首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously described the isolation of colcemid resistant Chinese hamster ovary cell lines containing alpha- and beta-tubulin mutations that increase microtubule assembly and stability. By analyzing colcemid sensitive revertants from one of the beta-tubulin mutants, we now find that loss or inactivation of the mutant allele represents the most common mechanism of reversion. Consistent with this loss, the revertants have 35% less tubulin at steady state, no evidence for the presence of a mutant polypeptide, and a normal extent of tubulin polymerization. In addition to the loss of colcemid resistance, the revertant cells exhibit increased resistance to paclitaxel relative to wild-type cells. This paclitaxel resistance can be suppressed by transfecting the revertant cells with a cDNA for wild-type beta-tubulin, indicating that the reduction in tubulin in the revertant cells is responsible for the resistance phenotype. We propose that reducing tubulin levels may represent a novel mechanism of paclitaxel resistance.  相似文献   

2.
The microtubule nucleating capacity of chromosomes was tested in vitro in lysates of Chinese hamster ovary cells. Colcemid-blocked mitotic cells were lysed with the detergent Triton X-100, incubated with exogenous porcine brain tubulin, attached to electron microscope grids and observed as whole-mounts. Under suitable conditions, greater than 98% of the chromosomes gave rise to microtubules at their kinetochore regions, thus unequivocally demonstrating that chromosomes are competent to initiate specifically microtubule formation. The average number of microtubules that polymerized onto a chromosome was 8 +/- 5, and greater than 36% of the chromosomes had between 10 and 19 microtubules per kinetochore region. We conclude that under the lysis conditions employed, virtually all the chromosomes retain their kinetochores, and that the kinetochores retain a substantial fraction of their microtubule nucleating capacity.  相似文献   

3.
Turnover of tubulin and the N site GTP in Chinese hamster ovary cells   总被引:14,自引:0,他引:14  
Radioactively labeled tubulin from Chinese hamster ovary (CHO) cells can be isolated by co-polymerization with nonradioactive porcine brain microtubule protein. 75% of the soluble tubulin in CHO extracts co-polymerizes with the porcine protein through several cycles, without preferential loss of either CHO or porcine subunits. After phosphocellulose chromatography of the co-polymerized microtubules, the CHO tubulin is radiochemically homogeneous, as judged by SDS-polyacrylamide gel electrophoresis. CHO tubulin purified in this way has 1 mole of nucleotide per mole of protein noncovalently bound at the non-exchangeable or N site. This-layer chromatography indicates that the N site nucleotide is entirely ribo-GTP. Label and chase experiments show that the N site GTP exchanges intracellularly with a half-time of 33 hr in growing cells which have a generation time of 17 hr, while the tubulin polypeptides are degraded with a half-time of 48 hr. Intracellular hydrolysis of the gamma-phosphate of the N site nucleotide can be detected but occurs very slowly, with a half-time of 24 hr. These results suggest that the N site nucleotide may function in vivo as a stable structural co-factor of the tubulin molecule and render improbable the possibility that it has a regulatory role in microtubule assembly.  相似文献   

4.
We report functional differences between tau isoforms with 3 or 4 C-terminal repeats and a difference in susceptibility to oxidative conditions, with respect to the regulation of microtubule dynamics in vitro and tau-microtubule binding in cultured cells. In the presence of dithiothreitol in vitro, a 3-repeat tau isoform promotes microtubule nucleation, reduces the tubulin critical concentration for microtubule assembly, and suppresses dynamic instability. Under non-reducing conditions, threshold concentrations of 3-repeat tau and tubulin exist below which this isoform still promotes microtubule nucleation and assembly but fails to reduce the tubulin critical concentration or suppress dynamic instability; above these threshold concentrations, amorphous aggregates of 3-repeat tau and tubulin can be produced at the expense of microtubule formation. A 4-repeat tau isoform is less sensitive to the oxidative potential of the environment, behaving under oxidative conditions similarly to the 3-repeat isoform under reducing conditions. Under conditions of oxidative stress, in Chinese hamster ovary cells stably expressing either 3- or 4-repeat tau, 3-repeat tau disassociates from microtubules more readily than the 4-repeat isoform, and tau-containing high molecular weight aggregates are preferentially observed in lysates from the Chinese hamster ovary cells expressing 3-repeat tau, indicating greater susceptibility of 3-repeat tau to oxidative conditions, compared with 4-repeat tau in vivo.  相似文献   

5.
In Chinese hamster ovary cells, a number of independent mutants selected for resistance to antimitotic drugs have been found to be specifically altered in two major cellular proteins, designated P1 (relative mass (Mr) approximately 60-63 kilodaltons (kDa] and P2 (Mr approximately 69-70 kDa), which appeared microtubule related by a number of genetic and biochemical criteria. Antibodies to P1 have been found to bind specifically to mitochondria that showed specific association with microtubules in interphase cells. Biochemical and cDNA sequence studies on P1 showed that this protein, which is localized in the matrix compartment, is the mammalian homolog of the highly conserved chaperonin family of proteins (other members include the GroEL protein of Escherichia coli, the 60-kDa heat-shock protein of yeast, and the rubisco subunit binding protein of plant chloroplasts). The chaperonin proteins in various systems play a transient but essential molecular chaperone role in the proper folding of polypeptide chains and their assembly into oligomeric protein complexes. Our studies on P2 protein established that it corresponds to the constitutive form of the major 70-kDa heat-shock protein of mammalian cells (i.e., hsc70), which also acts as a molecular chaperone in the intracellular transport of nascent proteins to organelles such as mitochondria and endoplasmic reticulum. To account for the above, as well as a number of other observations (e.g., binding of fluorescent-labeled antimitotic drugs to mitochondria, association of tubulin with mitochondria as well as other membranes, and high affinity binding of antimitotic drugs to free tubulin but not to assembled microtubules), a new model for the in vivo assembly of interphase microtubules is proposed. The model ascribes a central role to the mitochondrially localized chaperonin (i.e., P1) protein in the intracellular formation of tubulin dimers and in their addition to the growth sites in microtubules. The proposed model also explains a number of other observations related to microtubule assembly in the literature.  相似文献   

6.
Tubulin pools in differentiating neuroblastoma cells   总被引:15,自引:8,他引:7       下载免费PDF全文
The distribution of tubulin in soluble, reversibly stabilized (assembled) and insoluble forms has been determined in neuroblastoma cells undergoing microtubule-dependent neurite elongation. Procedures were developed to obtain reproducible tubulin fractions and to assay total tubulin. Radioimmunoassays showed that both differentiated and nondifferentiated cell contained approximately 4 pg of tubulin per cell, of which 3-10% was in an insoluble, particulate form. The amount of tubulin assembled in differentiated cells was four to five times greater than in nondifferentiated cells, constituting 48-63% and 11-16% of the total tubulin pool in the respective cell types. Calculation of the concentration of soluble tubulin indifferentiated cells (approximately 0.8 mg/ml) and nondifferentiated cells (approximately 1.6 mg/ml) indicates that a critical concentration of subunits probably does not limit the induction of microtubule formation during neurite elongation.  相似文献   

7.
Rotenone, a potent inhibitor of mitochondrial respiration is also an effective antimitotic agent. The addition of either rotenone or Colcemid to exponentially growing Chinese hamster ovary cells resulted in a dramatic increase in mitotic index after 90 min. When the cultures were washed free of the drugs, mitosis was completed and the cells progressed into G 1 at approximately the same rate. Further similarity of rotenone-arrested cells to Colcemid-induced mitotic inhibition was apparent at the ultrastructural level. Mitotic cells treated by either drug contained monopolar spindles with chromosomes grouped around centriole pairs near the cell center. Occasional microtubules were seen near the kinetochore and centrioles. These observations, along with the fact that rotenone inhibited the binding of 3H-colchicine to isolated bovine brain tubulin, suggested that rotenone inhibited mitosis by binding directly to tubulin to prevent microtubule assembly.  相似文献   

8.
In the testis, microtubule-disrupting agents cause breakdown of the Sertoli cell cytoskeleton and sloughing of germ cells with associated Sertoli cell fragments, although the mechanism underlying this event is not understood. In this study, we investigated the effects of carbendazim and colchicine on microtubule polymerization status and posttranslational modifications of tubulin in freshly isolated rat seminiferous tubules. Soluble and polymerized tubulin pools were separated and tubulin was quantified using a competitive ELISA. Carbendazim and colchicine caused extensive microtubule depolymerization, shifting the ratio of soluble to polymerized tubulin from 40%:60% to 78%:22%, and to 84%:16%, respectively. Total tubulin levels remained relatively constant after carbendazim treatment but decreased twofold after colchicine treatment. To determine if modifications to tubulin may be associated with polymerization status, tubulin pools were analyzed by immunoblotting. Acetylated alpha-tubulin and betaIII-tubulin distribution in tubulin pools was not affected by treatment. Tyrosinated alpha-tubulin (52 kDa) was localized in both tubulin pools and had decreased tyrosination in the microtubule pool after carbendazim treatment. A 47-kDa protein immunoreactive with both tyrosinated alpha-tubulin and general alpha-tubulin antibodies was found only in the microtubule pool. The 47-kDa protein (potentially an alpha-tubulin isoform) lost tyrosination, yet was still present in the microtubule pool based on detection with the general alpha-tubulin antibody, after carbendazim treatment. Similar effects were seen with colchicine, although loss of total tubulin protein was measured. Thus, decreased tyrosination of the microtubule pool of tubulin appears to be associated with depolymerization of microtubules.  相似文献   

9.
Assembly and turnover of detyrosinated tubulin in vivo   总被引:15,自引:9,他引:6       下载免费PDF全文
Detyrosinated (Glu) tubulin was prepared from porcine brain and microinjected into human fibroblasts and Chinese hamster ovary (CHO) cells. Glu tubulin assembled onto the ends of preexisting microtubules and directly from the centrosome within minutes of its microinjection. Incorporation into the cytoskeleton continued until almost all of the microtubules were copolymers of Glu and tyrosinated (Tyr) tubulin. However, further incubation resulted in the progressive and ultimately complete loss of Glu-staining microtubules. Glu tubulin injected into nocodazole-treated cells was converted to Tyr tubulin by a putative tubulin/tyrosine ligase activity. The observed decrease in staining with the Glu antibody over time was used to analyze microtubule turnover in microinjected cells. The mode of Glu disappearance was analyzed quantitatively by tabulating the number of Glu-Tyr copolymers and Tyr-only microtubules at fixed times after injection. The proportion of Glu-Tyr copolymers decreased progressively over time and no segmentally labeled microtubules were observed, indicating that microtubules turn over rapidly and individually. Our results are consistent with a closely regulated tyrosination-detyrosination cycle in living cells and suggest that microtubule turnover is mediated by dynamic instability.  相似文献   

10.
Nucleotide binding and phosphorylation in microtubule assembly in vitro.   总被引:4,自引:0,他引:4  
Two non-hydrolyzable analogs of GTP, guanylyl-β,γ-methylene diphosphonate and guanylyl imidodiphosphate, have been found to induce rapid and efficient microtubule assembly in vitro by binding at the exchangeable site (E-site) on tubulin. Characterization of microtubule polymerization by several criteria, including polymerization kinetics, nucleotide binding to depolymerized and polymerized microtubules, and microtubule stability, reveals strong similarities between microtubule assembly induced by GTP and non-hydrolyzable GTP analogs. Nucleoside triphosphates which bind weakly or not at all to tubulin, such as ATP, UTP and CTP, are shown to induce microtubule assembly by means of a nucleoside diphosphate kinase (NDP-kinase, EC 2.7.4.6.) activity which is not intrinsic to tubulin. The NDP-kinase mediates microtubule polymerization by phosphorylating tubulin-bound GDP in situ at the E-site. Although hydrolysis of exchangeably bound GTP occurs, it is found to be uncoupled from the polymerization reaction. The non-exchangeable nucleotide binding site on tubulin (N-site) is not directly involved in microtubule assembly in vitro. The N-site is shown to contain almost exclusively GTP which is not hydrolyzed during microtubule assembly. A scheme is presented in which GTP acts as an allosteric effector at the E-site during microtubule assembly in vitro.  相似文献   

11.
The polarity of kinetochore microtubules was determined in a system for which kinetochore-initiated microtubule assembly has been demonstrated. Chinese hamster ovary cells were treated with 0.3 micrograms/ml colcemid for 8 h and then released from the block. Prior to recovery, microtubules were completely absent from the cells. The recovery was monitored using light and electron microscopy to establish that the cells progress through anaphase and that the kinetochore fibers are fully functional. Since early stages of recovery are characterized by short microtubule segments that terminate in the kinetochore fibrous corona rather than on the outer disk, microtubule polarity was determined at later stages of recovery when longer kinetochore bundles had formed, allowing us to establish unambiguously the spatial relationship between microtubules, kinetochores, and chromosomes. The cells were lysed in a detergent mixture containing bovine brain tubulin under conditions that allowed the formation of polarity-revealing hooks. 20 kinetochore bundles were assayed for microtubule polarity in either thick or thin serial sections. We found that 95% of the decorated kinetochore microtubules had the same polarity and that, according to the hook curvature, the plus ends of the microtubules were at the kinetochores. Hence, the polarity of kinetochore microtubules in Chinese hamster ovary cells recovering from a colcemid block is the same as in normal untreated cells. This result suggests that microtubule polarity is likely to be important for spindle function since kinetochore microtubules show the same polarity, regardless of the pattern of spindle formation.  相似文献   

12.
We studied the characteristics of cytoplasmic microtubule reassembly from endogenous tubulin pools in situ using a Brij 58-lysed 3T3 cell system. Cells that were pretreated in vivo with colcemid retain endogenous tubulin in the depolymerized state after lysis. When lysed cells were removed from colcemid block and incubated in GTP-PIPES reassembly buffer at pH 6.9, microtubules repolymerized randomly throughout the cytoplasm, appeared to be free-ended and were generally not associated with the centrosomes. However, tubulin could be induced to polymerize in an organized manner from the centrosomes by increasing the pH to 7.6 in the presence of ATP and cAMP. Microtubules polymerized in ATP had significantly longer lengths than those assembled in GTP or UTP. When cells not treated with colcemid were lysed, the integrity of the cytoplasmic microtubule complex (CMTC) was maintained during subsequent incubation in reassembly buffer. However, in contrast to unlysed, living cells, microtubules of lysed cells were stable to colchicine. A significant fraction of the CMTC was stable to cold- induced disassembly whereas microtubules reassembled after lysis were extremely cold-sensitive. When cells not treated with colcemid were lysed and incubated in millimolar Ca++, microtubules depolymerized from their distal ends and a much reduced CMTC was observed. Ca++ reversal with EGTA rapidly resulted in a reformation of the CMTC apparently by elongation of Ca++ resistant microtubules.  相似文献   

13.
Stably transfected Chinese hamster ovary cell lines expressing increasing levels of beta4a, a class IV neuronal-specific beta-tubulin, were compared for effects on microtubule organization, assembly, and sensitivity to antimitotic drugs. It was found that beta4a reduced microtubule assembly in proportion to its abundance and thereby caused supersensitivity to microtubule disruptive drugs such as colcemid, vinblastine, and nocodazole. However, the response to paclitaxel was more complex. Low expression of beta4a caused supersensitivity to paclitaxel, whereas higher expression resulted in the loss of supersensitivity. The results suggest that beta4a may possess an enhanced ability to bind paclitaxel that increases sensitivity to the drug and acts substoichiometrically. At high levels of beta4a expression, however, microtubule disruptive effects counteract the assembly promoting pressure exerted by paclitaxel binding, and drug supersensitivity is lost. beta4a-Tubulin differs from the more ubiquitous beta4b isotype at relatively few amino acid residues, yet beta4b expression has little effect on microtubule assembly or drug response. To determine which amino acids mediate the effects of beta4a expression, beta4a and beta4b were altered by site-directed mutagenesis and expressed in Chinese hamster ovary cells. The introduction of N332S or N335S mutations into beta4b-tubulin was sufficient to confer microtubule disruption and increased colcemid sensitivity. On the other hand, mutation of Ala(115) to serine in beta4a-tubulin almost completely reversed heightened sensitivity to paclitaxel, but introduction of an S115A mutation into beta4b had no effect, suggesting that a complex interaction of multiple amino acids are necessary to produce this phenotype.  相似文献   

14.
D. B. Murphy 《Protoplasma》1988,145(2-3):176-181
Summary Vertebrate cells contain biochemical and genetic isotypes of tubulin which are expressed in unique combinations in different tissues and cell types. To determine if mixtures of tubulin isotypes assemblein vitro to form different classes of microtubules, we analyzed the composition of microtubule copolymers assembled from mixtures of chicken brain and erythrocyte tubulin. During microtubule elongation brain tubulin assembled onto the ends of microtubules faster than erythrocyte tubulin, resulting in copolymers with continually changing ratios of isotypes along their lengths. Unlike examples of microtubule assembly where the rate of polymerization depends on the association rate constant (k+) and the subunit concentration, the rate and extent of sorting in copolymers appear to depend on the dissociation rate constant (k), which governs the rate at which subunits are released from tubulin oligomers and microtubules and thereby made available for reassembly into copolymers. The type of microtubule seed used to initiate elongation was also found to influence the composition of copolymers, indicating that polymerization favors association of subunits of the same isotype.  相似文献   

15.
Chinese hamster ovary cell mutants resistant to the microtubule stabilizing drug taxol were isolated in a single step. Of these 139 drug-resistant mutants, 59 exhibit an absolute requirement for taxol for normal growth and division, 13 have a partial requirement, and 69 grow normally without the drug. Two-dimensional gel analysis of whole cell proteins reveal "extra" spots representing altered tubulins in 13 of the mutants. Six of these have an altered alpha-tubulin and seven have an altered beta-tubulin. Cells with an absolute dependence on taxol become large and multinucleated when deprived of the drug. In contrast, partially dependent cells exhibit some multinucleation, but most cells appear normal. In one mutant that has an absolute dependence on taxol, the cells appear to die more quickly and their nuclei do not increase in size or number. As previously found for another taxol-dependent mutant (Cabral, F., 1983, J. Cell. Biol., 97:22-29), the taxol dependence of the mutants described in this paper behaves recessively in somatic cell hybrids, and the cells are more susceptible to being killed by colcemid than are the wild-type parental cells. When compared with wild-type cells, taxol-dependent mutants have normal arrays of cytoplasmic microtubules but form much smaller mitotic spindles in the presence of taxol. When deprived of the drug, however, these mutants cannot complete assembly of the mitotic spindle apparatus, as judged by tubulin immunofluorescence. Thus, the defects leading to taxol dependence in these mutants with defined alterations in alpha- and beta-tubulin appear to result from the cell's inability to form a functional mitotic spindle. Reversion analysis indicates that the properties of at least one alpha-tubulin mutant are conferred by the altered tubulin seen on two-dimensional gels.  相似文献   

16.
Taxol binds to polymerized tubulin in vitro   总被引:20,自引:8,他引:12       下载免费PDF全文
Taxol, a natural plant product that enhances the rate and extent of microtubule assembly in vitro and stabilizes microtubules in vitro and in cells, was labeled with tritium by catalytic exchange with (3)H(2)O. The binding of [(3)H]taxol to microtubule protein was studied by a sedimentation assay. Microtubules assembled in the presence of [(3)H]taxol bind drug specifically with an apparent binding constant, K(app), of 8.7 x 19(-7) M and binding saturates with a calculated maximal binding ration, B(max), of 0.6 mol taxol bound/mol tubulin dimer. [(3)H]Taxol also binds and assembles phosphocellulose-purified tubulin, and we suggest that taxol stabilizes interactions between dimers that lead to microtubule polymer formation. With both microtubule protein and phosphocellulose- purified tubulin, binding saturation occurs at approximate stoichiometry with the tubulin dimmer concentration. Under assembly conditions, podophyllotoxin and vinblastine inhibit the binding of [(3)H]taxol to microtubule protein in a complex manner which we believe reflects a competition between these drugs, not for a single binding site, but for different forms (dimer and polymer) of tubulin. Steady-state microtubules assembled with GTP or with 5’-guanylyl-α,β-methylene diphosphonate (GPCPP), a GTP analog reported to inhibit microtubule treadmilling (I.V. Sandoval and K. Weber. 1980. J. Biol. Chem. 255:6966-6974), bind [(3)H]taxol with approximately the same stoichiometry as microtubules assembled in the presence of [(3)H]taxol. Such data indicate that a taxol binding site exists on the intact microtubule. Unlabeled taxol competitively displaces [(3)H]taxol from microtubules, while podophyllotoxin, vinblastine, and CaCl(2) do not. Podophyllotoxin and vinblastine, however, reduce the mass of sedimented taxol-stabilized microtubules, but the specific activity of bound [(3)H]taxol in the pellet remains constant. We conclude that taxol binds specifically and reversibly to a polymerized form of tubulin with a stoichiometry approaching unity.  相似文献   

17.
LY195448 is an experimental drug that blocks cells at metaphase (Boder et al.: Microtubules and Microtubule Inhibitors 1985: 353-361, 1985). A 4 hour exposure of NRK cells to a drug concentration of 46 microM (15 micrograms/ml) increased the number of mitotic cells in the population from 4.9% to 18.5%. Examination of treated cells by immunofluorescence showed increased numbers of cells blocked at prometaphase, with short microtubules extending from the spindle pole to the kinetochores. The cytoskeleton of interphase cells remained intact at these concentrations. However, the number of microtubules appeared to be reduced, and those that remained appeared kinkier and curled, particularly toward the periphery of the cells. When cytoskeletal microtubules of NRK cells were depolymerized with nocodazole, they reassembled within minutes of transfer to drug-free media. However, nocodazole-treated cells transferred to fresh media containing 15 micrograms/ml of LY195448 required 2-3 times longer to reassemble cytoplasmic microtubules. Previously isolated Chinese hamster ovary cell microtubule mutants resistant to either taxol or Colcemid were tested for cross-resistance to this drug. Cell lines resistant to the depolymerizing drug Colcemid exhibited increased resistance to LY195448 compared to wild-type cells, whereas taxol resistant cell lines were more sensitive. Of eleven newly isolated mutant CHO cell lines selected for increased resistance to LY195448, seven exhibited an altered beta-tubulin protein by two-dimensional polyacrylamide gel electrophoresis. These 11 cell lines also showed a heterogenous pattern of resistance to several microtubule-active drugs. These data demonstrate that LY195448 is cytotoxic to mammalian cells because it inhibits microtubule assembly, most likely through a direct interaction with tubulin.  相似文献   

18.
Wang Y  Yin S  Blade K  Cooper G  Menick DR  Cabral F 《Biochemistry》2006,45(1):185-194
Paclitaxel resistance mutations in Chinese hamster ovary cells frequently alter a cluster of leucine residues in the H6-H7 loop region of beta-tubulin. To gain further insight into the role of this region in microtubule assembly and drug resistance, site-directed mutagenesis was used to systematically change amino acid L215. The mutated genes were cloned into a tetracycline-regulated expression vector and transfected into wild-type cells. Most of the mutations destabilized microtubule assembly, causing a decreased fraction of tubulin to appear in the microtubule cytoskeleton. In each case, the decreased level of assembly was associated with paclitaxel resistance and increased colcemid sensitivity. In two cases, however, the alteration did not significantly perturb the level of assembled tubulin or confer resistance to paclitaxel. One of these, L215V, produced little or no detectable phenotype, while the other, L215I, conferred increased sensitivity to paclitaxel. The increased drug sensitivity did not extend to epothilone A, a drug that binds to the same site and has a mechanism of action similar to that of paclitaxel, or colcemid, a drug with an opposing mechanism of action and a distinct binding site. Moreover, L215I conferred enhanced paclitaxel sensitivity at very low levels of expression, and sensitivity was not further enhanced in cells with higher levels of expression, implying that paclitaxel acts substoichiometrically. These properties, along with the proximity of L215 to the drug binding site, suggests that the L215I substitution may enhance the binding or effectiveness of paclitaxel. Our studies confirm the importance of the H6-H7 loop of beta-tubulin in microtubule assembly and resistance to antimitotic drugs. They also identify the first mammalian mutation shown to specifically increase sensitivity to paclitaxel.  相似文献   

19.
E Hamel  C M Lin 《Biochemistry》1984,23(18):4173-4184
A new method for separating microtubule-associated proteins (MAPs) and tubulin, appropriate for relatively large-scale preparations, was developed. Most of the active tubulin was separated from the MAPs by centrifugation after selective polymerization of the tubulin was induced with 1.6 M 2-(N-morpholino)ethanesulfonate (Mes) and GTP. The MAPs-enriched supernatant was concentrated and subsequently clarified by prolonged centrifugation. The supernatant (total soluble MAPs) contained almost no tubulin, most of the nucleosidediphosphate kinase activity of the microtubule protein, good activity in promoting microtubule assembly in 0.1 M Mes, and proteins with the electrophoretic mobility of MAP-1, MAP-2, and tau factor. The pellet, inactive in supporting microtubule assembly, contained denatured tubulin, most of the ATPase activity of the microtubule protein, and significant amounts of protein with the electrophoretic mobility of MAP-2. Insoluble material at this and all previous stages, including the preparation of the microtubule protein, could be heat extracted to yield soluble protein active in promoting microtubule assembly and containing MAP-2 as a major constituent. The total soluble MAPs were further purified by DEAE-cellulose chromatography into bound and unbound components, both of which induced microtubule assembly. The bound component (DEAE-MAPs) contained proteins with the electrophoretic mobility of MAP-1, MAP-2, and tau factor. The polymerization reaction induced by the unbound component (flow-through MAPs) produced very high turbidity readings. This was caused by the formation of bundles of microtubules. Although the flow-through MAPs contained significantly more ATPase, tubulin-independent GTPase, and, especially, nucleosidediphosphate kinase activity than the DEAE-MAPs, preparation of a MAPs fraction without these enzymes required heat treatment.  相似文献   

20.
SCG10 (superior cervical ganglia neural-specific 10 protein) is a neuron specific member of the stathmin family of microtubule regulatory proteins that like stathmin can bind to soluble tubulin and depolymerize microtubules. The direct actions of SCG10 on microtubules themselves and on their dynamics have not been investigated previously. Here, we analyzed the effects of SCG10 on the dynamic instability behavior of microtubules in vitro, both at steady state and early during microtubule polymerization. In contrast to stathmin, whose major action on dynamics is to destabilize microtubules by increasing the switching frequency from growth to shortening (the catastrophe frequency) at microtubule ends, SCG10 stabilized the plus ends both at steady state and early during polymerization by increasing the rate and extent of growth. For example, early during polymerization at high initial tubulin concentrations (20 microM), a low molar ratio of SCG10 to tubulin of 1:30 increased the growth rate by approximately 50%. In contrast to its effects at plus ends, SCG10 destabilized minus ends by increasing the shortening rate, the length shortened during shortening events, and the catastrophe frequency. Consistent with its ability to modulate microtubule dynamics at steady state, SCG10 bound to purified microtubules along their lengths. The dual activity of SCG10 at opposite microtubule ends may be important for its role in regulating growth cone microtubule dynamics. SCG10's ability to promote plus end growth may facilitate microtubule extension into filopodia, and its ability to destabilize minus ends could provide soluble tubulin for net plus end elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号