首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Autophagy》2013,9(4):487-499
A σ-2 receptor ligand siramesine induces lysosomal leakage and cathepsin-dependent death of cancer cells in vitro and displays potent anti-cancer activity in vivo. The mechanism by which siramesine destabilizes lysosomes is, however, unknown. Here, we show that siramesine induces a rapid rise in the lysosomal pH that is followed by lysosomal leakage and dysfunction. The rapid accumulation of siramesine into cancer cell lysosomes, its ability to destabilize isolated lysosomes, and its chemical structure as an amphiphilic amine indicate that it is a lysosomotropic detergent. Notably, siramesine triggers also a substantial Atg6- and Atg7-dependent accumulation of autophagosomes that is associated with a rapid and sustained inhibition of mammalian target of rapamycin complex 1 (mTORC1; an inhibitor of autophagy). Siramesine fails, however, to increase the degradation rate of long-lived proteins. Thus, the massive accumulation of autophagosomes is likely to be due to a combined effect of activation of autophagy signaling and decreased autophagosome turnover. Importantly, pharmacological and RNA interference-based inhibition of autophagosome formation further sensitizes cancer cells to siramesine-induced cytotoxicity. These data identify siramesine as a lysosomotropic detergent that triggers cell death via a direct destabilization of lysosomes and cytoprotection by inducing the accumulation of autophagosomes. Threrefore, the combination of siramesine with inhibitors of autophagosome formation appears as a promising approach for future cancer therapy.  相似文献   

2.
《Autophagy》2013,9(4):457-466
The aim of this study is to examine the role of autophagy in cell death by using a well-established system in which zVAD, a pan-caspase inhibitor, induces necrotic cell death in L929 murine fibrosarcoma cells. First, we observed the presence of autophagic hallmarks, including an increased number of autophagosomes and the accumulation of LC3-II in zVAD-treated L929 cells. Since the presence of such autophagic hallmarks could be the result of either increased flux of autophagy or blockage of autophagosome maturation (lysosomal fusion and degradation), we next tested the effect of rapamycin, a specific inhibitor for mTOR, and chloroquine, a lysosomal enzyme inhibitor, on zVAD-induced cell death. To our surprise, rapamycin, known to be an autophagy inducer, blocked zVAD-induced cell death, whereas chloroquine greatly sensitized zVAD-induced cell death in L929 cells. Moreover, similar results with rapamycin and chloroquine were also observed in U937 cells when challenged with zVAD. Consistently, induction of autophagy by serum starvation offered significant protection against zVAD-induced cell death, whereas knockdown of Atg5, Atg7 or Beclin 1 markedly sensitized zVAD-induced cell death in L929 cells. More importantly, Atg genes knockdown completely abolished the protective effect of serum starvation on zVAD-induced cell death. Finally, we demonstrated that zVAD was able to inhibit lysosomal enzyme cathepsin B activity, and subsequently blocked autophagosome maturation. Taken together, in contrast to the previous conception that zVAD induces autophagic cell death, here we provide compelling evidence suggesting that autophagy serves as a cell survival mechanism and suppression of autophagy via inhibition of lysosomal function contributes to zVAD-induced necrotic cell death.  相似文献   

3.
Wu YT  Tan HL  Huang Q  Kim YS  Pan N  Ong WY  Liu ZG  Ong CN  Shen HM 《Autophagy》2008,4(4):457-466
The aim of this study is to examine the role of autophagy in cell death by using a well-established system in which zVAD, a pan-caspase inhibitor, induces necrotic cell death in L929 murine fibrosarcoma cells. First, we observed the presence of autophagic hallmarks, including an increased number of autophagosomes and the accumulation of LC3-II in zVAD-treated L929 cells. Since the presence of such autophagic hallmarks could be the result of either increased flux of autophagy or blockage of autophagosome maturation (lysosomal fusion and degradation), we next tested the effect of rapamycin, a specific inhibitor for mTOR, and chloroquine, a lysosomal enzyme inhibitor, on zVAD-induced cell death. To our surprise, rapamycin, known to be an autophagy inducer, blocked zVAD-induced cell death, whereas chloroquine greatly sensitized zVAD-induced cell death in L929 cells. Moreover, similar results with rapamycin and chloroquine were also observed in U937 cells when challenged with zVAD. Consistently, induction of autophagy by serum starvation offered significant protection against zVAD-induced cell death, whereas knockdown of Atg5, Atg7 or Beclin 1 markedly sensitized zVAD-induced cell death in L929 cells. More importantly, Atg genes knockdown completely abolished the protective effect of serum starvation on zVAD-induced cell death. Finally, we demonstrated that zVAD was able to inhibit lysosomal enzyme cathepsin B activity, and subsequently blocked autophagosome maturation. Taken together, in contrast to the previous conception that zVAD induces autophagic cell death, here we provide compelling evidence suggesting that autophagy serves as a cell survival mechanism and suppression of autophagy via inhibition of lysosomal function contributes to zVAD-induced necrotic cell death.  相似文献   

4.
Robert W. Button 《Autophagy》2017,13(10):1797-1798
Macroautophagy/autophagy comprises autophagosome synthesis and lysosomal degradation. It is well known that lysosomal defects cause toxicity to cells. However, it has not been investigated previously if cytotoxicity is conferred by autophagosome formation during lysosomal defect. Recently, we found that the formation of autophagosomes in such conditions also causes cytotoxicity, in addition to lysosomal defect insults. We revealed that a partial reduction in autophagosome synthesis was beneficial for cell survival in cells bearing the autophagosome formation-based toxicity. Our study suggests that production/accumulation of autophagosomes during lysosomal defect directly induces cellular toxicity, and this process may be implicated in the pathological conditions where lysosomes are defective.  相似文献   

5.
《Autophagy》2013,9(7):778-779
Macroautophagy (hereafter autophagy) is a membrane-mediated catabolic process that occurs in response to a variety of intra- and extra-cellular stresses. It is characterized by the formation of specialized double-membrane vesicles, autophagosomes, which engulf organelles and long-lived proteins, and in turn fuse with lysosomes for degradation and recycling. How autophagosomes emerge is still unclear. The Atg1 kinase plays a crucial role in the induction of autophagosome formation. While several Atg (autophagy-related) proteins have been associated with, and have been found to regulate, Atg1 kinase activity, the downstream targets of Atg1 that trigger autophagy remain unknown. Our recent studies have identified a myosin light chain kinase (MLCK)-like kinase as the Atg1 kinase effector that induces the activation of myosin II, and have found it to be required for autophagosome formation during nutrient deprivation. We further demonstrated that Atg1-mediated myosin II activation is crucial for the movement of the Atg9 transmembrane protein between the Golgi and the forming autophagosome, which provides a membrane source for the formation of autophagosomes during starvation.  相似文献   

6.
Tang HW  Chen GC 《Autophagy》2011,7(7):778-779
Macroautophagy (hereafter autophagy) is a membrane-mediated catabolic process that occurs in response to a variety of intra- and extra-cellular stresses. It is characterized by the formation of specialized double-membrane vesicles, autophagosomes, which engulf organelles and long-lived proteins, and in turn fuse with lysosomes for degradation and recycling. How autophagosomes emerge is still unclear. The Atg1 kinase plays a crucial role in the induction of autophagosome formation. While several Atg (autophagy-related) proteins have been associated with, and have been found to regulate, Atg1 kinase activity, the downstream targets of Atg1 that trigger autophagy remain unknown. Our recent studies have identified a myosin light chain kinase (MLCK)-like kinase as the Atg1 kinase effector that induces the activation of myosin II, and have found it to be required for autophagosome formation during nutrient deprivation. We further demonstrated that Atg1-mediated myosin II activation is crucial for the movement of the Atg9 transmembrane protein between the Golgi and the forming autophagosome, which provides a membrane source for the formation of autophagosomes during starvation.  相似文献   

7.
Autophagy functions as a survival mechanism during cellular stress and contributes to resistance against anticancer agents. The selective antitumor and antimetastatic chelator di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) causes lysosomal membrane permeabilization and cell death. Considering the integral role of lysosomes in autophagy and cell death, it was important to assess the effect of Dp44mT on autophagy to further understand its mechanism of action. Notably, Dp44mT affected autophagy by two mechanisms. First, concurrent with its antiproliferative activity, Dp44mT increased the expression of the classical autophagic marker LC3-II as a result of induced autophagosome synthesis. Second, this effect was supplemented by a reduction in autophagosome degradation as shown by the accumulation of the autophagic substrate and receptor p62. Conversely, the classical iron chelator desferrioxamine induced autophagosome accumulation only by inhibiting autophagosome degradation. The formation of redox-active iron or copper Dp44mT complexes was critical for its dual effect on autophagy. The cytoprotective antioxidant N-acetylcysteine inhibited Dp44mT-induced autophagosome synthesis and p62 accumulation. Importantly, Dp44mT inhibited autophagosome degradation via lysosomal disruption. This effect prevented the fusion of lysosomes with autophagosomes to form autolysosomes, which is crucial for the completion of the autophagic process. The antiproliferative activity of Dp44mT was suppressed by Beclin1 and ATG5 silencing, indicating the role of persistent autophagosome synthesis in Dp44mT-induced cell death. These studies demonstrate that Dp44mT can overcome the prosurvival activity of autophagy in cancer cells by utilizing this process to potentiate cell death.  相似文献   

8.
Autophagy is a cellular process that sequesters cargo in double-membraned vesicles termed autophagosomes and delivers this cargo to lysosomes to be degraded. It is enhanced during nutrient starvation to increase the rate of amino acid turnover. Diverse roles for autophagy have been reported for viral infections, including the assembly of viral replication complexes on autophagic membranes and protection of host cells from cell death. Here, we show that autophagosomes accumulate in Semliki Forest virus (SFV)-infected cells. Despite this, disruption of autophagy had no effect on the viral replication rate or formation of viral replication complexes. Also, viral proteins rarely colocalized with autophagosome markers, suggesting that SFV did not utilize autophagic membranes for its replication. Further, we found that SFV infection, unlike nutrient starvation, did not inactivate the constitutive negative regulator of autophagosome formation, mammalian target of rapamycin, suggesting that SFV-dependent accumulation of autophagosomes was not a result of enhanced autophagosome formation. In starved cells, addition of NH(4)Cl, an inhibitor of lysosomal acidification, caused a dramatic accumulation of starvation-induced autophagosomes, while in SFV-infected cells, NH(4)Cl did not further increase levels of autophagosomes. These results suggest that accumulation of autophagosomes in SFV-infected cells is due to an inhibition of autophagosome degradation rather than enhanced rates of autophagosome formation. Finally, we show that the accumulation of autophagosomes in SFV-infected cells is dependent on the expression of the viral glycoprotein spike complex.  相似文献   

9.
Chen D  Fan W  Lu Y  Ding X  Chen S  Zhong Q 《Molecular cell》2012,45(5):629-641
Autophagy is a major catabolic pathway in eukaryotes associated with a broad spectrum of human diseases. In autophagy, autophagosomes carrying cellular cargoes fuse with lysosomes for degradation. However, the molecular mechanism underlying autophagosome maturation is largely unknown. Here we report that TECPR1 binds to the Atg12-Atg5 conjugate and phosphatidylinositol 3-phosphate (PtdIns[3]P) to promote autophagosome-lysosome fusion. TECPR1 and Atg16 form mutually exclusive complexes with the Atg12-Atg5 conjugate, and TECPR1 binds PtdIns(3)P upon association with the Atg12-Atg5 conjugate. Strikingly, TECPR1 localizes to and recruits Atg5 to autolysosome membrane. Consequently, elimination of TECPR1 leads to accumulation of autophagosomes and blocks autophagic degradation of LC3-II and p62. Finally, autophagosome maturation marked by GFP-mRFP-LC3 is defective in TECPR1-deficient cells. Thus, we propose that the concerted interactions among TECPR1, Atg12-Atg5, and PtdIns(3)P provide the fusion specificity between autophagosomes and lysosomes and that the assembly of this complex initiates the autophagosome maturation process.  相似文献   

10.
11.
12.
《Autophagy》2013,9(4):573-575
Ubiquilins (UBQLN), a family of adaptor proteins with partial homology with ubiquitin, are proposed to facilitate proteasomal degradation of ubiquitinated substrates. We now demonstrate a novel role for UBQLN in promoting autophagosome maturation during nutrient deprivation. Ectopic expression of UBQLN protects cells against starvation-induced cell death, while depletion renders cells more susceptible. This protective function requires the essential autophagy regulators, Atg5 and Atg7. The ubiquitin-associated (UBA) domain of UBQLN is required for its association with autophagosomes as well as for its prosurvival functions. Remarkably, during starvation-induced autophagy, UBQLN promotes the fusion of early autophagosomes with lysosomes. Overall, this work illustrates an important function for UBQLN in cell survival during nutrient starvation, which requires a newly recognized function for UBQLN in autophagosome maturation.  相似文献   

13.
Lysosomes, a central regulator of autophagy, play a critical role in tumour growth. Lysosomal protease cathepsin D can initiate apoptosis when released from lysosomes into the cytosol. In this study, we observed that Musca domestica cecropin (Mdc) 1–8 (M1-8), a small anti-tumour peptide derived from Mdc, inhibits hepatoma cell growth by blocking autophagy–lysosome fusion. This effect is likely achieved by targeting lysosomes to activate lysosomal protease D. Additionally, we examined whether lysosomal content and cathepsin D release were involved in M1-8-induced apoptosis. After exposure to M1-8, human hepatoma HepG2 cells rapidly co-localized with lysosomes, disrupted lysosomal integrity, caused leakage of lysosomal protease cathepsin D, caspase activation and mitochondrial membrane potential changes; and promoted cell apoptosis. Interestingly, in M1-8-treated HepG2 cells, autophagic protein content increased and the lysosome–autophagosome fusion was inhibited, suggesting that M1-8 can cause apoptosis through autophagy and lysosomes. This result indicates that a small accumulation of autophagy and autolysosome inhibition in cells can cause cell death. Taken together, these data suggest a novel insight into the regulatory mechanisms of M1-8 in autophagy and lysosomes, which may facilitate the development of M1-8 as a potential cancer therapeutic agent.  相似文献   

14.
The growing number of studies suggested that inhibition of autophagy enhances the efficacy of Akt kinase inhibitors in cancer therapy. Here, we provide evidence that ML-9, a widely used inhibitor of Akt kinase, myosin light-chain kinase (MLCK) and stromal interaction molecule 1 (STIM1), represents the ‘two-in-one'' compound that stimulates autophagosome formation (by downregulating Akt/mammalian target of rapamycin (mTOR) pathway) and inhibits their degradation (by acting like a lysosomotropic agent and increasing lysosomal pH). We show that ML-9 as a monotherapy effectively induces prostate cancer cell death associated with the accumulation of autophagic vacuoles. Further, ML-9 enhances the anticancer activity of docetaxel, suggesting its potential application as an adjuvant to existing anticancer chemotherapy. Altogether, our results revealed the complex effect of ML-9 on autophagy and indentified ML-9 as an attractive tool for targeting autophagy in cancer therapy through dual inhibition of both the Akt pathway and the autophagy.  相似文献   

15.
Obatoclax (GX15-070), a small-molecule inhibitor of antiapoptotic Bcl-2 proteins, has been reported to trigger cell death via autophagy. However, the underlying molecular mechanisms have remained elusive. Here, we identify GX15-070-stimulated assembly of the necrosome on autophagosomal membranes as a key event that connects GX15-070-stimulated autophagy to necroptosis. GX15-070 predominately induces a non-apoptotic form of cell death in rhabdomyosarcoma cells, as evident by lack of typical apoptotic features such as DNA fragmentation or caspase activation and by insensitivity to the broad-range caspase inhibitor zVAD.fmk. Instead, GX15-070 triggers massive accumulation of autophagosomes, which are required for GX15-070-induced cell death, as blockade of autophagosome formation by silencing of Atg5 or Atg7 abolishes GX15-070-mediated cell death. Co-immunoprecipitation studies reveal that GX15-070 stimulates the interaction of Atg5, a constituent of autophagosomal membranes, with components of the necrosome such as FADD, RIP1 and RIP3. This GX15-070-induced assembly of the necrosome on autophagosomes occurs in a Atg5-dependent manner, as knockdown of Atg5 abrogates formation of this complex. RIP1 is necessary for GX15-070-induced cell death, as both genetic and pharmacological inhibition of RIP1 by shRNA-mediated knockdown or by the RIP1 inhibitor necrostatin-1 blocks GX15-070-induced cell death. Similarly, RIP3 knockdown rescues GX15-070-mediated cell death and suppression of clonogenic survival. Interestingly, RIP1 or RIP3 silencing has no effect on GX15-070-stimulated autophagosome formation, underlining that RIP1 and RIP3 mediate cell death downstream of autophagy induction. Of note, GX15-070 significantly suppresses tumor growth in a RIP1-dependent manner in the chorioallantoic membrane model in vivo. In conclusion, GX15-070 triggers necroptosis by promoting the assembly of the necrosome on autophagosomes. These findings provide novel insights into the molecular mechanisms of GX15-070-induced non-apoptotic cell death.  相似文献   

16.
Reactive oxygen species (ROS) are involved in several cell death processes, including cerebral ischemic injury. We found that glutamate-induced ROS accumulation and the associated cell death in mouse hippocampal cell lines were delayed by pharmacological inhibition of autophagy or lysosomal activity. Glutamate, however, did not stimulate autophagy, which was assessed by a protein marker, LC3, and neither changes in organization of mitochondria nor lysosomal membrane permeabilization were observed. Fluorescent analyses by a redox probe PF-H2TMRos revealed that autophagosomes and/or lysosomes are the major sites for basal ROS generation in addition to mitochondria. Treatments with inhibitors for autophagy and lysosomes decreased their basal ROS production and caused a burst of mitochondrial ROS to be delayed. On the other hand, attenuation of mitochondrial activity by serum depletion or by high cell density culture resulted in the loss of both constitutive ROS production and an ROS burst in mitochondria. Thus, constitutive ROS production within mitochondria and lysosomes enables cells to be susceptible to glutamate-induced oxidative cytotoxicity. Likewise, inhibitors for autophagy and lysosomes reduced neural cell death in an ischemia model in rats. We suggest that cell injury during periods of ischemia is regulated by ROS-generating activity in autophagosomes and/or lysosomes as well as in mitochondria.  相似文献   

17.
Mucolipidosis IV (MLIV) is a lysosomal storage disorder characterized by severe neurological and ophthalmologic abnormalities. In contrast with most lysosomal storage disorders, which are attributed to the absence of specific lysosomal hydrolases, accumulation of material in MLIV results from defects in membrane transport along the late endocytic pathway. Mutations in MCOLN1 are the cause of MLIV; however, how the lack of MCOLN1 function ultimately leads to neurodegeneration remains largely unknown. We found that MCOLN1 is required for efficient fusion of both late endosomes and autophagosomes with lysosomes. Impaired autophagosome degradation results in accumulation of autophagosomes in MLIV fibroblasts. In addition, we found increased levels and aggregation of p62, suggesting that abnormal accumulation of ubiquitinated protein inclusions may contribute to the neurodegenerative phenotype observed in MLIV patients. These findings corroborate recent evidence indicating that defects in autophagy may be a common feature of many neurodegenerative disorders.  相似文献   

18.
It is widely accepted that lysosomes are essential for cell homeostasis, and autophagy plays an important role in tumor development. Here, we found FV-429, a synthetic flavonoid compound, inhibited autophagy flux, promoted autophagosomes accumulation, and inhibited lysosomal degradation in T-cell malignancies. These effects were likely to be achieved by lysosomal dysregulation. The destructive effects of FV-429 on lysosomes resulted in blockage of lysosome-associated membrane fusion, lysosomal membrane permeabilization (LMP), and cathepsin-mediated caspase-independent cell death (CICD). Moreover, we initially investigated the effects of autophagy inhibition by FV-429 on the therapeutic efficacy of chemotherapy and found that FV-429 sensitized cancer cells to chemotherapy agents. Our findings suggest that FV-429 could be a potential novel autophagy inhibitor with notable antitumor efficacy as a single agent.Subject terms: Haematological cancer, Macroautophagy, Pharmacology  相似文献   

19.
Host resistance to viral infection requires type I (α/β) and II (γ) interferon (IFN) production. Another important defense mechanism is the degradative activity of macroautophagy (herein autophagy), mediated by the coordinated action of evolutionarily conserved autophagy proteins (Atg). We show that the Atg5-Atg12/Atg16L1 protein complex, whose prior known function is in autophagosome formation, is required for IFNγ-mediated host defense against murine norovirus (MNV) infection. Importantly, the direct antiviral activity of IFNγ against MNV in macrophages required Atg5-Atg12, Atg7, and Atg16L1, but not induction of autophagy, the degradative activity of lysosomal proteases, fusion of autophagosomes and lysosomes, or the Atg8-processing protein Atg4B. IFNγ, via Atg5-Atg12/Atg16L1, inhibited formation of the membranous cytoplasmic MNV replication complex, where Atg16L1 localized. Thus, the Atg5-Atg12/Atg16L1 complex performs a pivotal, nondegradative role in IFNγ-mediated antiviral defense, establishing that multicellular organisms have evolved to use portions of the autophagy pathway machinery in a cassette-like fashion for host defense.  相似文献   

20.
Calcium can play an important role in the regulation of autophagy. We previously reported that exogenously introduced calcium in the form of calcium phosphate precipitates (CPP) induces autophagy. Here we showed that CPP-induced autophagy required the classical autophagic machinery, including the autophagosome initiating molecules FIP200 and Beclin 1, as well as molecules involved in the autophagosome membrane extension, Atg4, Atg5 and Atg3. On the other hand, Atg9 seemed to place a restriction on CPP-induced autophagy. Loss of Atg9 led to enhanced LC3 punctation and enhanced p62 degradation. CPP-induced autophagy was independent of mTOR and reactive oxygen species. It also did not affect MAP kinase activation and ER stress. DFCP1 is an ER-resident molecule that binds to phosphatidylinositol 3-phosphate. CPP activated DFCP1 punctation in a class III phosphatidylinositol-3-kinase and calcium dependent manner, and caused the association of DFCP1 puncta with the autophagosomes. Consistently, ER membranes, but not Golgi or mitochondrial membranes, colocalized with CPP-induced LC3 positive autophagosomes. These data suggest that CPP-induced autophagosome formation involves the interaction with the ER membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号