首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
通过水培实验研究了0、10、20、50、70和100 mg.L-1 Hg2+和65 U.mL-1的过氧化物酶(POD)混合浸种对小麦(Triticum aestivum L.)萌发及幼苗生长过程中的10个形态和生理生化指标的影响。结果表明:施加外源POD可明显提高种子发芽率、植株日均增重和幼苗叶片的可溶性蛋白含量,增加幼苗叶片内源超氧物歧化酶(SOD)和POD的活性,拮抗Hg2+胁迫对种子发芽率、苗高、日均增重及叶片可溶性蛋白含量的不利影响,Hg2+浓度较高时(≥50 mg.L-1),对种子发芽率和日均增重的拮抗作用更明显,并对较低浓度Hg2+(≤20 mg.L-1)胁迫引起的叶片SOD活性的上升和低于100 mg.L-1的Hg2+胁迫引起的叶片 POD活性的上升有进一步的促进作用;然而对幼苗平均最长根长度、侧根数和幼苗叶片叶绿素含量则无明显影响。  相似文献   

2.
刘兴坦 《生物技术》2002,12(2):25-26
初步探讨了磺胺对小麦种子萌发与幼苗生长的影响。研究表明,用低浓度(<6.0mg/L)的磺胺溶液浸泡小麦种子,能显著增加幼苗的根重,根长和根冠比,提高根系活力和叶片叶绿素的含量,降低幼苗的苗高,苗重,但对发芽率影响不大。高浓度(>10.0mg/L)和安则强烈抑制小麦幼苗根,芽的生长,并导致幼苗形态的不良变化。  相似文献   

3.
甲基磺酸乙酯(EMS)是一种常用的诱变剂,在作物诱变育种上应用广泛。EMS在诱变种子的同时也是一种非生物胁迫,能显著降低种子的发芽率。该实验以小麦‘扬麦15’种子为实验材料,设置了7个EMS浓度处理梯度(0%、0.6%、0.8%、1.0%、1.2%、1.4%和1.6%),每个浓度设置3个处理时间(10 h、12 h、14 h),在种子萌发后测定发芽势和发芽率,并对种子进行生物量测定和形态结构观察,探讨EMS处理对小麦种子萌发和幼苗生长的影响机制。结果表明:(1)随着EMS浓度的提高和处理时间的延长,小麦种子的萌发率逐渐降低;幼苗的生长逐渐变得缓慢,根长和叶长明显变短。(2)随着EMS处理浓度的升高和处理时间的延长,小麦种子胚乳内淀粉体的降解速率变缓。(3)同一处理时间下,EMS的浓度越高,小麦根系越短,根部横截面积、维管束面积以及皮层面积也越小。研究发现,EMS处理会明显降低小麦种子的发芽率,减缓种子贮藏物质的降解速度,抑制小麦根系的生长。  相似文献   

4.
十二烷基硫酸钠 [SDS ,化学式CH3(CH2 ) 1 1 SO3Na]是一种阴离子表面活性剂 ,含有亲水的极性基团和疏水的非极性基团 ,在水中可解离成带疏水基团的阴离子。SDS主要通过破坏蛋白质分子中的氢键和疏水作用而使其变性。目前生活污水中作为人工洗涤剂主要原料之一的SDS含量普遍偏高 ,农村许多地方还用这种污水灌溉农作物。为了探讨SDS对作物生长的影响 ,我们以小麦为材料进行了初步研究。实验用小麦 (Triticumaestivum)品种为济南 1 7号 ,选取健壮饱满的种子 ,以 0 1 %升汞溶液消毒1 0min后 ,用蒸馏水…  相似文献   

5.
驻极体处理对小麦和甘草种子萌发和幼苗生长的影响   总被引:3,自引:0,他引:3  
静电处理植物种子可促进其萌发和幼苗的生长[1~4] 。目前处理方法多采用外接电源的高压静电装置 ,此法不仅操作不便 ,而且产生臭氧、污染环境 ,高压放电和电磁场辐射还会危及操作者安全 ,因而难以推广。为了探索一条简便、无污染、安全的促进植物种子萌发及幼苗生长的新方法 ,本文以驻极体代替静电装置处理植物种子 ,观察其对种子萌发及幼苗生长的影响。驻极体是永久极化的电介质 ,可用多种方法制作。本文所用驻极体是将双拉伸聚丙烯薄膜置于高压静电装置的两极板间通电数分钟 ,注入电荷使其带静电荷。用驻极体直接处理植物种子时 ,将小麦 …  相似文献   

6.
He-Ne激光和KT对小麦种子萌发与幼苗生长的影响   总被引:18,自引:2,他引:18  
以冬小麦为实验材料,研究了单纯He-Ne激光处理、单纯激动素处理和He-Ne激光与激动素复合处理对小麦种子发芽率、生长势及叶绿素、可溶性蛋品质和可溶性糖合成的影响。结果表明:(1)三种处理均能提高种子的活力,促进种子萌发,相比之下He-Ne激光处理效果最好。(2)三种处理对幼苗生长、可溶性蛋白质、可溶性糖以及叶绿素的合成具有显著的促进作用,从而加快了光合作用的进程。提高了幼苗干物质的含量,其中He-Ne激光与激动素复合处理效果最好,单纯He-Ne激光处理效果次之。  相似文献   

7.
铝对秋葵、小麦种子萌发和幼苗生长的影响   总被引:1,自引:0,他引:1  
以不同抗铝小麦(Triticum aestivum L.)基因型:Carazinho(抗铝型)和Egret(铝敏感型)为参比,研究了铝胁迫对秋葵(Hibiscus moscheutos L.)种子萌发和幼苗生长的影响。结果表明:秋葵和小麦种子的萌发对铝胁迫不敏感;高浓度的AlCl3(50μmol/L)显著抑制主根和侧根伸长,但对侧根数目的影响较小;两种植物的主根伸长对铝胁迫的差异不显著,而秋葵侧根对铝毒的抗性比两个供试的小麦基因型强;50μmol/L的AlCl3显著降低两个小麦基因型的根系生物量,但秋葵的根系生物量与对照比变化不大。表明秋葵幼苗的抗铝性强于两个小麦品种,铝对秋葵、小麦侧根和主根的生长影响不同。  相似文献   

8.
胡桃醌对小麦种子萌发及幼苗生长的化感效应   总被引:1,自引:0,他引:1  
以小麦种子为试验材料,采用培养皿药膜法、生化分析法研究了胡桃醌对小麦种子萌发和幼苗生长的化感效应。结果显示:(1)与对照相比,低浓度胡桃醌(4和20μmol.L-1)处理能促进小麦种子萌发和幼苗生长,种子α-淀粉酶活性增大,幼苗中可溶性蛋白含量升高,丙二醛(MDA)含量减少,超氧化物歧化酶(SOD)活性无显著变化。(2)当胡桃醌浓度大于100μmol.L-1时,对小麦种子萌发和幼苗生长开始呈现抑制作用,种子α-淀粉酶活力降低,幼苗相对含水量、可溶性蛋白含量降低,MDA含量升高,SOD活性先增大后减小。(3)在最大浓度胡桃醌(1 250μmol.L-1)处理下,小麦幼根的细胞形状不规则,排列混乱,层次不分明,维管束模糊不清,幼苗细胞质壁分离,叶绿体萎缩坏死,细胞核变形。研究表明,高浓度胡桃醌通过抑制受体小麦保护酶活性,加重膜脂过氧化程度,导致幼根、幼苗细胞结构的破坏,从而产生化感效应,且化感效应随浓度的增加不断增强。  相似文献   

9.
以小麦品种郑州9023为材料,研究了不同浓度Cd2 胁迫对小麦幼苗生长及呼吸作用的影响.结果显示:(1)随Cd2 胁迫浓度的升高,小麦幼苗根和芽的呼吸速率及琥珀酸脱氢酶(SDH)活性均呈先上升后下降的趋势.(2)Cd2 胁迫对小麦幼苗根中细胞色素氧化酶(COD)、苹果酸脱氢酶(MDH)、异柠檬酸脱氢酶(IDH)同工酶表达的影响较小,都呈低浓度诱导、高浓度抑制的效应,且Cd2 处理诱导了根中新的MDH、IDH同工酶带的表达;而不同浓度Cd2 对小麦幼苗芽中COD、MDH、IDH同工酶的表达影响较小.(3)随Cd2 胁迫浓度的增加,芽长、根长、芽干重、根干重均呈持续下降的趋势,且对根的抑制作用明显大于对芽.研究表明,Cd2 胁迫可以改变小麦幼苗根和芽中SDH、COD、MDHI、DH等呼吸作用关键酶的活性或同工酶表达,从而影响其呼吸作用,最终抑制了幼苗的生长.  相似文献   

10.
UV-B辐射和Hg2+复合处理对黑小麦生理代谢和生长的影响   总被引:2,自引:0,他引:2  
在室内,用1.35 w·m-2剂量的UV-B和1.29 mmol·L-1浓度的Hg2+对黑小麦幼苗进行复合处理.结果表明,随处理时间的延长,叶绿素(Chl)、类胡萝卜素(Car)含量和光系统Ⅱ(PSⅡ)电子传递活性下降,SOD活性下降不明鲜;根系TTC还原能力下降;而叶片细胞膜相对透性(El)、丙二醛(MDA)和H2O2含量增加;处理12天后植株高和鲜重下降.MDA和H2O2含量指标,UV-B+Hg2+的复合处理大于Hg2+的单独处理.  相似文献   

11.
用不同浓度的Pb^2+及Pb^2++Ca^2+处理大蒜,测定其超氧化物歧化酶(SOD)、过氧化物酶(POD)活性,研究Pb^2+对大蒜SOD、POD的影响及Ca^2+的解毒作用。结果表明:一定浓度的Pb^2+能诱导SOD、POD活性,超过此浓度,SOD、POD活性下降,破坏其抗氧化防御系统;随着时间的延长,SOD、POD的活性先升后降,这是大蒜对逆境胁迫的一种适应;50mg/m^3的Ca^2+对Pb^2+有一定程度的解毒作用。  相似文献   

12.
13.
CdCl2对豌豆种子萌发和幼苗生长的影响   总被引:13,自引:0,他引:13  
以豌豆为实验材料,采用水培方法研究了Cd2 单盐胁迫对豌豆种子萌发与生长的影响。结果显示:(1)Cd2 质量浓度≤1 mg/L时,促进种子萌发,Cd2 质量浓度达到5 mg/L时抑制种子的萌发。(2)随Cd2 质量浓度的增加Cd2 对幼苗根生长的抑制作用逐渐增强;Cd2 质量浓度≤5 mg/L时,促进茎的生长,≥10 mg/L时,抑制茎的生长;且Cd2 对幼苗根生长的抑制作用大于茎。(3)低浓度Cd2 能促进幼苗叶绿素合成,当Cd2 质量浓度高于1 mg/L时,则对幼苗叶绿素合成有抑制作用,且随Cd2 质量浓度增加叶绿素含量逐渐下降。(4)Cd2 诱发的胚根细胞核、染色体畸变率随着Cd2 质量浓度增加而增大。(5)过氧化物酶(POD)同工酶的活性随着Cd2 质量浓度升高而明显增强,Cd2 质量浓度为1 mg/L时POD活性最强,但当Cd2 质量浓度达10 mg/L时,POD的灰度值明显下降。  相似文献   

14.
利用不同浓度Cd2+、Hg2+处理菱幼苗,研究重金属离子对菱生长、超氧化物歧化酶(SOD)、过氧化物酶(POD)活性的影响,比较Cd2+、Hg2+对同一植物的毒性差异。Cd2+、Hg2+各处理浓度均抑制菱幼苗生长,使叶绿素含量下降,但Cd2+的抑制作用比Hg2+的作用明显。Cd2+、Hg2+对SOD、POD活性有不同的影响效果:Cd2+处理最初诱导SOD、POD活性升高,但随浓度加大时间延长酶活性急剧下降;Hg2+处理的酶活性变化相对平缓,其中5μmol/L和10μmol/LHg2+处理的POD活性持续上升。实验结果表明,在相同处理时间和浓度条件下,Cd2+比Hg2+对菱的毒性要大。依据实验结果,作者探讨了重金属对植物的毒害机制  相似文献   

15.
杨利艳  韩榕 《植物学通报》2011,46(2):155-161
以冬小麦(Triticum aestivum)临远077038为材料, 研究了施入外源Ca^2+对150、200、250及350 mmol·L^-1NaCl胁迫下小麦种子萌发及幼苗生长发育的影响。结果表明: 20 mmol·L^-1CaCl2浸种能够提高小麦在150–250 mmol·L^-1盐胁迫下种子的发芽率, 并能增强其生长势; 当NaCl浓度为350 mmol·L^-1时, 小麦种子不能萌发, 且在以上浓度的NaCl胁迫下, 小麦种子均不能发育成苗。对NaCl胁迫下的小麦幼苗施入外源Ca^2+后, 提高了幼苗膜稳定性, 降低了膜脂过氧化程度, 从而减轻了盐胁迫对幼苗膜的伤害, 表现为电导率降低、MDA含量降低及SOD和POD活性提高, 并且提高了幼苗的呼吸强度及叶绿素含量, 促进了幼苗生长及生物量的积累; Ca^2+的缓解效应随着盐胁迫的加剧逐渐减弱, 在浓度为350 mmol·L^-1的盐胁迫下, 幼苗的生物量显著低于对照。以上结果表明, 与水处理相比, 20 mmol·L^-1CaCl2处理能够更大程度地促进小麦的生长发育。  相似文献   

16.
用不同浓度Ca2 溶液浸种处理红三叶种子后、用0.1 mmol·L-1Cd2 溶液培养,探讨外源Ca2 对Cd2 胁迫下红三叶种子萌发、幼苗生长及其保护酶活性和子叶叶绿素含量的影响.结果显示:(1)0.1 mmol·L-1Ca2 浸种处理能显著缓解Cd2 胁迫的影响,可使红三叶种子发芽势、发芽指数及活力指数显著升高,全苗长、胚根长和胚根/胚芽显著增加(分别增加21.38%、44.06%和38.63%),并显著提高叶绿素含量(14.59%);(2)0.11、.0 mmol·L-1Ca2 浸种预处理均能显著提高Cd2 胁迫下红三叶幼苗子叶SOD活性(43.17%、218.95%)和POD活性(34.00%、14.28%),并显著降低其CAT活性(17.43%、29.19%)和MDA含量(21.92%、24.51%).结果表明,0.1mmol·L-1外源Ca2 浸种处理能显著缓解Cd2 (0.1 mmol·L-1)胁迫对红三叶种子萌发及幼苗生长及其保护酶活性的抑制作用,可明显提高红三叶幼苗对Cd2 胁迫的抵抗能力,缓解效果最优.  相似文献   

17.
SA浸种对盐胁迫下小麦种子萌发和幼苗生长的影响   总被引:5,自引:0,他引:5  
《生命科学研究》2017,(3):244-250
以小麦盐敏感品种鲁麦15为材料,研究了外源水杨酸(salicylic acid,SA)浸种对100 mmol/L NaCl胁迫下小麦种子萌发和幼苗生长的影响。研究结果表明:盐胁迫下,无论经SA浸种还是未经SA浸种,小麦幼苗的生长均受到明显抑制,干、鲜重显著下降;0.1 mmol/L、0.2 mmol/L和0.3 mmol/L SA溶液浸种均能显著缓解NaCl胁迫对小麦幼苗生长的抑制,其中以0.2 mmol/L SA溶液浸种预处理效果最好。实验中,0.2 mmol/L SA浸种可显著提高盐胁迫下小麦种子β-淀粉酶的活性和吸胀速率。此外,与未经SA浸种的盐胁迫小麦幼苗相比,0.2 mmol/L SA浸种的盐胁迫小麦幼苗整株的干、鲜重显著增加,幼苗体内Na~+含量降低,K~+含量和K~+/Na~+比值显著提高;同时,小麦幼苗叶片中超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)、过氧化物酶(peroxidase,POD)活性升高,而丙二醛(MDA)含量则显著降低。由此可以得出,SA浸种能有效提高盐胁迫下小麦幼苗体内K~+/Na~+比值,提高SOD、CAT和POD的活性,减轻膜脂过氧化程度,以缓解盐胁迫对小麦幼苗生长的抑制作用,从而提高耐盐性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号