首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical conformational analysis of L,D alternating sequences of poly alpha-amino acids is reported in connection with the ability of naturally occurring peptide and depsipeptide having alternating configurations to increase selectively the ion permeability across membranes. The most stable structures of poly(DL-proline), of which the conformational variability is practically limited to the choice between cis and trans conformations of the peptide bonds, were characterized. The all-trans conformation results in a flat helical structure possessing the main features for acting as an ion channel across membranes as actually found experimentally. Random cis-trans conformational sequences provide an alternative mechanism of ion transport intermediate between the ion channel and the ion carrier.  相似文献   

2.
J Wu 《Biophysical journal》1991,60(1):238-251
Ionic permeation in the selectivity filter of ion channels is analyzed by a microscopic model based on molecular kinetic theory. The energy and flux equations are derived by assuming that: (a) the selectivity filter is formed by a symmetrical array of carbonyl groups; (b) ion movement is near the axis of the channel; (c) a fraction of water molecules is separated from the ion while it moves across the selectivity filter; (d) the applied voltage drops linearly across the selectivity filter; (e) ions move independently. Energy profiles, single channel conductances, and the degree of hydration of K+ in a hypothetical K+ channel are examined by varying the following microscopic parameters: ion radius and mass, channel radius, number of effective water dipoles, and number of carbonyl groups. The i-V curve is linear up to +/- 170 mV. If the positions of energy maxima and minima are fixed, this linear range is reduced to +/- 50 mV. Channel radius and ion-water interactions are found to be two major channel structural determinants for selectivity sequences. Both radius and mass of an ion are important in selectivity mediated by these interactions. The theory predicts a total of 15 possible kinetic selectivity sequences for alkali cations in ion channels with a single selectivity filter.  相似文献   

3.
4.
The primary structures of the Na+ channel alpha-subunits from several species have now been deduced from cDNA sequences, and complete primary structures of all of the subunits of skeletal muscle L-type Ca2+ channels have been defined. Current research on voltage-gated ion channels is focusing on defining the structural components responsible for specific aspects of channel function. Recent experiments have identified regions of these channels that are important for voltage-dependent activation and inactivation, ion conductance, regulation by protein phosphorylation, and modulation by drugs and neurotoxins using a combination of antibody mapping and site-directed mutagenesis approaches. The results form the outlines of a structural map of ion channel function.  相似文献   

5.
Evidence from electrophysiology and biochemistry supports the hypothesis that the ion channel of the nicotinic acetylcholine receptor is formed by homologous amino acid sequences of all receptor subunits, called helices M2. A model of the ion channel is proposed and the selectivity filter is described as a ring of negatively-charged amino acid side chains [(1988) Nature 335, 645-648] which may undergo conformational changes upon permeation of the cation.  相似文献   

6.
Detection of DNA via an ion channel switch biosensor   总被引:1,自引:0,他引:1  
Detection of DNA by an ion channel switch biosensor has been demonstrated in a model system, using single-stranded oligonucleotide sequences of 52-84 bases in length. Two different biotinylated probes are bound, via streptavidin, either to the outer region of a gramicidin ion channel dimer or to an immobilized membrane component. The ion channels are switched off upon detection of DNA containing complementary epitopes to these probes, separated by a nonbinding region, at nanomolar levels. The DNA cross-links the ion channel to the immobilized species, preventing ions passing through the channel. Addition of DNase I after the target DNA has been added switches the ion channels on. The DNA response is dependent on the rate of hybridization of the individual probes to their complementary epitopes, as shown by using a single probe against DNA containing a repeat of the complementary epitope. These results were correlated with hybridization rates determined using surface plasmon resonance (BIAcore 2000), and with free energies of dimer formation for the probes.  相似文献   

7.
    
Calcium ion is thought to be one of the initial signals in the process of synaptic modification. Various reports have described that the critical amino acids responsible for determining calcium permeability of ion channels are glutamic acid, glutamine, arginine, and asparagine. By using a computational method (MacPROT) distinguishing transmembrane, globular, and surface sequences of proteins, the present work predicts that the critical amino acids exist within surface regions of the proteins. Furthermore, occurrence of-turn probabilities can be predicted around these critical residues by the protein conformational prediction method of Chou and Fasman. The results suggest that the critical amino acids exist at hydrophilic spaces or canals of membranous channel proteins and that the redirection potential of the protein chain induced by the turn structures provides the conformational change requisite for the ion selectivity and gating (opening/closing) of the channels.  相似文献   

8.
Summary Gramicidin A forms univalent cation-selective channels of 4 Å diameter in phospholipid bilayer membranes. The transport of ions and water throughout most of the channel length is by a singlefile process; that is, cations and water molecules cannot pass each other within the channel. The implications of this single-file mode of transport for ion movement are considered. In particular, we show that there is no significant electrostatic barrier to ion movement between the energy wells at the two ends of the channel. The rate of ion translocation (e.g., Na+ or Cs+) through the channel between these wells is limited by the necessity for an ion to move six water molecules in single file along with it; this also limits the maximum possible value for channel conductance. At all attainable concentrations of NaCl, the gramicidin A channel never contains more than one sodium ion, whereas even at 0.1M CsCl, some channels contain two cesium ions. There is no necessity to postulate more than two ion-binding sites in the channel or occupancy of the channel by more than two ions at any time.  相似文献   

9.
The recent crystal structure of the prokaryotic inwardly rectifying potassium channel, KirBac1.1, revealed for the first time the structure of a K+ channel in the closed state plus the location of the activation gate. Comparison of the KirBac1.1 structure with other known ion channels reveals a number of common structural features. These common characteristics include the formation of the ion conduction pathway at the interface between adjacent subunits, non-fixed charges forming part of the ion pathway, electrostatic sinks drawing ions into the channel, helix dipoles, and hydrophobic gates that ultimately prevent ion movement. This review describes in detail common structural themes present in ion channels.Presented at the Biophysical Society Meeting on Ion channels – from structure to disease held in May 2003, Rennes, France  相似文献   

10.

Background

To what extent do identified neurons from different animals vary in their expression of ion channel genes? In neurons of the same type, is ion channel expression highly variable and/or is there any relationship between ion channel expression that is conserved?

Methodology/Principal Findings

To address these questions we measured ion channel mRNA in large cells (LCs) of the crab cardiac ganglion. We cloned a calcium channel, caco, and a potassium channel, shaker. Using single-cell quantitative PCR, we measured levels of mRNA for these and 6 other different ion channels in cardiac ganglion LCs. Across the population of LCs we measured 3–9 fold ranges of mRNA levels, and we found correlations in the expression of many pairs of conductances

Conclusions/Significance

In previous measurements from the crab stomatogastric ganglion (STG), ion channel expression was variable, but many pairs of channels had correlated expression. However, each STG cell type had a unique combination of ion channel correlations. Our findings from the crab cardiac ganglion are similar, but the correlations in the LCs are different from those in STG neurons, supporting the idea that such correlations could be markers of cell identity or activity.  相似文献   

11.
Structure-function studies have shown that it is possible to convert a sodium channel to a calcium-selective channel by a single amino acid substitution in the selectivity filter locus. Ion permeation through the "model selectivity filter" was modeled with a reduced set of functional groups representative of the constituent amino acid side chains. Force-field minimizations were conducted to obtain the energy profile of the cations as they get desolvated and bind to the "model selectivity filter." The calculations suggest that the ion selectivity in the calcium channel is due to preferential binding, whereas in the sodium channel it is due to exclusion. Energetics of displacement of a bound cation from the calcium "model selectivity filter" by another cation suggest that "multi-ion mechanism" reduces the activation barrier for ion permeation. Thus, the simple model captures qualitatively most of the conduction characteristics of sodium and calcium channels. However, the computed barriers for permeation are fairly large, suggesting that ion interaction with additional residues along the transport path may be essential to effect desolvation.  相似文献   

12.
13.
Lemmon MA 《Cell》2005,120(5):574-576
In a recent issue of Nature, van Rossum et al. report binding of a "split" pleckstrin homology (PH) domain from phospholipase C-gamma(1) to the TRPC3 ion channel. Through sequence analyses and in vitro studies, they suggest a novel mode of protein-protein interaction in which two PH domain fragments in distinct proteins associate to form an "intermolecular" PH domain that binds inositol phospholipids and is required for ion channel location and function.  相似文献   

14.
15.
The ion permeation process, driven by a membrane potential through an outer membrane protein, OmpF porin of Escherichia coli, was simulated by molecular dynamics. A Na+ ion, initially placed in the solvent region at the outer side of the porin channel, moved along the electric field passing through the porin channel in a 1.3 nsec simulation; the permeation rate was consistent with the experimentally estimated channel activity (108109/sec). In this simulation, it was indicated that the ion permeation through the porin channel proceeds by a push-out mechanism, and that Asp113 is an important residue for the channel activity.  相似文献   

16.
A hierarchical computational strategy combining molecular modeling, electrostatics calculations, molecular dynamics, and Brownian dynamics simulations is developed and implemented to compute electrophysiologically measurable properties of the KcsA potassium channel. Models for a series of channels with different pore sizes are developed from the known x-ray structure, using insights into the gating conformational changes as suggested by a variety of published experiments. Information on the pH dependence of the channel gating is incorporated into the calculation of potential profiles for K(+) ions inside the channel, which are then combined with K(+) ion mobilities inside the channel, as computed by molecular dynamics simulations, to provide inputs into Brownian dynamics simulations for computing ion fluxes. The open model structure has a conductance of approximately 110 pS under symmetric 250 mM K(+) conditions, in reasonable agreement with experiments for the largest conducting substate. The dimensions of this channel are consistent with electrophysiologically determined size dependence of quaternary ammonium ion blocking from the intracellular end of this channel as well as with direct structural evidence that tetrabutylammonium ions can enter into the interior cavity of the channel. Realistic values of Ussing flux ratio exponents, distribution of ions within the channel, and shapes of the current-voltage and current-concentration curves are obtained. The Brownian dynamics calculations suggest passage of ions through the selectivity filter proceeds by a "knock-off" mechanism involving three ions, as has been previously inferred from functional and structural studies of barium ion blocking. These results suggest that the present calculations capture the essential nature of K(+) ion permeation in the KcsA channel and provide a proof-of-concept for the integrated microscopic/mesoscopic multitiered approach for predicting ion channel function from structure, which can be applied to other channel structures.  相似文献   

17.
It is suggested that the gating currents which control the ion channels in a biological membrane are comprised of positive charges crossing the membrane along chains of hydrogen bonds. These chains are the sets of hydrogen bonds which hold alpha-helical protein segments in their rigid conformations. The passage of a positive charge in one direction along such a chain will convert hydrogen bonds from the usual rigid N--C = O...H--N form to a flaccid N = C--O--H...N form. This "zipper" transition can be reversed by the passage of the positive charge along the return route. A flaccid protein rod can clog an ion channel and thereby close it. When all of the protein rods framing an ion channel are in the rigid conformation, the channel is open. This mechanism is used to explain some of the observed characteristics of calcium ion channels and sodium ion channels.  相似文献   

18.
We have studied the block of potassium channels in voltage-clamped squid giant axons by nine organic and alkali cations, in order to learn how the channel selects among entering ions. When added to the internal solution, all of the ions blocked the channels, with inside-positive voltages enhancing the block. Cesium blocked the channels from the outside as well, with inside-negative voltages favoring block. We compared the depths to which different ions entered the channel by estimating the "apparent electrical distance" to the blocking site. Simulations with a three-barrier, double-occupancy model showed that the "apparent electrical distance," expressed as a fraction of the total transmembrane voltage, appears to be less than the actual value if the blocking ion can pass completely through the channel. These calculations strengthen our conclusion that sodium and cesium block at sites further into the channel than those occupied by lithium and the organic blockers. Our results, considered together with earlier work, demonstrate that the depth to which an ion can readily penetrate into the potassium channel depends both on its size and on the specific chemical groups on its molecular surface. The addition of hydroxyl groups to alkyl chains on a quaternary ammonium ion can both decrease the strength of binding and allow deeper penetration into the channel. For alkali cations, the degree of hydration is probably crucial in determining how far an ion penetrates. Lithium, the most strongly hydrated, appeared not to penetrate as far as sodium and cesium. Our data suggest that there are, minimally, four ion binding sites in the permeation pathway of the potassium channel, with simultaneous occupancy of at least two.  相似文献   

19.
The first ion channels demonstrated to be sensitive to changes in oxygen tension were K+ channels in glomus cells of the carotid body. Since then a number of hypoxia-sensitive ion channels have been identified. However, not all K+ channels respond to hypoxia alike. This has raised some debate about how cells detect changes in oxygen tension. Because ion channels respond rapidly to hypoxia it has been proposed that the channel is itself an oxygen sensor. However, channel function can also be modified by thiol reducing and oxidizing agents, implicating reactive oxygen species as signals in hypoxic events. Cardiac ion channels can also be modified by hypoxia and redox agents. The rapid and slow components of the delayed rectifier K+ channel are differentially regulated by hypoxia and -adrenergic receptor stimulation. Mutations in the genes that encode the subunits for the channel are associated with Long QT syndrome and sudden cardiac death. The implications with respect to effects of hypoxia on the channel and triggering of cardiac arrhythmia will be discussed.  相似文献   

20.
In Cnidarians, cnidoblast cells contain organelles called cnidocysts, which are believed to be the product of an extremely complex regulated secretory pathway. When matured, these stinging organelles are capable of storing and delivering toxins. We hypothesized that translated nematocyst proteins might comprise specific sequences serving as signals in sorting to the organelle. A sodium channel neurotoxin from the sea anemone Actinia equina was cloned and the toxin precursor sequence was compared to those of nematocyst collagens, pore-forming toxins and ion channel neurotoxins. It was found that all the analyzed sequences possess a highly conserved stretch of nine amino acid residues ending with Lys-Arg N-terminally of the mature region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号