首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In postmenopausal women with breast cancer, aromatase, which is the enzyme converting androstenedione to estrone and testosterone to estradiol, is the rate-limiting step in estrogen biosynthesis. The currently available aromatase inhibitor, aminogluethimide, effectively blocks estrogen production and produces tumor regressions in patients previously treated with tamoxifen. This drug, however, produces frequent side effects and blocks steroidogenic steps other than the aromatase enzyme. Thus, newer aromatase inhibitors with greater potency and specificity are under intense study. More than 20 such compounds have recently been developed. In several clinical trials, 4-hydroxyandrostenedione, given parenterally, has been highly active and specific for aromatase inhibition in patients with breast cancer. In two large recent studies, one-third of heavily pretreated women experienced objective tumor regression with this therapy. CGS 16949A, a newer agent, is also Phase II clinical trials. This compound is an imidazole derivative with nearly 1000-fold greater potency than aminoglutethimide. An initial Phase I study compared the potency of 0.6–16 mg daily in 12 postmenopausal women and found maximal suppression of urinary and plasma estrogens with 2 mg daily. The degree of inhibition was similar to that induced by aminoglutethimide or by surgical adrenalectomy. No CNS, hematologic or biochemical toxicity was observed. A larger Phase II study in 54 patients confirmed this high degree of potency of CGS since a plateau effect was observed at the 1.8, 2 and 4 mg daily doses. The endocrine effects were not absolutely specific as a blunting of ACTH-stimulated but not basal aldosterone levels were observed. This and other emerging aromatase inhibitors offer promise as pharmacologic methods to inhibit estrogen production specifically and without side effects.  相似文献   

2.
CGS 16949A inhibited the conversion of [4-14C]androstenedione (A) to [4-14C]estrone by human placental microsomes in a competitive manner (Ki = 1.6 nM). Aminoglutethimide, also a competitive inhibitor, had a Ki = 0.7 microM in this assay system. The Km for the aromatization of A was 0.11 microM. Using ovarian microsomes from immature rats primed with pregnant mare's serum gonadotrophin and using [4-14C]testosterone conversion to [4-14C]estradiol as a measure of aromatase activity, the Km was 42 nM. At a substrate concentration 3-fold the Km, CGS 16949A was 180 times more potent as an inhibitor than aminoglutethimide, exhibiting half-maximal inhibition at 1.7 nM as compared to 0.3 microM. In vivo CGS 16949A lowered ovarian estrogen synthesis by gonadotropin-primed, androstenedione treated, immature rats by 90% at a dose of 260 micrograms/kg (PO). A dose of 100 mg/kg of aminoglutethimide was needed to produce this same effect. CGS 16949A at a dose of 4 mg/kg (PO) induced uterine atrophy (aromatase inhibition) without inducing adrenal hypertrophy - indicating a lack of inhibition of corticosterone secretion, while aminoglutethimide at 40 mg/kg (PO) induced adrenal hypertrophy without inducing uterine atrophy. CGS 16949A was neither androgenic nor estrogenic in rats using standard bioassays. The data suggest that CGS 16949A may serve as a potent and selective agent for modulating estrogen-dependent functions.  相似文献   

3.
MDL 18,962, 19-acetylenic androstenedione, is an enzyme-activated inhibitor of estrogen biosynthesis which is in Phase I clinical evaluations as a potential therapeutic agent for estrogen-dependent cancers. 19-Acetylenic analogs corresponding to the major metabolites of androstenedione were synthesized as potential metabolites of MDL 18,962. These compounds were 19-acetylenic testosterone, the product of 17 beta-hydroxy steroid oxidoreductase, 6 beta-hydroxy- and 6-oxo-19-acetylenic androstenedione, products of P450 steroid 6 beta-hydroxylase and alcohol dehydrogenase, respectively. All of these analogs showed time-dependent inactivation of human placental aromatase activity. The time-dependent Ki and t1/2 at infinite inhibitor concentration (tau 50) were 4.3 nM, 12.0 min for MDL 18,962; 28 nM, 7.8 min for 17-hydroxy analog; 13 nM, 37 min for 6 beta-hydroxy analog; and 167 nM, 6.1 min for the 6-oxo analog. The 19-acetylenic testosterone, a confirmed metabolite from primate studies, was 25% as efficient as MDL 18,962 for aromatase inactivation, while 6 beta-hydroxy- and 6-oxo analogs were 11% and 5%, respectively as efficient as their parent compound. These data indicate that first-pass metabolism of MDL 18,962 does not cause an obligatory loss of time-dependent inhibition of human aromatase activity.  相似文献   

4.
Aromatase and its inhibitors--an overview   总被引:2,自引:0,他引:2  
Estrogen synthesis by aromatase occurs in a number of tissues throughout the body. Strategies which reduce production of estrogen offer useful means of treating hormone-dependent breast cancer. Initially, several steroidal compounds were determined to be selective inhibitors of aromatase. The most potent of these, 4-hydroxyandrostenedione (4-OHA) inhibits aromatase competitively but also causes inactivation of the enzyme. A number of other steroidal inhibitors appear to act by this mechanism also. In contrast, the newer imidazole compounds are reversible, competitive inhibitors. In vivo studies demonstrated that 4-OHA inhibited aromatase activity in ovarian and peripheral tissues and reduced plasma estrogen levels in rat and non-human primate species. In rats with mammary tumors, reduction in ovarian estrogen production was correlated with tumor regression. 4-OHA was also found to inhibit gonadotropin levels in animals in a dose-dependent manner. The mechanism of this effect appears to be associated with the weak androgenic activity of the compound. Together with aromatase inhibition, this action may contribute to reducing the growth stimulating effects of estrogen. A series of studies have now been completed in postmenopausal breast cancer patients treated with 4-OHA either 500 mg/2 weeks or weekly, or 250 mg/2 weeks. These doses did not affect gonadotropin levels. Plasma estrogen concentrations were significantly reduced. Complete or partial tumor regression occurred in 26% of the patients and the disease was stabilized in 25% of the patients. The results suggest that 4-OHA is of benefit to postmenopausal patients who have relapsed from prior hormonal therapies. Several of the steroidal inhibitors are now entering clinical trials as well as non-steroidal compounds which are more potent and selective than aminoglutethimide. Aromatase inhibitors should provide several useful additions to the treatment of breast cancer.  相似文献   

5.
The pregnene derivative, 4-pregnene-3-one-20 beta-carboxaldehyde (22-A) was evaluated as an inhibitor of 17 alpha-hydroxylase/C17,20-lyase in rat testicular microsomes and of 5 alpha-reductase in human prostatic homogenates. The effect of the compound in vivo was studied in adult male rats. The 22-A demonstrated potent and competitive inhibition of 17 alpha-hydroxylase and C17,20-lyase with Ki values 8.48 and 0.41 microM, respectively, significantly below the Km values for these two enzymes (33.75 and 4.55 microM). This compound also showed potent inhibition of 5 alpha-reductase with a Ki value of 15.6 nM (Km for this enzyme is 50 nM). By comparison, ketoconazole, a currently studied 17 alpha-hydroxylase/C17,20-lyase inhibitor for the treatment of prostatic cancer, showed less potent inhibition of 17 alpha-hydroxylase (Ki 39.5 microM) and C17,20-lyase (Ki 3.6 microM) and did not inhibit 5 alpha-reductase. Progesterone which has been reported to inhibit the 17 alpha-hydroxylase/C17,20-lyase, did not significantly reduce the production of testosterone by rat testes in vitro in comparison to controls, while the same concentration of 22-A demonstrated a 42% reduction of testosterone biosynthesis. When the adult male rats were injected s.c. with 22-A at 50 mg/day/kg for a 2 week period, the testosterone concentrations in the rat sera were significantly lower than control values (P less than 0.05), whereas serum corticosterone levels did not change. These results suggest that 22-A is a selective potent inhibitor for 17 alpha-hydroxylase and C17,20-lyase, but is more potent for the C17,20-lyase. The compound also inhibits 5 alpha-reductase, and therefore may reduce biosynthesis of testosterone and dihydrotestosterone effectively. Thus, 22-A may be useful in the treatment of problems associated with the androgen excess and prostatic cancer.  相似文献   

6.
Several 7-substituted 4-androstene-3, 17-diones are potent inhibitors of the biosynthesis of estrogens, with the most effective being 7-(4'-amino)phenylthio-4-androstene-3, 17-dione. An azide derivative of this 7-thioether compound has been prepared as a potential photoaffinity inhibitor. The enzyme kinetics of the azide analog were examined under both dark conditions and UV irradiation. In the dark, the azide was a very potent competitive inhibitor, with an apparent Ki of 1.3 nM. Under UV-irradiation, a time-dependent loss of aromatase activity was also observed. These studies indicate that the 7-substituent enhances the affinity of the steroidal analogs for the enzyme site.  相似文献   

7.
The effects of R 76713, a new triazole derivative, on rat ovarian, testicular and adrenal steroidogenesis were investigated both in vitro and in vivo. In vitro R 76713 is a very potent inhibitor of the aromatase enzyme in rat granulosa cells, showing an IC50-value of 3.0 +/- 0.2 nM. The compound is about 1000 times more active than aminoglutethimide which shows an IC50-value of 3900 +/- 2800 nM in the same system. R 76713 is also a highly selective aromatase inhibitor. In cultures of ovarian, testicular and adrenal cells, formation of progesterone, androgens and glucocorticoids was only affected by drug concentrations higher than 1 microM. In vivo, single oral drug doses of 0.05 mg/kg lowered plasma estradiol levels of PMSG-primed female rats by more than 90%. An ED50-value of 0.005 mg/kg could be calculated. A single oral dose of 1 mg/kg suppressed plasma estradiol levels almost completely for 24 h. A dose of 0.1 mg/kg lowered plasma estradiol by more than 90% for 8 h. In vivo, R 76713 also showed a highly selective profile. In LHRH/ACTH-injected rats, plasma levels of testicular and adrenal steroids remained unchanged after administration of a drug dose of 20 mg/kg. R 76713 at drug concentrations of 10 microM, showed no interaction in vitro with estrogen-, progestin-, androgen- and glucocorticoid-receptors. Given orally at 20 mg/kg for 3 days the compound also showed no estrogen or androgen agonistic or antagonistic effects.  相似文献   

8.
Potency and selectivity of aromatase inhibition are parameters which ultimately influence the therapeutic efficacy of aromatase inhibitors. This report describes an in vitro model which allows an assessment of the selectivity with which aromatase inhibitors inhibit estrogen biosynthesis. Estrogen production was stimulated by incubating adult female hamster ovarian tissue with ovine LH. The production rates of estrogens (E), testosterone (T) and progesterone (P) were determined using radioimmunoassays to measure the amount of these steroids released into the incubation medium over a 4-hour incubation period. The selectivity of aromatase inhibition was assessed by determining the IC50S with which each inhibitor inhibited the production of E (end product), T (immediate precursor of E) and P (early precursor of E). Selectivity was studied for each of the 4 aromatase inhibitors, CGS 16949A (a new non-steroidal compound), 4-OH-androstenedione, aminoglutethimide and testolactone. CGS 16949A was the most potent of the four, followed by 4-OH-androstenedione, aminoglutethimide and testolactone. As far as selectivity was concerned, both CGS 16949A and 4-OH-androstenedione selectively inhibited aromatase judging from the IC50s for E and P production (CGS 16949A: IC50 for E & P = 0.03 & 160 microM, resp.; 4-OH-androstenedione: IC50 for E & P = 0.88 & greater than or equal to 330 microM, resp.). Aminoglutethimide was the least selective inhibitor of aromatase (IC50 for E & P = 13 & 60 microM, resp.). For testolactone, the least potent of the four (IC50 for E = 130 microM), no conclusive data were obtained concerning the selectivity of aromatase inhibition. Thus a simple, effective and reproducible method is described for assessing the selectivity with which aromatase inhibitors inhibit aromatase.  相似文献   

9.
The aromatase inhibitory properties of the antifungal ketoconazole were compared with those of aminoglutethimide. In rat granulosa cells ketoconazole and aminoglutethimide showed IC50 values for aromatase inhibition of 2 X 10(-6) and 6 X 10(-7) M respectively. In the rat, in vivo, ketoconazole was 5 times less potent than aminoglutethimide. In young women, 400 mg of ketoconazole only marginally lowered plasma levels of estradiol-17 beta. It is concluded that ketoconazole is not a compound of choice for clinical use as an aromatase inhibitor.  相似文献   

10.
Aminoglutethimide and ketoconazole, although originally developed as an anticonvulsant and antifungal agent respectively, have both been used to suppress steroid biosynthesis in patients with hormone-sensitive cancer. Aminoglutethimide inhibits several enzymes involved in the synthesis of corticosteroids as well as the aromatase enzyme which converts androgens to oestrogens. About one third of patients with breast cancer show objective improvement with aminoglutethimide, and it may also be of use in the treatment of adrenal carcinoma. However, its toxicity, and the need for concomitant cortisol replacement, severely limit its usefulness. Ketoconazole also inhibits several steroidogenic enzymes, notably C17,20-lyase, and has been used to treat carcinoma of the prostate. Again however, its toxicity and limited efficacy limit its value, although it may be useful in the treatment of certain endocrine conditions such as precocious puberty. Several aromatase inhibitors similar in structure to aminoglutethimide have been developed in an attempt to create more selective and efficient inhibitors. Some of these compounds have been tested in animals but none have as yet been subjected to clinical trials. Attempts to produce imidazole inhibitors of steroidogenesis are less advanced, although one compound (CGS 16949A) has been reported to be a more selective and potent aromatase inhibitor than aminoglutethimide. Selective and effective compounds could be of great value in the treatment of hormone-sensitive carcinoma.  相似文献   

11.
Selective inhibition of estrogen production with aromatase inhibitors has been found to be an effective strategy for breast cancer treatment. Most studies have focused on inhibitor screening and in vitro kinetic analysis of aromatase inhibition using placental microsomes. In order to determine the effects of different inhibitors on aromatase in the whole cell, we have utilized the human choriocarcinoma cell line, JEG-3 in culture to compare and study three classes of aromatase inhibitors, 4-hydroxyandrostenedione, fadrozole (CGS 16949A), and aminoglutethimide. Fadrozole is the most potent competitive inhibitor and aminoglutethimide is the least potent among the three. However, stimulation of aromatase activity was found to occur when JEG-3 cells were preincubated with aminoglutethimide. In contrast, 4-OHA and fadrozole caused sustained inhibition of aromatase activity in both JEG-3 cells and placental microsomes, which was not reversed even after the removal of the inhibitors. 4-OHA bound irreversibly to the active site of aromatase and caused inactivation of the enzyme which followed pseudo-first order kinetics. However, 4-OHA appears to be metabolized rapidly in JEG-3 cells. Sustained inhibition of aromatase induced by fadrozole occurs by a different mechanism. Although fadrozole bound tightly to aromatase at a site distinct from the steroid binding site, the inhibition of aromatase activity by fadrozole does not involve a reactive process. None of the inhibitors stimulated aromatase mRNA synthesis in JEG-3 cells during 8 h treatment. The stimulation of aromatase activity by AG appeared to be due to stabilization of aromatase protein. According to these results, 4-OHA and fadrozole would be expected to be more beneficial in the treatment of breast cancer patients than AG. The increase in aromatase activity by AG may counteract its therapeutic effect and might be partially responsible for relapse of breast cancer patients from this treatment.  相似文献   

12.
Vorozole (R83842) is a potent and selective, non-steroidal aromatase inhibitor. It is the dextro-enantiomer of the triazole derivative R 76 713. In FSH-stimulated rat granulosa cells, vorozole inhibited aromatase activity with an IC50-value of 1.4±0.5 nM. In pregnant mare serum gonadotropin (PMSG)-primed female rats, plasma estradiol levels measured 2 h after single oral administration of vorozole were significantly reduced by drug doses of 0.001 mg/kg and higher, with an ED50-value of 0.0034 mg/kg. In ovariectomized nude mice, bearing an estrogen-producing JEG-3 choriocarcinoma, 5 days treatment with vorozole, dose-dependently reduced uterus weight and completely inhibited tumor aromatase, measured ex vivo. Vorozole showed IC50-values higher than 10 μM for inhibition of progesterone synthesis in rat granulosa cells, for inhibition of steroid biosynthesis in isolated rat testicular and adrenal cells and for inhibition of steroid binding to estrogen-, progestin-, androgen- and gluco- and mineralocorticoid-receptors. In LHRH/ACTH-injected male rats and in rats fed a sodium-deprived diet, single oral administration of up to 10 mg/kg vorozole did not affect plasma levels of testicular and adrenal steroids. The compound also had no in vivo estrogen or androgen (ant)agonistic properties. In the DMBA-induced rat mammary carcinoma model, vorozole at an oral dose of 2.5 mg/kg b.i.d. inhibited tumor growth similarly to ovariectomy.  相似文献   

13.
The pharmacologic inhibition of aromatase activity has been the focus of clinical trials in patients with advanced stage breast cancer. Recent developments with imidazole compounds that inhibit aromatase activity suggest their clinical use as potent inhibitors of estrogen biosynthesis in postmenopausal breast cancer patients. In this Phase I, open-label, dose-range finding study, we examined the inhibitory potency of CGS 20267 on blood and urine levels of estradiol, estrone and estrone sulfate in 8 patients with metastatic breast cancer. Studies included evaluation of adrenal and thyroid function to look for evidence of general hydroxylase inhibition at dose levels effective for aromatase blockade. Patients were administered CGS 20267 at doses of 0.1 and 0.25 mg, once a day in ascending doses over a 12-week period. Preliminary data reveal that CGS 20267 elicits a striking suppression in plasma estradiol, estrone and estrone sulphate which was observed in some patients as quickly as within 24 h of the first dose. Estrogen suppression of over 90% was achieved within 2 weeks of therapy. No alterations in either baseline or ACTH (cortrosyn) stimulated cortisol and aldosterone levels were observed through the 12 weeks of therapy. In addition, 24 h urine sodium and potassium values were not appreciably altered during therapy. We conclude that CGS 20267 is a potent, specific inhibitor of estrogen biosynthesis in postmenopausal patients with metastatic breast cancer and effectively reduces blood and urine estrogens to undetectable levels.  相似文献   

14.
Inhibition of postmenopausal estrogen production by aromatase inhibitors is an established drug treatment modality for postmenopausal breast cancer. In this article postmenopausal estrogen disposition and the alterations caused by treatment with aromatase inhibitors are reviewed. Recent investigations have challenged the hypothesis that aromatization of androstenedione into estrone is the sole production pathway for estrogens in postmenopausal women. The finding that estrogens persist in the plasma of patients receiving aminoglutethimide treatment despite a near total inhibition of the aromatase enzyme suggests that alternative pathways for estrogen synthesis exist. While nonspecific actions of aromatase inhibitors may be disadvantageous, certain effects may also be beneficial. Recent findings that aminoglutethimide may induce estrone sulfate metabolism questions whether this "prototype" aromatase inhibitor might have a dual mechanism of action. The importance of investigating the possible influence of different aromatase inhibitors on all components of estrogen disposition is considered.  相似文献   

15.
Atamestane is a potent competitive inhibitor of estrogen biosynthesis (aromatase) in several species, in vitro and in vivo, and has no endocrine side effects. In this study, the efficacy of atamestane in suppressing tumor growth was evaluated in comparing with that of a non-steroidal aromatase inhibitor (CGS 16949A, Ciba-Geigy) and ovariectomy. Female Sprague-Dawley rats bearing DMBA-tumors were treated s.c. once daily either with 30 or 150 mg/kg atamestane or with 0.1 or 0.5 mg/kg CGS 16949A for 4 weeks. At these biologically equivalent doses both aromatase inhibitors effectively inhibited tumor growth: at the end of treatment they caused a marked reduction in tumor size (up to 70%), while ovariectomy led to a complete remission of tumor growth. The histo-morphological pictures of the mammary tumors from treated animals were qualitatively almost similar to those of the control. In hosts, neither compound exerted any influence on the weight of genital organs (ovary, uterus and vagina), although the peripheral LH levels were significantly elevated by the higher dose of the aromatase inhibitors. This effect on LH levels is probably due to the elimination of the negative feed-back effect of estrogens on gonadotropin secretion (counter regulation). The serum prolactin levels were decreased by the aromatase inhibitors, indicating a diminution of estrogen levels in the treated animals. The present results clearly demonstrate that, in spite of the counter regulation, a pure aromatase inhibitor such as atamestane in sufficiently high doses is able to inhibit the growth of DMBA-induced mammary tumors in intact female rats.  相似文献   

16.
4-hydroxy-4-androstene-3,17-dione (4-OHA) has been shown to be a potent inhibitor of aromatase activity. It is effective in the control of estrogen-dependent processes in female subjects and may potentially be useful in the treatment of estrogen-dependent processes in men. Human foreskin fibroblasts grown in cell culture provide a model to investigate the effects of 4-OHA on extraglandular aromatase activity as well as the ability of the compound to influence androgen receptor binding and the 5 alpha-reduction of testosterone (T). Initial experiments were carried out to determine the potency of 4-OHA in genital skin fibroblasts by incubating cells with 4-OHA over a range of concentrations. When aromatase activity was determined at a substrate concentration close to the apparent Km of the enzyme, a 44% inhibition of enzyme activity occurred at a mean concentration of 5 nM 4-OHA. Enzyme kinetic studies analyzed by Eadie-Hofstee plots demonstrated competitive inhibition by 4-OHA with a mean apparent Ki of 2.7 nM. When 5 alpha-reductase activity was determined in the presence of 200 nM [3H]T, in the absence or presence of 4-OHA, a 50% inhibition of enzyme activity occurred at an inhibitor concentration of 3 microM. In androgen receptor binding studies, 4-OHA possessed 1% of the affinity of dihydrotestosterone (DHT) for [3H]DHT binding sites. In summary: 4-OHA is a potent and specific inhibitor of aromatase activity in human genital skin fibroblasts, the affinity of the enzyme for 4-OHA being greater than its affinity for the substrate, androstenedione. The influence of 4-OHA on 5 alpha-reductase activity and androgen receptor binding is minimal.  相似文献   

17.
A M Brodie  L Y Wing 《Steroids》1987,50(1-3):89-103
Studies with 4-hydroxyandrostenedione (4-OHA) are described which demonstrate inhibition of aromatase in human placentra and rat ovaries. In animal experiments, the compound was compared with aminoglutethimide (AG) for antitumor activity and effects on plasma hormone levels. 4-OHA was more effective than AG in causing regression of DMBA-induced hormone dependent tumors in the rat. Although estradiol concentrations in ovarian vein blood were reduced initially by both compounds, there is a reflex rise in LH and estradiol levels during long-term treatment with AG, whereas hormone levels in 4-OHA treated animals remained suppressed. Further studies in ovariectomized rats indicated that during long-term treatment, 4-OHA acts as a weak androgen (the compound has less than 1% the activity of testosterone) to directly inhibit the post-castrational rise in gonadotropin levels. This antigonadotropin action of the steroidal aromatase inhibitor may help maintain reduced ovarian estrogen secretion and thus contribute to the antitumor activity of 4-OHA.  相似文献   

18.
Compound 1 [3-(4-aminophenyl)-3-cyclohexylpiperidine-2,6-dione] is a highly potent nonsteroidal aromatase inhibitor of the aminoglutethimide (AG)-type containing an asymmetric carbon atom. 1 and its enantiomers (+)-1 and (-)-1 inhibited human placental aromatase by 50% at 0.3, 0.15, and 4.6 microM, respectively (IC50 AG = 37 microM). A competitive type of inhibition was observed for 1 and (+)-1 (Ki 1 = 3.9 nM, Ki (+)-1 = 2.0 nM, Ki AG = 408 nM). Using solubilized high spin aromatase, 1 showed a type II difference spectrum indicating the interaction of the amino nitrogen with the central Fe(III)-ion of the cytochrome P450 heme component. 1 and (+)-1 inhibited cholesterol side chain cleavage enzyme (desmolase) by 50% at 67 and 82 microM, respectively (IC50 AG = 29 microM). In ACTH-stimulated rat adrenal tissue in vitro, 1 was less active in inhibiting aldosterone and corticosterone production compared to AG (IC50s, 1, 130 and 140 microM, AG, 80 and 50 microM, respectively). In vivo, 1 was superior to AG, too: it showed a stronger inhibition of the plasma estradiol concentration of pregnant mares' serum gonadotropin-primed SD rats, the activity residing mainly in the (+)-enantiomer [ovarian vein: (+)-1, 0.31 mg/kg: 81% inhibition, (-)-1, 0.31 mg/kg: 6%, AG, 1.25 mg/kg: 35%]. Furthermore 1 was much more active in inhibiting the testosterone-stimulated tumor growth of the ovariectomized 9,10-dimethyl-1,2-benzanthracene tumor-bearing SD rat (postmenopausal model). Up to a dose of 600 mg/kg of 1 no central nervous symptom depressive effects were observed in the motility test and the rotarod experiment, whereas AG exhibited ED50s of 62 and 164 mg/kg, respectively.  相似文献   

19.
Aminoglutethimide (AG), an inhibitor of the aromatase enzyme, inhibits the biosynthesis of estrogens and displays well-documented anti-tumor efficacy in breast-cancer. However, this efficacy is accompanied by a relative lack of specificity in inhibiting aromatase and moderate tolerability. We report on two new non-steroidal aromatase inhibitors (CGS 16949A and CGS 18320B) which are more potent, selective and efficacious in their inhibition of aromatase than AG. Both compounds inhibit aromatase more potently in vitro and in vivo (over 400 and 1000 times respectively) than AG. They are both more selective in their inhibition of aromatase with CGS 18320B showing an improved selectively over CGS 16949A. When administered to adult female rats, both compounds elicit responses in serum hormones similar to those seen after ovariectomy. The duration of action of CGS 18320B, however, appears to be longer than that of CGS 16949A. CGS 18320B and CGS 16949A cause almost complete regression of DMBA-induced mammary tumors in adult female rats and almost completely suppress the appearance of new tumors. Thus CGS 16949A and CGS 18320B represent significant advances in the search for novel aromatase inhibitors which are more potent, selective and efficacious than aminoglutethimide.  相似文献   

20.
In male subjects, peripheral aromatization of androgens accounts for most of the estrogen production, and skin is an important site of such enzymatic activity. We have studied the effects of a mechanism-based, irreversible aromatase inhibitor, 10-(2-propynyl)-estr-4-ene-3,17-dione (MDL 18,962) on androgen action and metabolism in cultured human foreskin fibroblasts. Cells were incubated simultaneously in the presence of substrate, androstenedione, and inhibitor, MDL 18,962. Aromatase activity was linear with time up to 3 h of incubation at 37 degrees C in the absence and presence of 1.0-10 nM inhibitor. The IC50 for four different cell strains ranged from 4.0 to 8.6 nM MDL 18,962. Kinetic analysis of competitive inhibition by the Eadie-Hofstee method yielded an apparent Ki of 2.75 nM for the inhibitor. Preincubation of cells with MDL 18,962 resulted in irreversible inhibition of aromatase activity which was time- and concentration-dependent. We calculated a Ki of 7.6 nM for MDL 18,962. Preincubation of cells with 25 nM MDL 18,962 suppressed enzyme activity for up to 6 h following removal of the inhibitor, before a return of enzyme activity due to synthesis of new enzyme. MDL 18,962 (0.2-20 microM) did not influence the 5 alpha-reduction of testosterone (200 nM). In addition, binding of dihydrotestosterone (2 nM) to androgen receptors was not affected by MDL 18,962 (25-1000 nM). In summary, MDL 18,962 is a specific, high potency inhibitor of aromatase. By virtue of its high binding affinity to the enzyme active site, it competes very effectively with substrate, resulting in irreversible inactivation of aromatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号