of changes (if any) have occurred. This was carried out in the following way: (i) we described the level of sexual dimorphism in a population of Swedish great tits by means of path model. (ii) We used the path model design to analyse survival and reproductive selection in this population. (iii) We compared the level of dimorphism in relation to size in the great tit with that of the closest congener, the blue tit P. caeruleus. (iv) We compared the amount of interspecific morphological variation with that which would be expected under a drift model. We found no evidence of either stabilising or directional survival or reproductive selection. Size and shape variation in the great tit seemed unrelated to fitness in adults. Dimorphism was somewhat greater in the great tit compared to the blue tit, but only with an amount predictable by its larger size. In terms of phenotypic standard deviations, the great tit was not more dimorphic than the blue tit, although it was larger. The amount of interspecific variance with regard to size was lower or equal to that expected by the drift model, showing that long-term directional selection for an increase in size and dimorphism is improbable. These results agree with recent theoretical findings that size and dimorphism should be related and that strong conservatism with regard to dimorphism is to be expected. They also agree with the view that in equilibrium populations, fitness components (if there are many of them) should appear neutral with regard to total fitness.  相似文献   

20.
Although they have the potential to strongly influence individual fitness and the dynamics and productivity of populations, the survival consequences of pairing outcomes and the influence of current pairing outcomes on those in the future have rarely been addressed. Previously, we have shown that pair fidelity increases both survival and future pair fidelity in a population of great tits Parus major. The aim of this study was to explore the generality of our previous findings by evaluating the influence of current paring outcomes on survival and on future pairing outcomes in two different species and in different populations. We addressed our aims within a multievent capture–mark–recapture (MECMR) statistical framework, which accounts for differences in recapture rates and uncertainty in the assignment of pair status (i.e. whether an individual is breeding with the same partner or not). We applied the framework to breeding records of two great tit populations and one blue tit Cyanistes caeruleus population. We detected survival benefits (i.e. increased survival) of pair fidelity in all three populations. These were similar in both great tit populations, but higher for male great tits than for male blue tits. We found that age‐dependence in the rate of pair fidelity was shared between different populations and species, but did not detect any influence of current pair status on future pair status. Our study highlights the importance of considering survival when studying the fitness benefits of pair fidelity. Some of the differences in pair fidelity rates and survival benefits of pair fidelity are likely the result of long‐term and short‐term demographic and environmental factors in the population. We advocate the use of the MECMR framework used here for further exploration of these differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号