首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of apolipoprotein B (apoB) were measured in seven studies in heterozygous, familial hypercholesterolemic subjects (FH) and in five studies in normal subjects, using in vivo tracer kinetic methodology with a [3H]leucine tracer. Very low density (VLDL) and low density lipoproteins (LDL) were isolated ultracentrifugally and LDL was fractionated into high and low molecular weight subspecies. ApoB was isolated, its specific radioactivity was measured, and the kinetic data were analyzed by compartmental modeling using the SAAM computer program. The pathways of apoB metabolism differ in FH and normal subjects in two major respects. Normals secrete greater than 90% of apoB as VLDL, while one-third of apoB is secreted as intermediate density lipoprotein IDL/LDL in FH. Normals lose 40-50% of apoB from plasma as VLDL/IDL, while FH subjects lose none, metabolizing all of apoB to LDL. In FH, there is also the known prolongation of LDL residence time. The leucine tracer, biosynthetically incorporated into plasma apoB, permits distinguishing the separate pathways by which the metabolism of apoB is channeled. ApoB synthesis and secretion require 1.3 h. ApoB is secreted by three routes: 1) as large VLDL where it is metabolized by a delipidation chain; 2) as a rapidly metabolized VLDL fraction converted to LDL; and 3) as IDL or LDL. ApoB is metabolized along two pathways. The delipidation chain processes large VLDL to small VLDL, IDL, and LDL. The IDL pathway channels nascent, rapidly metabolized VLDL and IDL particles into LDL. It thus provides a fast pathway for the entrance of apoB tracer into LDL, while the delipidation pathway is a slower route for channeling apoB through VLDL into LDL. LDL apoB is derived in almost equal amounts from both pathways, which feed predominantly into large LDL. Small LDL is a product of large LDL, and the major loss of LDL-apoB is from small LDL. Two features of apoB metabolism in FH, the major secretory pathway through IDL and the absence of a catabolic loss of apoB from VLDL/IDL, greatly facilitate measuring the metabolic channeling of apoB into LDL.  相似文献   

2.
To evaluate factors regulating the concentrations of plasma low density lipoproteins (LDL), apolipoprotein B metabolism was studied in nine Pima Indians (25 +/- 2 yr, 191 +/- 20% ideal wt) with low LDL cholesterol (77 +/- 7 mg/dl) and apoB (60 +/- 4 mg/dl) and in eight age- and weight-matched Caucasians with similar very low density lipoprotein (VLDL) concentrations, but higher LDL (cholesterol = 104 +/- 18; apoB = 82 +/- 10; P less than 0.05). Subjects received autologous 131I-labeled VLDL and 125I-labeled LDL, and specific activities of VLDL-apoB, intermediate density lipoprotein (IDL)-apoB, and LDL-apoB were analyzed using a multicompartmental model. Synthesis of LDL-apoB was similar (1224 +/- 87 mg/d in Pimas vs 1218 +/- 118 mg/d in Caucasians) but in Pimas the fractional catabolic rate (FCR) for LDL-apoB was higher (0.48 +/- 0.02 vs 0.39 +/- 0.04 d-1, P less than 0.05). In the Pimas, a much higher proportion of VLDL-apoB was catabolized without conversion to LDL (47 +/- 3 vs 30 +/- 5%, P less than 0.01). When all subjects were considered together, LDL-apoB concentrations were negatively correlated with both FCR for LDL-apoB (r = -0.79, P less than 0.0001) and the non-LDL pathway (r = -0.43, P less than 0.05). Also, the direct removal (non-LDL) path was correlated with VLDL-apoB production (r = 0.49, P = 0.03), and the direct removal pathway and FCR for LDL-apoB were correlated (r = 0.49, P = 0.03). In conclusion, plasma LDL appear to be regulated by both the catabolism of LDL and the extent of metabolism of VLDL without conversion to LDL; both of these processes may be mediated by the apoB/E receptor, and appear to increase in response to increasing VLDL production.  相似文献   

3.
HMG-CoA reductase inhibitors (statins) are effective lipid-altering drugs for the treatment of dyslipidemia in patients with type 2 diabetes mellitus. We conducted a randomized, double-blind, placebo-controlled, crossover design trial to determine the effects of simvastatin, 80 mg/day, on plasma lipid and lipoprotein levels and on the metabolism of apolipoprotein B (apoB) in VLDL, intermediate density lipoprotein (IDL), and LDL and of triglycerides (TGs) in VLDL. Simvastatin therapy decreased TG, cholesterol, and apoB significantly in VLDL, IDL, and LDL. These effects were associated with reduced production of LDL-apoB, mainly as a result of reduced secretion of apoB-lipoproteins directly into the LDL density range. Statin therapy also reduced hepatic production of VLDL-TG. There were no effects of simvastatin on the fractional catabolic rates of VLDL-apoB or -TG or LDL-apoB. The basis for decreased VLDL-TG secretion during simvastatin treatment is not clear, but recent studies suggest that statins may activate peroxisomal proliferator-activated receptor alpha (PPARalpha). Activation of PPARalpha could lead to increased hepatic oxidation of fatty acids and less synthesis of TG for VLDL assembly.  相似文献   

4.
A method is described for the rapid, selective, and quantitative precipitation of apolipoprotein B from isolated hypercholesterolemic rabbit and human very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), and low density lipoproteins (LDL). Lipoprotein samples are heat-treated at 100 degrees C in 1% SDS. The denatured apoprotein solutions are then mixed briefly with two volumes of butanol-isopropyl ether 45:55 (v/v) to precipitate the apoB. The supernatant solutions, containing the non-apoB proteins and lipids, are removed and the apoB pellet is washed once with water. To determine apoB specific activity, the apoB pellet is resolubilized in 0.5 M NaOH by heating for 30 min at 120 degrees C. The hydrolyzed apoB protein is quantitated by fluorescence of a fluorescamine derivative. The precipitation of apoB is quantitative and selective: 99.5% of rabbit 125I-labeled LDL-apoB and 97.5% of human 125I-labeled LDL-apoB is precipitated and less than 5% of 125I-labeled HDL added to unlabeled VLDL, IDL, or LDL is precipitated. Triglyceride and cholesteryl ester contamination of the apoB pellet is less than 2% of their original radioactivities.  相似文献   

5.
Rats treated with the contraceptive steroid d-norgestrel have lower plasma very low density lipoprotein (VLDL)-triglycerides and higher low density lipoprotein (LDL)-cholesterol than controls. To explain these results, the kinetics of VLDL and LDL turnover were studied by injecting 125I-labeled rat-VLDL and 131I-labeled rat-LDL simultaneously into rats treated with a small dose of d-norgestrel (4 micrograms per day per kg body weight0.75 for 18 days, n = 22) and their untreated controls (n = 22). VLDL- and LDL-apoB specific activity-time curves obtained over 50 hr best conformed to a three-pool model. VLDL-apoB clearance expressed as irreversible catabolic rate (k01) was markedly enhanced in the treated versus control rats (0.57 vs. 0.34 pools hr-1), leading to a marked reduction in VLDL-apoB pool size (270 vs. 420 micrograms). However, VLDL-apoB production rates were similar in the two groups (160 vs. 140 micrograms/hr, respectively). The 125I-labeled apoB specific activity-time curve derived from the catabolism of 125I-labeled VLDL-apoB also showed enhanced clearance in d-norgestrel-treated rats. 125I-Labeled IDL-apoB and 125I-labeled LDL-apoB specific activity-time curves failed to intersect the VLDL-apoB curve at maximal heights, suggesting input of intermediate density lipoprotein (IDL) and LDL independent of VLDL catabolism in both groups. However, the extent of independent LDL-apoB production was similar in both groups. Clearance of 131I-labeled LDL-apoB following injection of 131I-labeled rat-LDL was delayed in the d-norgestrel-treated versus control rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
This study was designed to investigate the response of Type III hyperlipoproteinemic subjects to bezafibrate therapy. The metabolism of apolipoprotein B was examined in four lipoprotein subclasses of Sf 60-400 (large very low density lipoprotein (VLDL)), Sf 20-60 (small VLDL), Sf 12-20 (intermediate density lipoprotein (IDL)), and Sf 0-12 (low density lipoprotein (LDL)) before and during bezafibrate therapy. Treatment reduced the plasma concentration of VLDL and raised high density lipoprotein (HDL) cholesterol. There was no net change in LDL cholesterol or its associated apolipoprotein B. The decrease in plasma VLDL derived mainly from an inhibition of synthesis of both large and small subfractions which reduced the number of particles in the circulation without normalizing their lipid composition. Catabolism of the larger VLDL also increased, presumably as a result of lipoprotein lipase activation. Although the plasma concentration of LDL was unchanged, both its synthesis and catabolism were perturbed. Its fractional catabolic rate fell by 50%, but the impact that this would have had on its steady state level in the circulation was apparently blunted by a decrease in its synthesis from Sf 12-20 IDL. In the control phase of the study, most IDL apolipoprotein B was converted to LDL. Bezafibrate therapy channelled this material towards direct catabolism.  相似文献   

7.
To determine the metabolic mechanism of hypercholesterolemia in rabbits produced by feeding cholesterol-rich diets, control and hypercholesterolemic rabbits were injected with I-labelled very low density lipoproteins (VLDL, d 1.006 g/ml) from control and/or hypercholesterolemic donors. Apolipoprotein B in VLDL decayed biphasically. The first phase occurred much more rapid than the second. 95% of the VLDL apolipoprotein B was catabolized via the first phase (t1/2 = 0.55 +/- 0.19 h) in normal rabbit with the immediate appearance of this radioactivity in intermediate density lipoproteins (IDL, d 1.006-1.025 g/ml) and low density lipoproteins (LDL, d 1.025-1.063 g/ml). The apolipoproteins C and E at the same time were transferred to high density lipoproteins where they decayed biphasically. The apolipoprotein B from hypercholesterolemic VLDL in the normal recipient disappeared at a similar rate as from normal VLDL via phase I; however, it was incompletely converted to IDL and LDL. Apolipoprotein B from normal VLDL in cholesterol-fed rabbits disappeared at a normal rate via phase I, but only 82% was catabolized by this phase. Hypercholesterolemic VLDL injected into the hypercholesterolemic recipient was less rapidly catabolized via phase I (T1/2 = 2.5 +/- 0.89 H) and only a small fraction was converted to IDL and LDL.  相似文献   

8.
To study the metabolic pathways of apolipoprotein B (apoB), a series of studies were carried out in which both radioiodinated very low density lipoproteins (VLDL) and tritiated leucine were simultaneously injected into three hypertriglyceridemic subjects. The appearance and disappearance of tritium activity in VLDL apoB, intermediate density lipoprotein (IDL) apoB, and low density lipoprotein (LDL) apoB were followed as was the disappearance of iodine activity from VLDL and the appearance and disappearance of iodine activity in IDL apoB and LDL apoB. It was found that a delipidation chain could describe the kinetics of both endogenously and exogenously labeled VLDL. A slow component of VLDL was necessary to fit the VLDL 131I-labeled apoB data and was consistent with the observed VLDL [3H]apoB kinetics. In addition, the estimated rate of conversion of VLDL apoB to LDL exceeded that which appeared to pass through the measured IDL pools, suggesting that a fraction of the IDL was not directly observed. It was also found that a higher percentage of VLDL 131I-labeled apoB was converted to LDL apoB than was VLDL [3H]apoB. To evaluate possible causes of this apparent anomaly, simultaneous examination of all kinetic data was performed. This exercise resulted in the resolution of removal pathways from multiple compartments in the VLDL delipidation chain and the conversion of slowly metabolized VLDL to IDL and LDL. The wide spectrum of this loss pathway indicates that previous estimates of VLDL apoB production rate using the radioiodinated methodology probably represent lower bounds for the true physiologic variable. It is important to note that these direct losses were apparent only when the combination of endogenous and exogenous labeling was used.  相似文献   

9.
Cryo-electron microscopy was used to analyze the structure of lipoprotein particles in density gradient subfractions of human very low density lipoprotein (VLDL), intermediate density lipoprotein (IDL), and low density lipoprotein (LDL). Lipoproteins from a normolipidemic subject with relatively large and buoyant LDL (pattern A) and from a subject with a predominance of small dense LDL (pattern B) were compared. Projections of VLDL in vitreous ice were heterogeneous in size, but all were circular with a relatively even distribution of contrast. Selected projections of LDL, on the other hand, were circular with a high density ring or rectangular with two high density bands. Both circular and rectangular LDL projections decreased in average size with increasing subfraction density, but were found in all of 10 density gradient subfractions, both in pattern A and in pattern B profiles. Preparations of total IDL contained particles with the structural features of VLDL as well as particles resembling LDL. IDL particles resembling LDL were observed in specific density gradient subfractions in the denser region of the VLDL;-IDL density range. Within the group of IDL particles resembling LDL considerable heterogeneity was observed, but no structural features specific for the pattern A or pattern B lipoprotein profile were recognized.The observed structural heterogeneity of the apolipoprotein B-containing serum lipoproteins may reflect differences in the composition of these particles that may also influence their metabolic and pathologic properties.  相似文献   

10.
We have examined the capability of a previously developed compartmental model to explain the kinetics of radioiodinated apolipoprotein (apo) B-100 in very low density lipoproteins (VLDL), intermediate density lipoproteins (IDL), and low density lipoproteins (LDL) separated by density gradient ultracentrifugation after intravenous injection of radioiodinated VLDL into New Zealand white (NZW) and Watanabe heritable hyperlipidemic (WHHL) rabbits. Our model was developed primarily from kinetics in whole blood plasma of apoB-100 in particles with and without apoE after intravenous injection of large VLDL, total VLDL, IDL, and LDL. When the initial conditions for this model were assumed to be an intravenous injection of radiolabeled VLDL, the plasma VLDL and LDL simulations for NZW rabbits and the VLDL, IDL, and LDL simulations for WHHL rabbits were found to be inconsistent with the observed density gradient data. By adding a new pathway in the VLDL portion of the model for NZW rabbits and a new compartment in VLDL for WHHL rabbits, and by assuming some cross-contamination in the density gradient ultracentrifugal separations, it was possible to bring our model, which was based upon measurements of 125I-labeled apoB-100 in whole plasma, into conformity with the data obtained by density gradient ultracentrifugation. The relatively modest changes required in the model to fit the gradient ultracentrifugation data support the suitability of our approach to the kinetic analysis of the metabolism of apoB-100 in VLDL and its conversion to IDL and LDL based upon measurements of 125I-labeled apoB-100 in whole plasma after injection of radiolabeled VLDL, IDL, and LDL. Furthermore, the differences in kinetics observed by us between data from whole plasma and data from plasma submitted to ultracentrifugal separation from the same or similar animals highlight the fact that small variations that can occur in the separation of lipoprotein classes by buoyant density can lead to confusing results.  相似文献   

11.
Apolipoprotein B metabolism in homozygous familial hypercholesterolemia   总被引:5,自引:0,他引:5  
This report describes the metabolism of apolipoprotein B-containing lipoproteins in seven familial hypercholesterolemic (FH) homozygotes and compares the results to the values obtained from five healthy control subjects. The concentration, composition, and metabolism of large, triglyceride-rich very low density lipoproteins (VLDL1, Sf 60-400) were the same in the control and FH groups, indicating that this component of the VLDL delipidation cascade ws unaffected by the absence of receptors. In contrast, familial hypercholesterolemic small VLDL2 (Sf 20-60) was enriched with cholesterol and depleted in triglyceride. Moreover, its plasma concentration was elevated as a result of an increase in its synthesis and a defect in the removal of a remnant population within this density interval. The latter accounted for up to 50% of the total mass of the fraction. Onward transfer of apolipoprotein B (apoB) from small VLDL through intermediate density lipoprotein (IDL) to low density lipoprotein (LDL) was retarded, suggesting that receptors were involved in this supposedly lipase-mediated event. IDL and LDL concentrations increased up to fourfold above normal in the plasma of the FH patients due partly to the delay in maturation and partly to defective direct catabolism. We conclude that the LDL receptor plays multiple and important roles in the metabolism and transformation of apoB-containing particles in the Sf 0-400 flotation interval.  相似文献   

12.
The use of amino acids labeled with stable isotopes represents a relatively new approach for determining kinetic parameters of apolipoprotein metabolism; thus, several aspects of experimental protocols need to be defined. The aims of the present study were to determine whether a) different amino acid tracers or b) different methods of tracer administration affected apolipoprotein (apo) B kinetic parameters obtained by multicompartmental modeling, and c) to compare very low density lipoprotein (VLDL)-apoB metabolic parameters determined by multicompartmental modeling with those estimated by linear regression or by monoexponential analysis. [1-13C]leucine and [15N]glycine were given either as bolus injections or as primed constant infusions. A bolus of one amino acid was administered simultaneously with a primed constant infusion (8 h) of the other amino acid into four healthy normolipidemic subjects (age 23.0 +/- 1.4 yr; BMI 20.9 +/- 0.9 kg.m-2). VLDL-, intermediate density lipoprotein (IDL)-, and low density lipoprotein (LDL)-apoB enrichments were followed over 110 h. For subsequent analysis these values were converted to tracer/tracee ratios. Using the multicompartmental model, the fractional catabolic rate (FCR) for VLDL-apoB was estimated to be 0.36 +/- 0.09 h-1 after the administration of the tracer as a primed constant infusion and 0.35 +/- 0.07 h-1 when the tracer was administered as a bolus. The values for VLDL-apoB production were 14.6 +/- 6.5 mg.kg-1.d-1 and 14.1 +/- 5.4 mg.kg-1.d-1, respectively. The corresponding values for LDL-apoB were 0.027 +/- 0.016 h-1 (0.026 +/- 0.018 h-1) for the FCR and 10.5 +/- 3.7 mg.kg-1.d-1 (10.4 +/- 3.8 mg.kg-1.d-1) for the production following administration of the tracer as a primed constant infusion and a bolus, respectively. Approximately 47% of VLDL-apoB ultimately reached the LDL fraction via the VLDL-IDL-LDL pathway. Thirty-five percent of LDL-apoB did not originate from this cascade pathway, but was shunted from a rapidly turning over VLDL compartment directly into the LDL fraction. While there was some variation between individuals, VLDL-apoB and LDL-apoB parameters derived from the bolus and the primed constant infusions showed no significant differences and were closely correlated. Metabolic parameters were also independent of the two amino acids tested. Although values for FCRs of VLDL-apoB obtained from linear regression (0.36 +/- 0.19 h-1) or monoexponential analysis (0.50 +/- 0.36 h-1) did not differ significantly from those obtained by the multicompartmental model, there was considerable variation and no significant correlation in a given individual.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The mechanism of inhibition by apolipoprotein C of the uptake and degradation of triglyceride-rich lipoproteins from human plasma via the low density lipoprotein (LDL) receptor pathway was investigated in cultured human skin fibroblasts. Very low density lipoprotein (VLDL) density subfractions and intermediate density lipoprotein (IDL) with or without added exogenous recombinant apolipoprotein E-3 were used. Total and individual (C-I, C-II, C-III-1, and C-III-2) apoC molecules effectively inhibited apoE-3-mediated cell metabolism of the lipoproteins through the LDL receptor, with apoC-I being most effective. When the incubation was carried out with different amounts of exogenous apoE-3 and exogenous apoC, it was shown that the ratio of apoE-3 to apoC determined the uptake and degradation of VLDL. Excess apoE-3 overcame, at least in part, the inhibition by apoC. ApoC, in contrast, did not affect LDL metabolism. Neither apoA-I nor apoA-II, two apoproteins that do not readily associate with VLDL, had any effect on VLDL cell metabolism. The inhibition of VLDL and IDL metabolism cannot be fully explained by interference of association of exogenous apoE-3 with or displacement of endogenous apoE from the lipoproteins. IDL is a lipoprotein that contains both apoB-100 and apoE. By using monoclonal antibodies 4G3 and 1D7, which specifically block cell interaction by apoB-100 and apoE, respectively, it was possible to assess the effects of apoC on either apoprotein. ApoC dramatically depressed the interaction of IDL with the fibroblast receptor through apoE, but had only a moderate effect on apoB-100. The study thus demonstrates that apoC inhibits predominantly the apoE-3-dependent interaction of triglyceride-rich lipoproteins with the LDL receptor in cultured fibroblasts and that the mechanism of inhibition reflects association of apoC with the lipoproteins and specific concentration-dependent effects on apoE-3 at the lipoprotein surface.  相似文献   

14.
Previous studies established that following simultaneous injection of 125I-labeled homologous very low density lipoproteins (VLDL) and 131I-labeled homologous low density lipoproteins (LDL) into miniature pigs, a large proportion of LDL apolipoprotein B (apoB) was synthesized directly, independent of VLDL or intermediate density lipoprotein (IDL) apoB catabolism. The possibility that cholestyramine alone (a bile acid sequestrant) or in combination with mevinolin (a cholesterol synthesis inhibitor) could regulate the direct LDL apoB synthetic pathway was investigated. 125I-labeled VLDL and 131I-labeled LDL were injected into miniature pigs (n = 8) during a control period and following 18 days of cholestyramine treatment (1.0 g kg-1d-1) or following 18 days of treatment with cholestyramine and mevinolin (1.2 mg kg-1d-1). ApoB in each lipoprotein fraction was selectively precipitated using isopropanol in order to calculate specific activity. In control experiments, LDL apoB specific activity curves reached their peak values well before crossing the VLDL or IDL apoB curves. However, cholestyramine treatment resulted in LDL apoB curves reaching maximal values much closer to the point of intersection with the VLDL or IDL curves. Kinetic analyses demonstrated that cholestyramine reduced total LDL apoB flux by 33%, which was due entirely to inhibition of the LDL apoB direct synthesis pathway since VLDL-derived apoB was unaffected. In addition, the LDL apoB pool size was reduced by 30% and the fractional catabolic rate of LDL apoB was increased by 16% with cholestyramine treatment. The combination of mevinolin and cholestyramine resulted in an even more marked inhibition of the direct LDL apoB synthesis pathway (by 90%), and in two animals this pathway was completely abolished. This inhibition was selective as VLDL-derived LDL apoB synthesis was not significantly different. LDL apoB pool size was reduced by 60% due primarily to the reduced synthesis as well as a 40% greater fractional removal rate. These results are consistent with the idea that cholestyramine and mevinolin increase LDL catabolism by inducing hepatic apoB, E receptors. We have now shown that the direct synthesis of LDL apoB is selectively inhibited by these two drugs.  相似文献   

15.
Western blot analysis of the alloantisera (i.e., anti-Lpq1, anti-Lpq2, anti-Lpq3, and anti-Lpq4) which defined the three lpq genes of rabbit linkage group VIII showed that they reacted strongly with an apolipoprotein of molecular weight 320,000. They also cross-reacted with an apolipoprotein of molecular weight 220,000. The two apolipoproteins that reacted with the alloantisera were found by SDS-polyacrylamide gel electrophoresis to be present in very low density (VLDL), intermediate density (IDL), and low density (LDL) lipoprotein fractions and by Western blot analysis to react with an anti-apolipoprotein B antiserum. These results support the conclusion that the alloantisera react with allotypes associated with the B apolipoproteins. The distribution of the four allotypes among different lipoprotein fractions, however, differed. The quantitative competitive Enzyme Linked Immunosorbant Assay (ELISA) showed that the Lpq1, Lpq2, and Lpq4 allotypes were found in the highest concentration in VLDL, IDL, and LDL, and in significantly lower concentrations in plasma chylomicrons. The concentrations of these allotypes in high density lipoproteins (HDL) as measured in the ELISA were about 1% of the concentrations found in LDL. The Lpq3 allotype, on the other hand, was present in the highest concentrations only in IDL and LDL and in significantly lower concentrations in VLDL and plasma chylomicrons. Surprisingly, the concentration of the Lpq3 allotype in HDL was 20% of the level found in LDL.  相似文献   

16.
The lipid transport system of 3-month-old male C57BL/6J obese (ob/ob) mice was investigated. Serum lipoproteins were separated by density gradient ultracentrifugation and characterized by their chemical and electrophoretic properties as well as their relative apolipoprotein contents, defined according to molecular weight and charge. Obese, ob/ob mice exhibited a marked hyperlipoproteinemia resulting from large increases in low-density lipoproteins (LDL, d 1.021-1.058 g/ml) and high-density lipoproteins (HDL, d 1.058-1.137 g/ml), particularly, the HDL2 subclass (d 1.058-1.109 g/ml). This increase in lipoproteins was entirely responsible for their hypercholesterolemia and hyperphospholipidemia. By contrast, these obese mice had a net decrease in very-low-density lipoproteins (VLDL, d less than 1.016 g/ml) and intermediate-density lipoproteins (IDL, d 1.016-1.021 g/ml), which accounted for their moderate hypotriglyceridemia. The chemical composition of heterogeneous light LDL (d 1.021-1.040 g/ml and dense LDL (d 1.040-1.058 g/ml) overlapped by HDL-like particles was highly modified. These modifications consisted of increases in the percentages of cholesteryl ester and phospholipid and decreases in that of triacylglycerol. There were also marked changes in the relative values of the apolipoproteins of VLDL, but principally, IDL and LDL. IDL and light LDL were poorer in apolipoproteins BH (Mr 340,000-320,000) and eventually in apolipoprotein BL (Mr 220,000-200,000) and enriched in apolipoproteins E (Mr 37,000-35,000) and C-A-II (Mr approximately equal to 12,000). A similar and very significant change occurred in VLDL for both the apolipoproteins BL and C-A-II. Dense LDL, mainly poorer in apolipoprotein BH and enriched in apolipoprotein A-I (Mr 28,000-27,000), closely resembled HDL2 in all the groups, and were enriched in apolipoproteins C-A-II in only the obese mice. We suggest that ob/ob mice are probably protected against atheromata because of the low VLDL and IDL levels, and the increase in HDL2.  相似文献   

17.
When [3H]cholesteryl ester-labeled low density (LDL) and intermediate density lipoproteins (IDL) from a normotriglyceridemic, hypercholesterolemic rabbit were injected into severely hypertriglyceridemic, hypercholesterolemic rabbits, 60% of the label appeared in very low density lipoproteins (VLDL) at 3 hr. A similar experiment showed that 40% of injected 131I-protein-labeled LDL appeared in the IDL fraction at 4 hr. Taken together, these data suggest that the exchange of LDL cholesteryl ester for VLDL triglyceride results in a density shift of injected LDL to the IDL density range. Furthermore, the percent of injected 131I-labeled LDL from normotriglyceridemic rabbits that appeared in the IDL fraction increased in rabbits with increasing levels of plasma triglyceride. This LDL density shift was reproduced in vitro by incubating iodinated LDL from normotriglyceridemic, hypercholesterolemic rabbits with concentrations of VLDL from hypertriglyceridemic, hypercholesterolemic rabbits similar to those in plasma. With such a system, it was shown that the percentage of LDL that appeared in the IDL fraction increased with time, was enhanced fourfold by the addition of plasma lipid transfer protein, increased with increasing molar ratio of triglyceride to cholesteryl ester in VLDL, but apparently did not increase with increasing VLDL particle number. These studies suggest that a pronounced decrease in density of lipoproteins that would normally appear in the LDL density range, resulting from loss of cholesteryl ester in exchange for VLDL triglyceride, may explain, at least in part, the reduced LDL levels in severe hypertriglyceridemia.  相似文献   

18.
The VLDL (very low density lipoprotein) receptor is a member of the LDL (low density lipoprotein) receptor family. The VLDL receptor binds apolipoprotein (apo) E but not apo B, and is expressed in fatty acid active tissues (heart, muscle, adipose) and macrophages abundantly. Lipoprotein lipase (LPL) modulates the binding of triglyceride (TG)-rich lipoprotein particles to the VLDL receptor. By the unique ligand specificity, VLDL receptor practically appeared to function as IDL (intermediate density lipoprotein) and chylomicron remnant receptor in peripheral tissues in concert with LPL. In contrast to LDL receptor, the VLDL receptor expression is not down regulated by lipoproteins. Recently several possible functions of the VLDL receptor have been reported in lipoprotein metabolism, atherosclerosis, obesity/insulin resistance, cardiac fatty acid metabolism and neuronal migration. The gene therapy of VLDL receptor into the LDL receptor knockout mice liver showed a benefit effect for lipoprotein metabolism and atherosclerosis. Further researches about the VLDL receptor function will be needed in the future.  相似文献   

19.
Low density lipoprotein receptor (LDLR)-deficient mice fed a chow diet have a mild hypercholesterolemia caused by the abnormal accumulation in the plasma of apolipoprotein B (apoB)-100- and apoB-48-carrying intermediate density lipoproteins (IDL) and low density lipoproteins (LDL). Treatment of LDLR-deficient mice with ciprofibrate caused a marked decrease in plasma apoB-48-carrying IDL and LDL but at the same time caused a large accumulation of triglyceride-depleted apoB-100-carrying IDL and LDL, resulting in a significant increase in plasma cholesterol levels. These plasma lipoprotein changes were associated with an increase in the hepatic secretion of apoB-100-carrying very low density lipoproteins (VLDL) and a decrease in the secretion of apoB-48-carrying VLDL, accompanied by a significant decrease in hepatic apoB mRNA editing. Hepatic apobec-1 complementation factor mRNA and protein abundance were significantly decreased, whereas apobec-1 mRNA and protein abundance remained unchanged. No changes in apoB mRNA editing occurred in the intestine of the treated animals. After 150 days of treatment with ciprofibrate, consistent with the increased plasma accumulation of apoB-100-carrying IDL and LDL, the LDLR-deficient mice displayed severe atherosclerotic lesions in the aorta. These findings demonstrate that ciprofibrate treatment decreases hepatic apoB mRNA editing and alters the pattern of hepatic lipoprotein secretion toward apoB-100-associated VLDL, changes that in turn lead to increased atherosclerosis.  相似文献   

20.
The conversion of very low density (VLDL) to low density lipoproteins (LDL) is a two-step process. The first step is mediated by lipoprotein lipase, but the mechanism responsible for the second is obscure. In this study we examined the possible involvement of receptors at this stage. Apolipoprotein B (apoB)-containing lipoproteins were separated into three fractions, VLDL (Sf 100-400), an intermediate fraction IDL (Sf 12-100), and LDL (Sf 0-12). Autologous 125I-labeled VLDL and 131I-labeled 1,2-cyclohexanedione-modified VLDL were injected into the plasma of four normal subjects and the rate of transfer of apoB radioactivity was followed through IDL to LDL. Modification did not affect VLDL to IDL conversion. Thereafter, however, the catabolism of modified apoB in IDL was retarded and its appearance in LDL was delayed. Hence, functional arginine residues (and by implication, receptors) are required in this process. Confirmation of this was obtained by injecting 125I-labeled IDL and 131I-labeled cyclohexanedione-treated IDL into two additional subjects. Again, IDL metabolism was delayed by approximately 50% as a result of the modification. These data are consistent with the view that receptors are involved in the metabolism of intermediate density lipoprotein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号