首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seeds of three species of lupine (Lupinus termis, L. triticale andL. albus) were tested to determine if the seed contains diffusable substances toxic to bradyrhizobia.L. albus seeds were less toxic to bradyrhizobia, followed byL. triticale. Six strains ofBradyrhizobium were evaluated for their resistance to the toxic substances in lupine seeds. Zones of growth inhibition were determined on yeast-mannitol-agar medium surrounding surface-sterilized seed. The effect of surface sterilization of seeds by different chemical treatments on seed toxicity was assessed. Seeds soaked in water for 1 h before placing on agar surface significantly decreased the inhibition zone. Also, the effect of soaking seeds in water for 4 h before planting and inoculation on nodulation, nitrogen fixation and plant growth were investigated. Addition of seed diffusate to soaked seeds significantly decreased nodulation and plant growth. Autoclaving the seed diffusate had no effect on the toxicity of the seed diffusate. Addition of the absorbent polyvinylpolypyrrolidone (PVPP) to seed diffusates significantly decreased the inhibitory effect of seed diffusate on nodulation and plant growth. Seed diffusate substances were water-soluble, heat-stable and partially bound to PVPP.  相似文献   

2.
Zhang  Feng  Pan  Bo  Smith  Donald L. 《Plant and Soil》1997,188(2):329-335
In short-season soybean production areas, low soil temperature is the major factor limiting soybean establishment, nodulation and nitrogen fixation. Gibberellic acid (GA) pretreatment of crop seeds can overcome low soil temperature inhibition of seed germination and seedling development. However, previous studies have found that the application of GAs decreased legume nodulation and nitrogen fixation under optimal growth conditions. A field experiment was conducted under short season conditions in eastern Canada to determine whether the application of GA3 to soybean seed could accelerate germination, and increase plant nodulation and nitrogen fixation. The results indicated that GA3 application accelerated seedling emergence but decreased plant nodulation and nitrogen accumulation at early plant growth stages. However, these initial negative effects were overcome as the plants developed. Gibberellic acid applied to soybean seed at the time of planting did not influence final grain and protein yield.  相似文献   

3.
The effect of rice culture on changes in the number of a strain of soybean root-nodule bacteria, (Bradyrhizobium japonicum CB1809), already established in the soil by growing inoculated soybean crops, was investigated in transitional red-brown earth soils at two sites in south-western New South Wales. At the first site, 5.5 years elapsed between the harvest of the last of four successive crops of soybean and the sowing of the next. In this period three crops of rice and one crop of triticale were sown and in the intervals between these crops, and after the crop of triticale, the land was fallowed. Before sowing the first rice crop, the number of Bradyrhizobium japonicum was 1.32×105 g–1 soil. The respective numbers of bradyrhizobia after the first, second and third rice crops were 4.52 ×104, 1.26×104 and 6.40×102 g–1 soil. In the following two years the population remained constant. Thus sufficient bradyrhizobia survived in soil to nodulate and allow N2-fixation by the succeeding soybean crop. At the second site, numbers of bradyrhizobia declined during a rice crop, but the decline was less than when the soil was fallowed (400-fold cf. 2200-fold). Multiplication of bradyrhizobia was rapid in the rhizosphere of soybean seedlings sown without inoculation in the rice bays. At 16 days after sowing, their numbers were not significantly different (p<0.05) from those in plots where rice had not been sown. Nodulation of soybeans was greatest in plots where rice had not been grown, but yield and grain nitrogen were not significantly different (p<0.05). Our results indicate that flooding soil has a deleterious effect on the survival of bradyrhizobia but, under the conditions of the experiments, sufficient B. japonicum strain CB 1809 survived to provide good nodulation after three crops of rice covering a total period of 5.5 years between crops of soybean.  相似文献   

4.
The importance of soybean as a source of oil and protein, and its ability to grow symbiotically on low-N soils, point to its continued status as the most valuable grain legume in the world. With limited new land on which to expand, and emphasis on sustainable systems, increases in soybean production will come mostly from increased yield per unit area. Improvements in biological nitrogen fixation can help achieve increased soybean production, and this chapter discusses research and production strategies for such improvement.The soybean-Bradyrhizobium symbiosis can fix about 300 kg N ha-1 under good conditions. The factors which control the amount of N fixed include available soil N, genetic determinants of compatibility in both symbiotic partners and lack of other yield-limiting factors. Response to inoculation is controlled by the level of indigenous, competing bradyrhizobia, the N demand and yield potential of the host, and N availability in the soil.Research efforts to improve BNF are being applied to both microbe and soybean. While selection continues for effective, naturally occurring bradyrhizobia for inoculants and the use of improved inoculation techniques, genetic research on bradyrhizobia to improve effectiveness and competitiveness is advancing. Selection, mutagenesis and breeding of the host have focused on supernodulation, restricted nodulation of indigenous B. japonicum, and promiscuous nodulation with strains of bradyrhizobia from the cowpea cross-inoculation group. The research from the host side appears closer to being ready for practical use in the field.Existing knowledge and technology still has much to offer in improving biological nitrogen fixation in soybean. The use of high-quality inoculants, and education about their benefits and use can still make a significant contribution in many countries. The importance of using the best adapted soybean genotype with a fully compatible inoculant cannot be overlooked, and we need to address other crop management factors which influence yield potential and N demand, indirectly influencing nitrogen fixation. The implementation of proven approaches for improving nitrogen fixation in existing soybean production demands equal attention as received by research endeavours to make future improvements.  相似文献   

5.
Nitrogen (N) supply can limit the yields of soybean [Glycine max (L.) Merr.] in highly productive environments. To explore the physiological mechanisms underlying this limitation, seasonal changes in N dynamics, aboveground dry matter (ADM) accumulation, leaf area index (LAI) and fraction of absorbed radiation (fAPAR) were compared in crops relying only on biological N2 fixation and available soil N (zero-N treatment) versus crops receiving N fertilizer (full-N treatment). Experiments were conducted in seven high-yield environments without water limitation, where crops received optimal management. In the zero-N treatment, biological N2 fixation was not sufficient to meet the N demand of the growing crop from early in the season up to beginning of seed filling. As a result, crop LAI, growth, N accumulation, radiation-use efficiency and fAPAR were consistently higher in the full-N than in the zero-N treatment, leading to improved seed set and yield. Similarly, plants in the full-N treatment had heavier seeds with higher N concentration because of greater N mobilization from vegetative organs to seeds. Future yield gains in high-yield soybean production systems will require an increase in biological N2 fixation, greater supply of N from soil or fertilizer, or alleviation of the trade-off between these two sources of N in order to meet the plant demand.  相似文献   

6.
Zhang F  Smith DL 《Plant physiology》1995,108(3):961-968
In the soybean (Glycine max [L.] Merr.) N2-fixing symbiosis, suboptimal root zone temperatures (RZTs) slow nodule development, especially at temperatures below 17[deg]C. A step in the infection process that occurs within the first 24 h is particularly sensitive to suboptimal RZT. The first phase in the establishment of the soybean-Bradyrhizobium japonicum symbiosis is the exchange of recognition molecules. The most effective plant-to-bacterium signal is genistein. Binding of genistein to B. japonicum activates many of the B. japonicum nod genes. To our knowledge, the potential of sub-optimal RZT to disrupt this interorganismal signaling has not previously been investigated. Controlled environment experiments were conducted to determine whether the preincubation of B. japonicum with genistein increases soybean nodulation and N2 fixation at suboptimal RZT and whether the time between inoculation and root-hair curling is shortened by genistein application. The results of these experiments indicated that (a) genistein application increased soybean nodulation at suboptimal RZTs (17.5 and 15[deg]C) but not at the optimal RZT (25[deg]C); (b) the period between inoculation and root-hair curling was shortened by inoculation with bradyrhizobia preincubated with genistein; (c) at 17.5 and 15[deg]C RZT, the onset of N2 fixation occurred earlier in plants that received genistein-treated bradyrhizobia than in plants inoculated with untreated bradyrhizobia; (d) over the tested concentration range, genistein application at 15 to 20 [mu]M was the most effective in stimulating nodulation; and (e) between 25 and 15[deg]C, as RZT decreased, there was an increase in the nodulation-stimulating potential of genistein.  相似文献   

7.
Two field experiments were established to assess the competitiveness of foreign bradyrhizobia in infecting the promiscuous soybean cultivar TGX 536-02D. Seeds were inoculated with antibiotic mutants of the bradyrhizobia strains before planting after land preparation. Soybean plants were harvested at pre-determined days after planting for estimating nodule number, nodule dry weight, nodule occupancy, shoot dry weight and seed yield. Results show that nodule number and dry weight significantly increased and showed great variability at 84 days after planting (DAP), probably due to differences in the ability of inoculant bradyrhizobia to form nodules with the soybean cultivar TGX 536-02D. Increased shoot dry weight, %N, total N and seed yield were a result of increased nodulation by the effective and competitive inoculant Bradyrhizobium strains. Strain USDA 110 occupied the highest percentage of nodule sites because it was more competitive than the other Bradyrhizobium strains. These results show that there was high potential for increasing growth and seed yield of the promiscuous soybean cultivar TGX 536-02D by inoculation with foreign Bradyrhizobium strains.  相似文献   

8.
Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T2). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate of seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T2) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.  相似文献   

9.
The survival of Rhizobium leguminosarum biovar phaseoli on seeds of bean was tested, using the cultivar Carioca. The seeds were treated seven days before inoculation with Benlate, Vitavax, Banrot, Difolatan or Ridomil fungicides. The rhizobial strains used were: CIAT 899, CPAC 1135 and CIAT 652. Strain CIAT 899 showed greater survival on the seed with fungicide than the other strains. Two hours after the contact with fungicides strains CIAT 652 and CPAC 1135 had significantly lower numbers of rhizobia than the treatment without fungicide. The Benlate and Banrot fungicides had the greatest effect on survival of rhizobial strains. There was a drastic mortality of the two strains, CIAT 652 and CPAC 1135, on seeds treated with Benlate and Ridomil. Under field conditions, granular inoculation produced fewer nodules, but a similar total nodule weight as seed inoculation. Serological tests (ELISA) showed that seed treatment with Benlate in connection with seed inoculation reduced drastically the occurrence of inoculated strains in nodules, while the same fungicide treatment and inoculation applied in the seed furrow did not affect the survival of the inoculated strain.  相似文献   

10.
This study tested the hypothesis that inoculation of soybean (Glycine max Merr.) with a Bradyrhizobium japonicum strain (USDA110) with greater N2 fixation rates would enhance soybean response to elevated [CO2]. In field experiments at the Soybean Free Air CO2 Enrichment facility, inoculation of soybean with USDA110 increased nodule occupancy from 5% in native soil to 54% in elevated [CO2] and 34% at ambient [CO2]. Despite this success, inoculation with USDA110 did not result in greater photosynthesis, growth or seed yield at ambient or elevated [CO2] in the field, presumably due to competition from native rhizobia. In a growth chamber experiment designed to study the effects of inoculation in the absence of competition, inoculation with USDA110 in sterilized soil resulted in nodule occupation of >90%, significantly greater 15N2 fixation, photosynthetic capacity, leaf N and total plant biomass compared with plants grown with native soil bacteria. However, there was no interaction of rhizobium fertilization with elevated [CO2]; inoculation with USDA110 was equally beneficial at ambient and elevated [CO2]. These results suggest that selected rhizobia could potentially stimulate soybean yield in soils with little or no history of prior soybean production, but that better quality rhizobia do not enhance soybean responses to elevated [CO2].  相似文献   

11.
Seed‐borne pathogenic fungi can cause serious damage to soybean crops by reducing the germination, vigour and emergence of the seeds. Special attention should be paid to pathogen detection in seeds to prevent its introduction in disease‐free areas. Considering the importance of rapid and successful diagnosis of seed‐borne pathogenic fungi in soybeans, this study evaluated a method to detect Sclerotinia sclerotiorum and Phomopsis spp. in seeds using quantitative polymerase chain reaction (qPCR). Naturally infested samples were subjected to detection using qPCR and blotter test, and the findings were compared. Using soybean seeds soaked in water, both pathogens were detected at an infestation level up a 0.0625% (one infected seed out of 1,599 healthy seeds) by qPCR. This technique allowed the detection of 300 fg of S. sclerotiorum and 30 fg of Phomopsis spp. DNA in the seed samples. Phomopsis spp. was detected in 40.7% of the evaluated seed batches (81 batches) and S. sclerotiorum was detected in 32.1% of the evaluated batches, although most of the seeds had low infestation levels. It was up to 28.5 times more efficient to use qPCR rather than blotter test to detect pathogens with a low incidence of occurrence in soybean seeds. If routinely used to test healthy seeds, qPCR would contribute to reducing soybean losses due to diseases as well as decreasing the costs required to control those diseases.  相似文献   

12.
Seed-borne pathogens in crops reduce the seed germination rate and hamper seedling growth, leading to significant yield loss. Due to the growing concerns about environmental damage and the development of resistance to agrochemicals among pathogen populations, there is a strong demand for eco-friendly alternatives to synthetic chemicals in agriculture. It has been well established during the last few decades that plant seeds harbor diverse microbes, some of which are vertically transmitted and important for plant health and productivity. In this study, we isolated culturable endophytic bacteria and fungi from soybean seeds and evaluated their antagonistic activities against common bacterial and fungal seed-borne pathogens of soybean. A total of 87 bacterial isolates and 66 fungal isolates were obtained. Sequencing of 16S rDNA and internal transcribed spacer amplicon showed that these isolates correspond to 30 and 15 different species of bacteria and fungi, respectively. Our antibacterial and antifungal activity assay showed that four fungal species and nine bacterial species have the potential to suppress the growth of at least one seed-borne pathogen tested in the study. Among them, Pseudomonas koreensis appears to have strong antagonistic activities across all the pathogens. Our collection of soybean seed endophytes would be a valuable resource not only for studying biology and ecology of seed endophytes but also for practical deployment of seed endophytes toward crop protection.  相似文献   

13.
The effects of inoculating soil with a water suspension of Bradyrhizobium japonicum (i) at seeding, (ii) 7, or (iii) 14 days after planting (DAP), (iv) seed slurry inoculation and (v) seed slurry supplemented with postemergence inoculation of a water suspension of Bradyrhizobium at 7 or (vi) 14 DAP, on nodulation, N2 fixation and yield of soybean (Glycine max. [L.] Merrill) were compared in the greenhouse. The 15N isotope dilution technique was used to quantify N2 fixed at flowering, early pod filling and physiological maturity stages (36, 52 and 70 DAP, respectively). On average, the water suspension inoculation formed the greatest number of nodules, and seed plus postemergence inoculation formed slightly more nodules than the seed-only inoculated plants (27, 19 and 12 nodules/plant respectively at physiological maturity). Seed slurry inoculation followed by postemergence inoculation at 14 DAP gave the highest nodule weight, with the plants fixing significantly more (P<0.05) N2 (125 mg N plant−1 or 56% N) than any other treatment (mean, 75 mg plant−1 or 35% N). However, the higher N2 fixation was not translated into higher N or dry matter yields. Estimates of N2 fixed by the ostemergence Bradyrhizobium inoculations as well as plant yield were not significantly different from those of the seed slurry inoculation. Thus, delaying inoculation (e.g., by two weeks as in this study) did not reduce the symbiotic ability of soybean plants.  相似文献   

14.
Survival and viability of Bradyrhizobium inoculant on fungicide-treated peanut seed and the resulting effects on nitrogen fixation, plant growth and seed yield were determined. Vitavax and Benomyl had the most and least lethal actions against Bradyrhizobium strains grown on YEM medium containing a fungicide, respectively, while Thiram and Captan effects were intermediate. Survival of Bradyrhizobium USDA 3384 and USDA 3456, as single strain peat inoculants, on peanut (Arachis hypogaea L. var. Florunner) seeds treated with Benomyl or Vitavax at the rate of 3g/kg seed was also examined. Both fungicides inhibited the growth and affected the survival of strain USDA 3384 on peanut seed. Vitavax killed the inoculant in 9 h. In contrast, USDA 3456 resisted both fungicides, and survived for up to 72h. Nodule formation on greenhouse-grown plants inoculated with USDA 3384 was inhibited by all fungicides. Shoot dry weight and plant nitrogen content significantly decreased as compared to controls. Fungicides, except Vitavax, had a slight effect on nodulation and plant growth when USDA 3456 was used as inoculant. The agronomic importance of fungicide-inoculant interaction was examined in field experiments conducted in Egypt in soil free of peanut-nodulating Bradyrhizobium, where seeds were treated with a combination of two fungicides and a single strain peat inoculant of either USDA 3384 or USDA 3456. All fungicides decreased nodulation, nitrogen fixation, plant growth and seed yield, especially with USDA 3384 as inoculant. Fungicides inhibited viability and survival of Bradyrhizobium on peanut seeds which decreased nodule formation leading to reduced peanut seed yield.  相似文献   

15.
In the American Midwest, superior inoculant rhizobia applied to soybeans usually occupy only 5 to 20% of nodules, and response to inoculation is the exception rather than the rule. Attempts to overcome this problem have met with limited success. We evaluated the ability of Bradyrhizobium japonicum, supplied as a seed coat inoculant, to stay abreast of the infectible region of the developing soybean root system. The rhizoplane population of the inoculant strain declined with distance from site of placement, the decrease being more pronounced on lateral than on taproots. This decline was paralleled by a decrease in inoculant-strain nodule occupancy. Inoculant bradyrhizobia contributed little to nodulation of lateral roots, which at pod-fill accounted for more than 50% of nodule number and mass, and were major contributors to acetylene reduction activity. From these data, it appears that inoculant bradyrhizobia are competitive with indigenous soil strains at the point of placement in the soil but have limited mobility and so are incapable of sustaining high populations throughout the developing root system. The result is low nodule occupancy by the inoculant strain in the tapand lateral roots. Future studies should address aspects of inoculant placement and establishment.  相似文献   

16.
Summary This field study was undertaken to determine the effect of inoculation withGlomus mosseae on N2 fixation and P uptake by soybean. The inoculation withGlomus mosseae was achieved using a new type of inoculant, alginate-entrapped (AE) endomycorrhizal fungus. N2 fixation was assessed using the A value method. In P-fertilized plots, inoculation with AEGlomus mosseae increased the harvest index based on dry weight (+20%) and N content of seeds (+17%), the A value (+31%) and %N derived from fixation (+75%). Inoculation with AEGlomus mosseae decreased the coefficient of variation for the A value and for the dry weights of the different plant parts.  相似文献   

17.
High CO2 has been shown to increase plant growth and to affect symbiotic activity in many legumes species, including soybean (Glycine max [L.] Merr.). In order to assess the interaction between elevated CO2 and rhizobial symbionts on soybean growth and nodulation, we combined the effects of CO2 with those of different bradyrhizobial strains and methods of inoculation. Soybean seeds were sown in agricultural soil in pots and inoculated with three strains of Bradyrhizobium japonicum (5Sc2 and 12NS14 indigenous to Quebec soils, and 532c, a reference strain), the inoculum being either applied directly to the seed or incorporated into the soil. Plants were grown in growth chambers (22/17ºC) for 6 weeks, under either near ambient (400 μmol mol?1) or elevated (800 μmol mol?1) concentrations of CO2. Elevated CO2 increased mass (63%) and number (50%) of soybean nodules, particularly medium and large, allowed a deeper nodule development, and increased shoot dry weight (+30%), shoot C uptake (+33%) and shoot N uptake (+78%), compared to ambient CO2. The two indigenous strains induced more medium and large nodules under elevated CO2 than the reference strain and showed the greatest increases in shoot dry weight. Soil inoculation induced higher number of small nodules than seed inoculation, specifically for the two indigenous strains, but did not affect plant growth parameters. We conclude that soybean yield enhancements due to elevated CO2 are associated with the production of large and medium-size nodules and a deep nodulation, that the two indigenous strains better respond to elevated CO2 than the reference strain, and that the method of inoculation has little influence on this response.  相似文献   

18.
Turfgrass, the most widely grown ornamental crop, is severely affected by fungal pathogens including Sclerotinia homoeocarpa, Rhizoctonia solani, and Magnaporthe poae. At present, turfgrass fungal disease management predominantly relies on synthetic fungicide treatments. However, the extensive application of fungicides to the soil increases residual detection frequency, raising concerns for the environment and human health. The bacterial volatile compound, 2,3-butanediol (BDO), was found to induce plant resistance. In this study, we evaluated the disease control efficacy of a combination of stereoisomers of 2,3-BDO and commercial fungicides against turfgrass fungal diseases in both growth room and fields. In the growth room experiment, the combination of 0.9% 2R,3R-BDO (levo) soluble liquid (SL) formulation and 9% 2R,3S-BDO (meso) SL with half concentration of fungicides significantly increased the disease control efficacy against dollar spot and summer patch disease when compared to the half concentration of fungicide alone. In field experiments, the disease control efficiency of levo 0.9% and meso 9% SL, in combination with a fungicide, was confirmed against dollar spot and large patch disease. Additionally, the induction of defense-related genes involved in the salicylic acid and jasmonic acid/ethylene signaling pathways and reactive oxygen species detoxification-related genes under Clarireedia sp. infection was confirmed with levo 0.9% and meso 9% SL treatment in creeping bentgrass. Our findings suggest that 2,3-BDO isomer formulations can be combined with chemical fungicides as a new integrated tool to control Clarireedia sp. infection in turfgrass, thereby reducing the use of chemical fungicides.  相似文献   

19.
Goos  R. J.  Johnson  B. E.  Carr  P. M. 《Plant and Soil》2001,235(2):127-133
On fields with no history of soybean (Glycine max (L.) Merr.) production, inoculation alone is often inadequate to provide for adequate nodulation the first time this crop is grown. The objective of this study was to determine if inoculation of spring wheat (Triticum aestivum L.) seed with Bradyrhizobium japonicum would lead to an increase of B. japonicum numbers in the soil, and improve nodulation of a subsequent soybean crop. In the greenhouse, wheat seed inoculation increased B. japonicum numbers from undetectable numbers to >9000 g–1 of soil, whereas the numbers of introduced B. japonicum declined in unseeded pots. In the field, inoculation of wheat seed increased B. japonicum numbers in the soil from undetectable levels to >4000 g–1 the following year. When soybean seed was inoculated, but grown in soil devoid of B. japonicum, nodules formed only near the point of seed placement. The heaviest nodulation, and widest distribution of nodules in the topsoil were found whenB. japonicum was established the year before by wheat seed inoculation, plus soybean seed inoculation. Wheat seed inoculation the year before growing soybean, combined with proper soybean seed inoculation, should provide for abundant nodulation the first time soybean is grown on a field.  相似文献   

20.
The influence of seed and soil inoculation on bradyrhizobial migration, nodulation, and N2 fixation was examined by using two Bradyrhizobium japonicum strains of contrasting effectiveness in N2 fixation. Seed-inoculated strains formed fewer nodules on soybeans (mostly restricted to the tap and crown roots within 0 to 5 cm from the stem base) than did bradyrhizobia distributed throughout the soil or inoculated at specific depths. Nodulation was greater below the depths at which bradyrhizobial cells were located rather than above, even though watering was done from below to minimize passive bradyrhizobial migration with percolating water. The most profuse nodulation occurred within approximately 5 cm below the point of placement and was generally negligible below 10 cm. These and other results suggest that bradyrhizobial migration from the initial point of placement was very limited. Nevertheless, the more competitive strain, effective strain THA 7, migrated into soil to a greater extent than the ineffective strain THA 1 did. Nitrogen fixation resulting from the dual-strain inoculations differed depending on the method of inoculation. For example, the amount of N2 fixed when both strains were slurried together onto the seed was about half that obtained from mixing the effective strain into the soil with the ineffective strain on the seed. The results indicate the importance of rhizobial distribution or movement into soil for nodulation, nodule distribution, strain competitiveness, and N2 fixation in soil-grown legumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号