首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vitro antioxidant effects of novel N-substituted indole-3-carboxamides (I3CDs) 1-10 on rat liver microsomal NADPH-dependent lipid peroxidation (LP) levels and their free radicals scavenging properties were determined by the inhibition of superoxide anion formation (SOD). Among the synthesized compounds, 4, 5, 8 and 9 significantly inhibited SOD with an inhibition range at 84–100% at 10? 3 M concentration. The presence of halo substituents both ortho- and para- positions of these compounds resulted 100% inhibition of SOD. Comparison the activity results of halogenated and non-halogenated derivatives suggested that the halogenated compounds are more active than the non-halogenated compounds. On the other hand, the introduction of a para fluoro benzyl in the 1-position of indole (compounds 7, 8) has more impact on the SOD inhibition when the benzamide ring was mono halogenated. However, none of other compounds had a significant inhibitory effects on the level of lipid peroxidation.  相似文献   

2.
The antioxidant role of novel N-substituted indole-2-carboxamides (I2CDs) was investigated for their inhibitory effects on superoxide anion (O2-) and lipid peroxidation (LP). Among the synthesized I2CDs, 3, 4, 6, 8 and 9 significantly inhibited O2*- with an inhibition range at 70-98%. Examination of substituent effects on activity showed that both the ortho- and para- positions of the benzamide residue needs to be dichlorinated in order to get a maximum inhibitory effect on superoxide anion. In general, halogenated derivatives were found more active then the non-halogenated ones. However, none of the I2CDs had a significant inhibitory effects on the level of lipid peroxidation; only compounds 7 and 10 moderately decreased LP levels by over 50% at 10(-3) M concentrations.  相似文献   

3.
The antioxidant role of novel N-substituted indole-2-carboxamides (I2CDs) was investigated for their inhibitory effects on superoxide anion (O2? ) and lipid peroxidation (LP). Among the synthesized I2CDs, 3, 4, 6, 8 and 9 significantly inhibited O2· ? with an inhibition range at 70–98%. Examination of substituent effects on activity showed that both the ortho- and para-positions of the benzamide residue needs to be dichlorinated in order to get a maximum inhibitory effect on superoxide anion. In general, halogenated derivatives were found more active then the non-halogenated ones. However, none of the I2CDs had a significant inhibitory effects on the level of lipid peroxidation; only compounds 7 and 10 moderately decreased LP levels by over 50% at 10? 3 M concentrations.  相似文献   

4.
We have previously reported on the synthesis of novel indole derivatives where some compounds showed significant antioxidant activity. Here, we report the synthesis of novel N-H and N-substituted indole-2- and 3-carboxamide derivatives and investigated their antioxidant role in order to identify structural characteristics responsible for activity. Although all compounds showed a strong inhibitory (95-100%) effect on superoxide anion (SOD) only compounds 4, 5 and 6 showed simliar potency for the inhibition of lipid peroxidation (81-94%) which revealed that compounds 4, 5 and 6 possessed highly potent antioxidant properties. Substitution in the 1-position of the indole ring caused the significant differences between the activity results regarding lipid peroxidation inhibition.  相似文献   

5.
Antioxidant and radical scavenging properties of a series of 2-[4-(substituted piperazin-/piperidin-1-ylcarbonyl)phenyl]-1H-benzimidazole derivatives were examined. Free radical scavenging properties of compounds 11-30 and 33 were evaluated for the stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide anion radical. In addition the inhibitory effects on the NADPH-dependent lipid peroxidation levels were determined by measuring the formation of 2-thiobarbituric acid reactive substances (TBARS) using rat liver microsomes. Compound 33 which has a p-fluorobenzyl substitutent at position 1 exhibited the strongest inhibition (83%) of lipid peroxidation at a concentration of 10(-3) M, while the nonsubstituted analogue 13 caused 57% inhibition. This result is fairly consistent with the antimicrobial activity results against both Staphylococcus aureus and Candida albicans.  相似文献   

6.
The inhibitory effect of exogenous monosialoganglioside GM1 on lipid peroxidation was studied in synaptosomal membranes from rat brain. When this effect was studied over a wide GM1 concentration range, the biphasic kinetics was observed, the highest per cent of inhibition (70%) was found at GM1 concentration of 10(-9)- 10(-8) M. In liposomes made from lipids isolated from rat synaptosomal membranes the inhibition of lipid peroxidation by exogenous GM1 was much less pronounced (25% at maximum) it reached the saturation at ganglioside concentration of 10(-8)-10(-6) M. The thermal denaturation (90 degrees C), storage at 0 degrees C, addition of polymyxin B result in considerable decrease of inhibitory effect of GM1 on lipid peroxidation in synaptosomal membranes. On the contrary phorbol-12-myristate-13-acetate (10(-6)M) or Ca2+ (2.10(-3)M) inhibit lipid peroxidation in synaptosomal membranes, the presence of exogenous GM1 in incubation medium having additional inhibitory effect. Possible mechanisms of ganglioside participation in regulation of functional activity of excitatory membranes are discussed.  相似文献   

7.
Guggulu, the gum resin from Commiphora mukul, is one of the components of various formulations of traditional Ayurvedic medicine to treat inflammation, obesity, and lipid disorders. In most preparations of Ayurvedic medicine in India, guggulu is boiled prior to its use. Therefore, guggulu was boiled with H2O prior to extractions in our study. Bioassay-guided isolation of compounds from the hexane-soluble portion of the MeOH extract of guggulu yielded cembrenoids, 1-6, a bicyclic diterpene, 7, guggulusterone derivatives, 8-11, myrrhanone derivatives, 12, myrrhanol derivative, 13, and a lignan, 14. The structures of these compounds were confirmed by spectroscopic methods. Compounds 5, 6, 7, 10, and 12-14 are novel. These compounds were assayed for lipid peroxidation and cyclooxygenase (COX) enzyme inhibitory activities. At 100 ppm, compounds 3, 6, and 14 inhibited the lipid peroxidation by 79, 57, and 58%, respectively, and the rest of isolated compounds showed 20-40% inhibitory activity with respect to the controls. In COX-1 and COX-2 enzyme inhibitory assays, compound 3 showed 79 and 83%, and compound 8 gave 67 and 54% of inhibition, respectively, at 100 ppm. All fourteen compounds inhibited COX-1 enzyme at 100 ppm. The lipid peroxidation and COX enzyme inhibitory activities exhibited by compounds isolated from C. mukul may substantiate its use in traditional medicine.  相似文献   

8.
Mutations in Cu/Zn-superoxide dismutase (SOD1) are associated with some cases of familial amyotrophic lateral sclerosis (ALS). We overexpressed Bcl-2, wild-type SOD1 or mutant SOD1s (G37R and G85R) in NT-2 and SK-N-MC cells. Overexpression of Bcl-2 rendered cells more resistant to apoptosis induced by serum withdrawal, H2O2 or 4-hydroxy-2-trans-nonenal (HNE). Overexpression of Bcl-2 had little effect on levels of protein carbonyls, lipid peroxidation, 8-hydroxyguanine (8-OHG) or 3-nitrotyrosine. Serum withdrawal or H2O2 raised levels of protein carbonyls, lipid peroxidation, 8-OHG and 3-nitrotyrosine, changes that were attenuated in cells overexpressing Bcl-2. Overexpression of either SOD1 mutant tended to increase levels of lipid peroxidation, protein carbonyls, and 3-nitrotyrosine and accelerated viability loss induced by serum withdrawal, H2O2 or HNE, accompanied by greater rises in oxidative damage parameters. The effects of mutant SOD1s were attenuated by Bcl-2. By contrast, expression of wild-type SOD1 rendered cells more resistant to loss of viability induced by serum deprivation, HNE or H2O2. The levels of lipid peroxidation in wild-type SOD1 transfectants were elevated. Overexpression of mutant SOD1s makes cells more predisposed to undergo apoptosis in response to several insults. Our cellular systems appear to mimic events in patients with ALS or transgenic mice overexpressing mutant SOD1.  相似文献   

9.
Constituents in Easter lily flowers with medicinal activity   总被引:5,自引:0,他引:5  
Easter lily (Lilium longiflorum) flowers have been used in traditional medicine for alleviating many ailments. However, the chemical basis of its bioactivity has not been investigated. We have determined bioactive components in Easter lily flowers using lipid peroxidation and cyclooxygenase enzyme inhibitory assays and found to be kaempferol (1), kaempferol glycosides (2, 3, 4, 8, 9 and 10), quercetin glycosides (5, 6 and 7), a regaloside (11), a chalcone (12) and a fatty acid fraction (13). The structures of compounds were determined by NMR, IR, UV/VIS and mass spectroscopic studies. Compound 1 showed the highest COX-1 inhibition (94.1%) followed by 3, 8 and 12 with 38.7, 30.8 and 32.4%, respectively. Only compound 1 inhibited COX-2 enzyme by 36.9% at 80 ppm. In lipid peroxidation inhibitory assay, kaempferol showed 37 and 100 % inhibitions at 1 and 10 ppm, respectively. At 10 ppm, more than 20% inhibition was observed for compounds 4, 7, 10, 11 and 12 and 53% for compound 3. The compounds reported in here are isolated for the first time from Easter lily flowers including novel compounds 10, 11 and 12. Our results suggest that kaempferol and quercetin flavonoids contributed to the anecdotal medicinal properties of Easter lily flowers.  相似文献   

10.
From the AcOEt extract of the seeds of Picrorhiza kurroa were isolated picrorhiza acid (1), picrorhizoside A (2), picrorhizoside B (3), picrorhizoside C (4), (-)-shikimic acid (5), gallic acid (6), ellagic acid (7), isocorilagin (8), 1-O-galloyl-beta-D-glucose (9), 1-O,3-O,6-O-trigalloyl-beta-D-glucose (10), and 1-O,2-O,3-O,4-O,6-O-pentagalloyl-beta-D-glucose (11), and their structures were established by extensive NMR and chemical studies. Constituents 1-4 are novel compounds, and the known compounds 5-11 have been isolated for the first time from the seeds of P. kurroa. Compounds 2 and 3 were hydrolyzed and yielded 12, isochebulic acid. Compounds 1-12 showed 89.6, 77.3, 56.1, 50.5, 11.0, 86.4, 50.5, 29.2, 70.9, 50.5, 56.5, and 86.1% inhibition of lipid peroxidation at 5 microg/ml, respectively. The commercial antioxidants BHA (1.8 microg/ml), BHT (2.2 microg/ml), and TBHQ (1.66 microg/ml) inhibited lipid peroxidation at 85.6, 87.1, and 81.1%, respectively. The inhibition of cyclooxygenase-1 (COX-1) by 2-5, 7, 8, and 10-12 at 100 microg/ml was 41.9, 28.4, 32.9, 9.3, 70.7, 34.7, 16.0, 89.6, and 53.4%, respectively. Similarly, compounds 1-8 and 11 and 12, at 100 microg/ml, inhibited COX-2 by 12.6, 15.3, 25.1, 5.3, 13.2, 21.7, 2.0, 42.4, 43.4, and 36.9%, respectively.  相似文献   

11.
We have previously reported on the synthesis of novel indole derivatives where some compounds showed significant antioxidant activity. Here, we report the synthesis of novel N–H and N-substituted indole-2- and 3-carboxamide derivatives and investigated their antioxidant role in order to identify structural characteristics responsible for activity. Although all compounds showed a strong inhibitory (95–100%) effect on superoxide anion (SOD) only compounds 4, 5 and 6 showed simliar potency for the inhibition of lipid peroxidation (81–94%) which revealed that compounds 4, 5 and 6 possessed highly potent antioxidant properties. Substitution in the 1-position of the indole ring caused the significant differences between the activity results regarding lipid peroxidation inhibition.  相似文献   

12.
1. The effects of some anesthetics and detergents on the Fe2+/ascorbate-stimulated non-enzymatic lipid peroxidation potential and on the NADPH-dependent enzymatic lipid peroxidation capacity were characterized in mouse heart homogenates. 2. Chlorpromazine turned out to be the most efficient inhibitor, causing a 50% inhibition at a concentration of 0.03 mM in the non-enzymatic assay, and at a concentration of 0.02 mM in the enzymatic assay. 3. Tetracaine was about a 10-times weaker inhibitor with IC50-values of 0.25 mM. High concentration of dibucaine (1 mM) exerted a 60% inhibition in the non-enzymatic assay, but lidocaine and procaine had no prominent effect with the concentrations used. 4. In the non-enzymatic, Fe(2+)-stimulated system, a 50% inhibition was obtained by using SDS, Triton X-100, and deoxycholic acid at concentrations of 0.004, 0.03, and 0.15%, respectively. 5. In the NADPH-dependent enzymatic lipid peroxidation system, corresponding concentrations were 0.02, 0.04 and 0.1%. Deoxycholate and Triton X-100 even stimulated (10-20%) the enzymatic lipid peroxidation at the lowest concentrations (0.005-0.01%). Saponin was the least effective of these detergents. 6. It is suggested that anesthetics and detergents induce structural rearrangements in the myocardiac membranes which result in the unavailability of phospholipid substrates to lipid peroxidation.  相似文献   

13.
Oxidative stress has been implicated in the development of many neurodegenerative diseases such as Parkinson and Alzhemier's disease and is also responsible for aging, artherosclerosis, rheumatoid arthritis and carcinogenesis. Olefins such as dehydroalanines have been shown to inactivate free radicals by forming stabilized free radical adducts. Among these molecules N-acyl dehydroalanines react with and scavenge oxygen and hydroxyl radicals. This study describes the synthesis, characterization and in vitro effects on rat liver lipid peroxidation levels, and DPPH free radical scavenging activities of some N-acyl dehydroalanine derivatives. Compounds c, f and j slightly scavenged the level of DPPH radical at 10(-3) M concentration by about 27, 46, and 56%, respectively while compounds a, d, e, f, g, h showed a strong inhibitory effect on lipid peroxidation at 10(-3)M and 10(-4)M concentrations and inhibition was in the range of 76-90%. The possible antioxidant mechanism of the compounds was discussed.  相似文献   

14.
Patients with Down's syndrome (DS) show elevated levels of copper, zinc-containing superoxide dismutase (SOD1) and appear to have increased lipid peroxidation and oxidative damage to DNA as well as elevated glutathione peroxidase activity. Increasing SOD1 levels by gene transfection in NT-2 and SK-N-MC cell lines also led to a rise in glutathione peroxidase activity, but this was nevertheless accompanied by decreased proliferation rates, increased lipid peroxidation and protein carbonyls, and a trend to a rise in 8-hydroxyguanine and protein-bound 3-nitrotyrosine. Transfection of these cell lines with DNA encoding two mutant SOD1 enzymes (G37R and G85R) associated with familial amyotrophic lateral sclerosis (FALS), produced similar, but more severe changes, i.e. even lower growth rates, higher lipid peroxidation, 3-nitrotyrosine and protein carbonyl levels, decreased GSH levels, raised GSSG levels and higher glutathione peroxidase activities. Since G85R has little SOD activity, these changes cannot be related to increased O(2)(-) scavenging. In no case was SOD2 (mitochondrial Mn-SOD) level altered. Our cellular systems reproduce many of the biochemical changes observed in patients with DS or ALS, and in transgenic mice overexpressing mutant SOD1. They also show the potentially deleterious effects of SOD1 overexpression on cellular proliferation, which may be relevant to abnormal development in DS.  相似文献   

15.
The reactivity of ebselen, 2-phenyl-1,2-benzisoselenazol-3(2H)one, and structurally related analogues was studied by pulse radiolysis. The rate constant for the reaction of ebselen with trichloromethylperoxyl radicals was determined to be 2.9 X 10(8) M-1 s-1, while its sulfur analogue, 2-phenyl-1,2-benzisothiazol-3(2H)one, was oxidized at much lower rates, k less than or equal to 10(7) M-1 s-1. Among several derivatives studied, the only other compound that exhibited a high rate constant was 2-(methylseleno)-benzoic acid-N-phenylamide. Oxidation of ebselen by other halogenated peroxyl radicals was also carried out and revealed a direct relationship between rate constant and the degree of halogenation of the oxidant. The transient radicals generated during oxidation of ebselen and the analogues were characterized by optical absorption and conductivity measurements and were attributed to one-electron-oxidized radical cations. The oxidation potentials were determined by cyclic voltammetry. Comparative evaluation of the in vitro behavior during microsomal lipid peroxidation revealed ebselen to be the most potent antioxidant of the compounds investigated, 2-(Methylseleno)-benzoic acid-N-phenylamide, despite its high rate constant for oxidation by halogenated peroxyl radicals, was found to be a poor antioxidant. The rate constant of oxidation of ebselen by trichloromethylperoxyl radicals is comparable to that of alpha-tocopherol under similar conditions, underscoring the potential pharmacological interest of ebselen as an antioxidant.  相似文献   

16.
During studies of the mechanism by which hemolysis is induced in irradiated human erythrocytes in vitro, several inducements of membrane lipid peroxidation and protective effects of vitamin E (V.E) and superoxide dismutase (SOD) were investigated. Findings were: (1) Before hemolysis, K+ release from erythrocytes induced by radiation stimulated hemolysis but was inhibited by V.E or SOD. (2) Lipid peroxidation of mitochondria induced by Fe3+, ADP, and superoxide (O2-) generating system, and lipid peroxidation of microsome induced by O2- generating system, were also inhibited by V.E or SOD. (3) X-ray or 60Co gamma-ray radiation stimulated lipid peroxidation of liver homogenate, microsome, and liposome. Some of this peroxidation was inhibited by V.E. or SOD. These results suggest that O2- and/or OH formation by radiation induces membrane lipid peroxidation, which causes deterioration of membrane resulting in change of ion permeability and consequent hemolysis.  相似文献   

17.
Preincubation of rat brain synaptosomes with GM1, GD1a or GT1b (10(-10)-10(-6) M), as well as with phorbol 12-myristate, 13-acetate (10(-10)-10(-6) M) was found to have dose dependent inhibitory effect on Fe(2+)-ascorbate induced lipid peroxidation, while penetrating analogue of c-AMP markedly decreased the inhibitory effect of these compounds. In liposomes made of lipids isolated from synaptosomal membranes the degree of inhibition of induced LPO by gangliosides was practically absent. The inhibitory effect of GM1 on lipid peroxidation could not be revealed after thermal denaturation of synaptosomes or after treatment with polymyxin B (inhibitor of lipid-dependent protein kinases). These results and some other data provide evidence for the existence of ganglioside-dependent factor inhibiting lipid peroxidation in brain tissue. It may be suggested to be a protein kinase modulated by gangliosides.  相似文献   

18.
The effects of carnosine (beta-alanyl-L-histidine) and anserine (beta-alanyl-1-methyl-L-histidine) on ascorbate-dependent lipid peroxidation in frog skeletal muscle sarcoplasmic reticulum were studied. It was found that the dipeptides (10-50 mM) cause a 25-90% inhibition of ascorbate-dependent lipid peroxidation and decrease the reaction rate and the amount of end products. The nature of lipid peroxidation primary products in the presence of the dipeptides changes which can be evidenced from changes in their spectral properties. Unlike other known natural antioxidants, skeletal muscle dipeptides do not only inhibit lipid peroxidation but also decrease the level of accumulated lipid peroxidation products. Histidine and beta-alanine, similar to imidazole, glycyl-glycine, arginyl-phenyl alanine and alpha-alanyl-D-histidine do not inhibit lipid peroxidation. At the same time, the carnosine stereoisomer D-carnosine which does not exist in nature exhibits a far greater inhibiting effect as compared to its natural counterpart. It is assumed that the skeletal muscle dipeptides carnosine and anserine are highly effective as natural antioxidants.  相似文献   

19.
A comparative study was conducted to monitor the activities of some antioxidant enzymes, lipid peroxidation and viability of cattle and buffalo bull spermatozoa during storage of semen at refrigeration temperature over a period of 72 h. Semen samples, collected from six cross bred cattle bulls (group I) and six Murrah buffalo bulls (group II), were diluted in egg-yolk-citrate and the spermatozoa were separated from seminal plasma by centrifugation at 4 degrees C in a refrigerated centrifuge. The malondialdehyde (MDA) production in group I increased from 1.17+/-0.29 at 0 h to 7.50+/-0.52 nmol/10(8)spermatozoa after 72 h of storage while in group II it increased from 1.99+/-0.26 to 8.70+/-0.10 nmol/10(8)spermatozoa in the same period. However, buffalo bull spermatozoa had a significantly higher (p<0.05) lipid peroxidation at 0 h as well as at 12, 24 and 48 h (p<0.01) periods. The activities of antioxidant enzymes viz. SOD, GPx and G6PD in both the groups showed a similar pattern of change i.e. the activities declined successively in spermatozoa and increased in the seminal plasma. However, the activities of these three enzymes remained significantly higher in the cattle bull spermatozoa than that in buffalo bull spermatozoa. Amount of MDA produced in spermatozoa of both the groups was negatively correlated while SOD, GPx and G6PD activities in spermatozoa were positively correlated to the motility and viability of spermatozoa. Sperm motility as well as viability was significantly less (p<0.05) in group II than that in group I. SOD, GPx and G6PD activities in spermatozoa of both the groups were negatively correlated to lipid peroxidation of spermatozoa cell membrane. The results showed that the less activities of antioxidant enzymes in buffalo bull spermatozoa was due to higher lipid peroxidation that indicated that they were more prone to oxidative stress as compared to cattle bull spermatozoa when stored at refrigeration temperature.  相似文献   

20.
从长穗桑的茎皮中首次分离到9个Diels—Alder型加合物,通过NMR、MS等波谱分析手段分别鉴定为mulberrofuran K(1),mulberrofuran G(2),guangsangon L(3),kuwanon J(4),kuwanonx(5),guangsangonG(6),guangsangon B(7),guangsangon D(8),kuwanon P(9)。化合物1—9进行了抗氧化活性筛选。结果表明,在10^-5M浓度下,化合物1,2,5—7,9对Fe^2+-半胱氨酸诱导的肝微粒体脂质过氧化产生的丙二醛(malondialdehyde,MDA)有抑制作用(抑制率大于50%)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号