首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural polyamines (PA) are cationic molecules affecting cell growth and proliferation. An association between increased polyamine biosynthesis and inflammation-induced carcinogenesis has been recognised. On the other hand, there are indications that inflammatory stimuli can up-regulate polyamine catabolism and that altered polyamine metabolism could affect pro- and anti-inflammatory cytokines. Since the polyamine content is strictly related to cell growth, a consistent number of evidences relate polyamine metabolism dysfunction with cancer. The increase of polyamine levels in malignant and proliferating cells attracted the interest of scientists during last decades, addressing polyamine depletion as a new strategy to inhibit carcinogenesis. Several studies suggest that PA also play an important role in neurodegeneration, but the mechanisms by which they participate in neuronal death are still unclear. Furthermore, the role of endogenous PA in normal brain functioning is yet to be elucidated. The consequences of an alteration of polyamine metabolism have also been approached in vivo with the use of transgenic animals overexpressing or devoid of some enzymes involved in polyamine metabolism. In the present work we review the experimental investigation carried out on inflammation, cancerogenesis and neurodegeneration using transgenic animals engineered as models for polyamine research.  相似文献   

2.
多胺与环境胁迫关系研究进展   总被引:3,自引:1,他引:2  
多胺是植物对胁迫响应的重要物质,可以抵消胁迫引起的负效应.多胺预处理可缓解胁迫引起的伤害,通过转基因技术过量表达多胺可提高植物胁迫耐性.本文综述了生物胁迫和非生物胁迫条件下,多胺的合成、代谢、功能及其作为抗氧化剂减少胁迫诱导氧化损伤的研究现状.重点综述了病虫胁迫、盐胁迫、重金属胁迫、渗透胁迫,也简要的综述了其它胁迫如低氧胁迫、冷胁迫、酸胁迫、辐射胁迫等条件下植物体内多胺合成的变化及功能.  相似文献   

3.
A series of N,N'-bis(2-pyridinylmethyl)diamines was synthesized and characterized for their inhibition effects towards plant copper-containing amine oxidase (EC 1.4.3.6) and polyamine oxidase (EC 1.5.3.11), which mediate the catabolic regulation of cellular polyamines. Even though these enzymes catalyze related reactions and, among others, act upon two common substrates (spermidine and spermine), their molecular and kinetic properties are different. They also show a different spectrum of inhibitors. It is therefore of interest to look for compounds providing a dual inhibition (i.e. inhibiting both enzymes with the same inhibition potency), which would be useful in physiological studies involving modulations of polyamine catabolism. The synthesized diamine derivatives comprised from two to eight carbon atoms in the alkyl spacer chain. Kinetic measurements with pea (Pisum sativum) diamine oxidase and oat (Avena sativa) polyamine oxidase demonstrated reversible binding of the compounds at the active sites of the enzymes as they were almost exclusively competitive inhibitors with K(i) values ranging from 10(-5) to 10(-3)M. In case of oat polyamine oxidase, the K(i) values were significantly influenced by the number of methylene groups in the inhibitor molecule. The measured inhibition data are discussed with respect to enzyme structure. For that reason, the oat enzyme was analyzed by de novo peptide sequencing using mass spectrometry and shown to be homologous to polyamine oxidases from barley (isoform 1) and maize. We conclude that some of the studied N,N'-bis(2-pyridinylmethyl)diamines might have a potential to be starting structures in design of metabolic modulators targeted to both types of amine oxidases.  相似文献   

4.
The floral organs of the male sterile stamenless-2 (sl-2/sl-2) mutant of tomato (Lycopersicon esculentum Mill.) contain significantly higher level of polyamines than those of the normal (R Rastogi, VK Sawhney [1990] Plant Physiol 93: 439-445). The effects of putrescine, spermidine and spermine, and three different inhibitors of polyamine biosynthesis on the in vitro development of floral buds of the normal and sl-2/sl-2 mutant were studied. The polyamines were inhibitory to the in vitro growth and development of both the normal and mutant floral buds and they induced abnormal stamen development in normal flowers. The inhibitors of polyamine biosynthesis also inhibited the growth and development of floral organs of the two genotypes, but the normal flowers showed greater sensitivity than the mutant. The inhibitors also promoted the formation of normal-looking pollen in stamens of some mutant flowers. The effect of the inhibitors on polyamine levels was not determined. The polyamine-induced abnormal stamen development in the normal, and the inhibitor-induced production of normal-looking pollen in mutant flowers support the suggestion that the elevated polyamine levels contribute to abnormal stamen development in the sl-2/sl-2 mutant of tomato.  相似文献   

5.
The role of polyamines in animal cell physiology   总被引:3,自引:0,他引:3  
The ubiquitous distribution of polyamines in nature suggests that they fulfil some fundamental role(s) in living organisms. In animal cells, polyamine content closely parallels changes in the rate of cell proliferation so that the highest content is always observed in rapidly growing cells. The activity of ornithine decarboxylase (which is the first enzyme in the polyamine biosynthetic pathway) has been found to increase significantly in many systems shortly after exposure to hormones. Also, addition of polyamines greatly stimulates cell-free macromolecular synthesis. Observations such as these have suggested that polyamine accumulation stimulates cell growth and is important in the regulation of macromolecular biosynthesis. However, it is also possible to interpret such data as evidence that polyamine accumulation is the result, not the cause, of increased cell growth. This review supports the latter concept and re-examines the significance of the early induction of ornithine decarboxylase activity and of the stimulatory effects of exogenous polyamine on macromolecular synthesis. It is proposed that the polyamines are important only in maintaining cell growth that has already been stimulated by other factors and that their biosynthesis is to a large extent determined by the accumulation of RNA in the cell.  相似文献   

6.
7.
Antizymes are key regulators of cellular polyamine metabolism that negatively regulate cell proliferation and are therefore regarded as tumor suppressors. Although the regulation of antizyme (Az) synthesis by polyamines and the ability of Az to regulate cellular polyamine levels suggest the centrality of polyamine metabolism to its antiproliferative function, recent studies have suggested that antizymes might also regulate cell proliferation by targeting to degradation proteins that do not belong to the cellular polyamine metabolic pathway. Using a co-degradation assay, we show here that, although they efficiently stimulated the degradation of ornithine decarboxylase (ODC), Az1 and Az2 did not affect or had a negligible effect on the degradation of cyclin D1, Aurora-A, and a p73 variant lacking the N-terminal transactivation domain whose degradation was reported recently to be stimulated by Az1. Furthermore, we demonstrate that, although Az1 and Az2 could not be constitutively expressed in transfected cells, they could be stably expressed in cells that express trypanosome ODC, a form of ODC that does not bind Az and therefore maintains a constant level of cellular polyamines. Taken together, our results clearly demonstrate that Az1 and Az2 affect cell proliferation and viability solely by modulating cellular polyamine metabolism.  相似文献   

8.
The possibility of a relation between the expression of root inducing (Ri) T-DNA genes of Agrobacterium rhizogenes and changes in polyamine metabolism has been explored in fast-growing tobacco hairy roots. Transformed root cultures have been established on hormone-fee medium; they came from transgenic plants of Nicotiana tabacum L. cv. Xanthi with different altered phenotypes, designated transformed (T) and supertransformed (T'). T and especially T' roots developed more rapidly both by elongation and lateral branching, and showed a higher growth rate than the untransformed control. After 3 weeks in culture, normal roots showed a very reduced meristematic zone, and flow cytometric analysis indicated that 2C nuclei were predominant in the apical parts in contrast to T and T' roots, in which endopolyploidisation also appeared. Putrescine, spermidine and traces of spermine were present in all the samples, both in free and in conjugated forms. Putrescine was the major polyamine detected in controls and in transformed roots. At the time of excision, the polyamine levels were similar in normal, T and T' roots. Significant differences were found during the progression of growth, particularly in the TCA-insoluble fraction in which polyamines varied differently according to the type of roots, increasing considerably in T roots on day 8, then decreasing. The lower polyamine contents found in growing transformed roots were concomitant to low arginine (EC 4.1.1.19) and ornithine (EC 4.1.1.17) decarboxylase activities. It is suggested that polyamine levels and related enzyme activities are linked to growth kinetics rather than being a consequence of foreign gene expression.  相似文献   

9.
The metabolism of the naturally occurring polyamines-putrescine, spermidine and spermine-is a highly integrated system involving biosynthesis, uptake, degradation and interconversion. Metabolic differences in polyamine metabolism have long been considered to be a potential target to arrest proliferative processes ranging from cancer to microbial and parasitic diseases. Despite the early success of polyamine inhibitors such as alpha-difluoromethylornithine (DFMO) in treating the latter stages of African sleeping sickness, in which the central nervous system is affected, they proved to be ineffective in checking other major diseases caused by parasitic protozoa, such as Chagas' disease, leishmaniasis or malaria. In the use and design of new polyamine-based inhibitors, account must be taken of the presence of up-regulated polyamine transporters in the plasma membrane of the infectious agent that are able to circumvent the effect of the drug by providing the parasite with polyamines from the host. This review contains information on the polyamine requirements and molecular, biochemical and genetic characterization of different transport mechanisms in the parasitic agents responsible for a number of the deadly diseases that afflict underdeveloped and developing countries.  相似文献   

10.
We have earlier shown that alpha-methylated spermidine and spermine analogues rescue cells from polyamine depletion-induced growth inhibition and maintain pancreatic integrity under severe polyamine deprivation. However, because alpha-methylspermidine can serve as a precursor of hypusine, an integral part of functional eukaryotic translation initiation factor 5A required for cell proliferation, and because alpha, omega-bismethylspermine can be converted to methylspermidine, it is not entirely clear whether the restoration of cell growth is actually attributable to hypusine formed from these polyamine analogues. Here, we have used optically active isomers of methylated spermidine and spermine and show that polyamine depletion-induced acute cytostasis in cultured cells could be reversed by all the isomers of the methylpolyamines irrespective of whether they served or not as precursors of hypusine. In transgenic rats with activated polyamine catabolism, all the isomers similarly restored liver regeneration and reduced plasma alpha-amylase activity associated with induced pancreatitis. Under the above experimental conditions, the (S, S)- but not the (R, R)-isomer of bismethylspermine was converted to methylspermidine apparently through the action of spermine oxidase strongly preferring the (S, S)-isomer. Of the analogues, however, only (S)-methylspermidine sustained cell growth during prolonged (more than 1 week) inhibition of polyamine biosynthesis. It was also the only isomer efficiently converted to hypusine, indicating that deoxyhypusine synthase likewise possesses hidden stereospecificity. Taken together, the results show that growth inhibition in response to polyamine depletion involves two phases, an acute and a late hypusine-dependent phase.  相似文献   

11.
Polyamine degradation was studied in the small intestine from rats fed on a polyamine-supplemented diet. Lactalbumin diet was given to Hooded-Lister rats, with or without 5 mg rat(-1) day(-1) of putrescine or spermidine for 5 days. Polyamine oxidase activity increased with putrescine and spermidine in the diet, whereas spermidine/spermine N(1)-acetyltransferase and diamine oxidase activities were unchanged. We also studied the calcium-dependent and -independent tissue transglutaminase activities, since they can modulate intestinal polyamine levels. Both types of enzymes increased in the cytosolic fraction after putrescine (about 65%) or spermidine (80-100%). Our results indicate that exogenous polyamines stimulate intestinal polyamine oxidase and tissue transglutaminase activities, probably to prevent polyamine accumulation, when other pathways of polyamine catabolism (acetylation and terminal catabolism) are not activated.  相似文献   

12.
Polyamines have long been implicated in plant growth and development, as well as adaptation to abiotic and biotic stress. As a general rule of thumb the higher the polyamine titers the better. However, their molecular roles in plant stress responses still remain obscure. It has been postulated that they could act through their catabolism, which generates molecules which may act as secondary messengers signalling networks of numerous developmental and stress adaptation processes. Recently it was shown that plant and mammalian polyamine catabolism share critical features, giving new insight in plant polyamine catabolism. In this review, the advances in genes and proteins of polyamine catabolism in plants is presented and compared to other models.Key words: polyamines, polyamine catabolism, polyamine oxidase, abiotic stress, ROS signaling  相似文献   

13.
14.
The study of polyamine flux, i.e. the circulating flow of polyamines through the interconnected biosynthetic and catabolic pathways, is of considerable interest because of the established links between the polyamine metabolism and many diseases, such as cancer and diabetes. To study polyamine flux in detail, a novel method based on following the label incorporation from the (13)C, (15)N-labeled polyamine precursors, arginine, methionine and ornithine, into polyamines by LC-MS/MS was implemented. This methodology was tested on three distinct cell lines with different spermidine/spermine-N (1)-acetyltransferase (SSAT) expression levels, i.e. non-transgenic, transgenic and knockout. These trials allowed the identification of the critical conditions for the successful polyamine flux measurement, such as the functional time frame of label incorporation, until plateau phase with the selected precursor is reached. The novel LC-MS/MS-based method for polyamine flux overcame the limitations of previous existing methodologies, with baseline separation of the different polyamine species and the exact quantification of the incorporated label. Moreover, the obtained results clearly show that the increased SSAT expression is associated with accelerated polyamine flux.  相似文献   

15.
Polyamines were extracted from five different leishmanial strains (Leishmania sp., L. tropica major, L. mexicana, and two L. donovani isolates) and identified as pulrescine, spermidine, and spermine by thin-layer chromatography and mass spectrometry. These sensitive methods were also used to demonstrate the conversion of radioactive putrescine into spermidine and spermine. As in other types of cells, polyamine levels fluctuated during the growth cycle, maximal levels being attained during the logarithmic growth phase. In the five leishmanial strains, which were members of four different serotypes, the spermidine—putrescine ratios also varied, and in two strains of the same serotype, polyamine ratios were practically identical, suggesting that polyamine characteristics might serve as a further criterion for strain identification and classification.  相似文献   

16.
The antizyme family: polyamines and beyond   总被引:6,自引:0,他引:6  
Mangold U 《IUBMB life》2005,57(10):671-676
The family of antizymes functions as regulators of polyamine homeostasis. They are a class of small, inhibitory proteins, whose expression is regulated by a unique ribosomal frameshift mechanism. They have been shown to inhibit cell proliferation and possess anti-tumor activity. Antizymes bind ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. They inhibit its enzymatic activity and promote the ubiquitin-independent degradation of ODC by the 26S proteasome. In addition, they also negatively regulate polyamine transport. Antizyme-mediated, ubiquitin-independent degradation of ODC is conserved from yeast to man. But recent data suggest that this degradation pathway might not be restricted to ODC alone and could involve newly discovered antizyme binding partners. Interestingly, antizyme proteins have been strictly preserved over a vast evolutionary timeframe. Antizymes consequently represent an important class of proteins that regulate cell growth and metabolism by a diverse set of mechanisms that include protein degradation, inhibition of enzyme activity, small molecule transport and other, potentially not yet discovered properties.  相似文献   

17.
The natural polyamines are multifunctional constituents of all eucaryotic cells. The objective of this work was to compare aspects of polyamine metabolism in two related cell lines with the idea to investigate whether metabolic differences can be attributed to functional differences of the cells. The human colon carcinoma-derived cell lines SW480 and SW620 were chosen as models. SW480 cells were isolated from the primary tumour, SW620 cells from a lymph node of the same patient. SW620 cells grow faster, and the key regulatory enzymes of polyamine biosynthesis (ODC and AdoMetDC) are more active in the metastatic cells. Moreover, their ability to accumulate polyamines from the environment is more important than of SW480 cells. Likewise polyamine concentrations were markedly higher in SW620 cells, although they are much smaller than SW480 cells, and have a particularly small cytoplasmic space. Both cell lines show a striking diminution of ODC and AdoMetDC activities and changes in the polyamine patterns at the transition from exponential to non-exponential growth--most probably as a consequence of high cell density. Depletion of putrescine and spermidine due to inactivation of ODC by DFMO causes accumulation of cells in G1, and a proportional decrease of S-phase cells in both cell lines. Based on morphologic and other criteria SW480 and SW620 cells were typified as poorly differentiated. In agreement with their low grade of differentiation they exhibit a low alkaline phosphatase activity. However, the time-dependent decrease of alkaline phosphatase is not typical of differentiation patterns of other adenocarcinoma-derived cell lines or of normal enterocytes. The high capacity of de novo polyamine biosynthesis and of polyamine uptake is presumably a prerequisite for the rapid growth and invasiveness. The fact that these properties were more accentuated in the case of SW620 cells and paralleled enhanced metastatic properties indicate relationships between basic parameters of polyamine metabolism and malignancy.  相似文献   

18.
Many biological processes result from the coupling of metabolic pathways. Considering this, proliferation depends on adequate iron and polyamines, and although iron-depletion impairs proliferation, the metabolic link between iron and polyamine metabolism has never been thoroughly investigated. This is important to decipher, as many disease states demonstrate co-dysregulation of iron and polyamine metabolism. Herein, for the first time, we demonstrate that cellular iron levels robustly regulate 13 polyamine pathway proteins. Seven of these were regulated in a conserved manner by iron-depletion across different cell-types, with four proteins being down-regulated (i.e., acireductone dioxygenase 1 [ADI1], methionine adenosyltransferase 2α [MAT2α], Antizyme and polyamine oxidase [PAOX]) and three proteins being up-regulated (i.e., S-adenosyl methionine decarboxylase [AMD1], Antizyme inhibitor 1 [AZIN1] and spermidine/spermine-N1-acetyltransferase 1 [SAT1]). Depletion of iron also markedly decreased polyamine pools (i.e., spermidine and/or spermine, but not putrescine). Accordingly, iron-depletion also decreased S-adenosylmethionine that is essential for spermidine/spermine biosynthesis. Iron-depletion additionally reduced 3H-spermidine uptake in direct agreement with the lowered levels of the polyamine importer, SLC22A16. Regarding mechanism, the “reprogramming” of polyamine metabolism by iron-depletion is consistent with the down-regulation of ADI1 and MAT2α, and the up-regulation of SAT1. Moreover, changes in ADI1 (biosynthetic) and SAT1 (catabolic) partially depended on the iron-regulated changes in c-Myc and/or p53. The ability of iron chelators to inhibit proliferation was rescuable by putrescine and spermidine, and under some conditions by spermine. Collectively, iron and polyamine metabolism are intimately coupled, which has significant ramifications for understanding the integrated role of iron and polyamine metabolism in proliferation.  相似文献   

19.
We investigated how over-expression of a cDNA for human ornithine decarboxylase (odc) affects the polyamine pools in transgenic rice. We further investigated tissue-specific expression patterns and product accumulation levels of the transgene driven by either constitutive or seed-specific promoters. Our results indicate that: (1) whereas the expression of a heterologous arginine decarboxylase (adc) cDNA in rice resulted in increased putrescine and spermine levels only in seeds, plants engineered to express odc cDNA exhibited significant changes in the levels of all three major polyamines in seeds and also in vegetative tissues (leaves and roots); (2) there was no linear correlation between odc mRNA levels, ODC enzyme activity and polyamine accumulation, suggesting that control of the polyamine pathway in plants is more complex than in mammalian systems; (3) ODC activity and polyamine changes varied in different tissues, indicating that the pathway is regulated in a tissue-specific manner. Our results suggest that ODC rather than ADC is responsible for the regulation of putrescine synthesis in plants.  相似文献   

20.

The behavior of endogenous polyamines was studied in somatic embryos and zygotic embryos of Habanero pepper (Capsicum chinense). In the first part of the work, the polyamine content was evaluated in both types of embryos (somatic and zygotic). As a result, in addition to the common polyamines (putrescine, spermidine and spermine), it was also possible to detect cadaverine, a polyamine rarely found in plants. In general, all the polyamines were found to be more abundant in somatic embryos than in zygotic embryos, with significantly higher contents of putrescine and cadaverine. Subsequently, the content of putrescine, spermidine, spermine and cadaverine, in their different forms (free, bound and conjugated) was determined in somatic embryos which were cultured in non-ventilated and ventilated containers. Detection of polyamines was carried out at 28 and 42 days of culture by the HPLC method. The ethylene content was monitored during the process in both culture conditions (ventilated and non-ventilated). As a result of the analysis, cadaverine was always found present, indicating that it is a common polyamine in the species. Ethylene was detected in containers without ventilation throughout the culture, except during replenishment of the culture medium (R1, R2 and R3). The behavior pattern of each polyamine, analyzed under different culture conditions (ventilated and non-ventilated) and at different moments of culture (28 and 42 days of culture), show that the polyamines are not only involved in morphogenic processes in plants; polyamines are also significantly affected by the surrounding environment. However, the most novel result, presented for the first time in this paper, is that cadaverine is found to be a common polyamine in C. chinense since it is present in both zygotic embryos and somatic embryos.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号